
CMSC388T: Introduction to Git, Github
and Project Management Tools

Winter 2021

Dr. Anwar Mamat

1

2

Course Home Page
http://www.cs.umd.edu/class/winter2021/cmsc388T/
• Syllabus
• Course schedule
• Contact info
• TAs: Nandhini, Sagar, Sanjay
• Office hours schedule
• Lecture slides
• Projects
• Lecture videos will be posted on ELMS.

CMSC388T Winter 2021 3

http://www.cs.umd.edu/class/winter2021/cmsc388c/

Recommended Textbook

4

Download the PDF and videos
https://git-scm.com/book/en/v2

CMSC388T Winter 2021

Schedule

• Lectures:
• M/W/F 9:30am-10:50am
• Synchronous, online
• Zoom link is posted on ELMS.

• Group Projects:
• Tu/Th 9:30am-10:50am

5

Grading

•3 Group Projects
• 10 groups, 4 students in each group

• Git/Github, and other topics

•No Exams ;)

6CMSC388T Winter 2021

Getting Started With Git

8

What is Git?
● A version-control system for tracking changes in your code
● Used for coordinating work on files among multiple people.

● Who wrote this module?
● When was this function edited? By whom? Why was it edited?
● Over the last 1000 revisions, when/why did a particular unit test stop

working?

● Git is a ‘Distributed Version Control System'.
○ Git does not rely on a central storage unit for a user’s code

history
○ Users clone (or download) repositories and maintain a history of

changes to your version of a project

9

● Great for coordinating changes on a project among
multiple contributors

● Great for debugging purposes
● Extremely fast version control
● Cloud storage of your code.
● Show off your code!

Why use Git?

10

How Does Git Work?

Before we learn Git command line interface, let us
understand the underlying design ideas of Git.

11

Snapshots

• Git thinks of its data more like a set of snapshots of a miniature
filesystem.

• Every time you commit, or save the state of your project in Git, it
basically takes a picture of what all your files look like at that moment
and stores a reference to that snapshot.

• To be efficient, if files have not changed, Git doesn’t store the file again,
just a link to the previous identical file it has already stored. Git thinks
about its data more like a stream of snapshots.

12

Snapshot

Delta Storage:
CVS, Subversio,
or other version
control systems

Snapshot
Storage:

Git

13

Snapshot

In Git terminology, a file is called a “blob”, and it’s just a bunch of
bytes. A directory is called a “tree”, and it maps names to blobs or
trees (so directories can contain other directories). A snapshot is
the top-level tree that is being tracked.

Root (tree)

Readme (blob, contents=“Hello”)

Rakefile (blob, contents=“abc”)

lib (tree)

Simplegit.rb (blob, contents=“xyz”)

14

Modeling History
Git models the history as a directed acyclic graph (DAG) of snapshots.
• Each snapshot in Git refers to a set of “parents”, the snapshots that

preceded it.
• Git calls these snapshots “commit”s

15

Objects and Hash
Objects : Blobs, trees, and commits are called objects.

Hash: In Git data store, all objects are content-addressed by their SHA-1
hash.

Objects and Hashes are immutable.

commit 61f57e85d04682467cde2436247ee80b6efdf1ed
Author: Anwar Mamat <anwarmamat@gmail.com>
Date: Mon Dec 7 21:36:53 2020 -0500

adds garbage collection slides

16

References
• All snapshots can be identified by their SHA-1 hash. It is hard to

remember 4- hexadecimal characters.
• Git assigns human readable names to for the hashes, called

“references”.
• References are pointers to the commits.
• For example,

• “master” (or main) reference usually points to the latest commit
in the main branch of development.

• “HEAD” is reference to “where we currently are”

17

Repositories
• Git repository: the data objects and references.

• All git commands map to some manipulation of the commit DAG by
adding objects and adding/updating references.

• Whenever you’re typing in any command, think about what manipulation
the command is making to the underlying graph data structure.

Example:

Discard uncommitted changes and make the ‘master’ ref point
to commit 5d83f9e

git checkout master
git reset --hard 5d83f9e

18

Staging Area

We want clean snapshots, and it
might not always be ideal to make a
snapshot from the current state.

The staging area is a place to
record things before committing.

19

Git command-line interface
• git init: creates a new git repo, with data stored in the .git

directory
• git status: Gives you a current overview of your repository. It

telling you which files have or haven’t been saved and what changes
are in staging.

• git add: Adds any changes made to your project to the staging
area. This does NOT affect your repository until your change is
committed.

• git commit: Essentially saves any added changes to your local
repository

20

Git command-line interface
• git help <command>: get help for a git command
• git log: shows a flattened log of history
• git log --all --graph --decorate: visualizes history as a

DAG
• git diff <filename>: show changes you made relative to the

staging area
• git diff <revision> <filename>: shows differences in a file

between snapshots
• git checkout <revision>: updates HEAD and current branch

Putting it All Together

21

