
Messing Up On Git

CMSC388T

Today’s Lecture:

2

More Git Commands

Demo of git reset and an introduction to git revert

Reverting another team’s mistakes

Useful Git commands if you mess up

More useful Git commands

Advanced Git

1

2

3

More Git Commands

Useful Git commands if you mess up

git alias

You can set up an alias for each command using git config.

For example:

$ git config --global alias.co checkout
$ git config --global alias.br branch
$ git config --global alias.ci commit
$ git config --global alias.st status

git alias

git config --global alias.lg1 "log --all --graph --decorate
--oneline"

[~]git lg1
* 9f0dbb2 (HEAD -> main) adds main
* 60e6e78 adds 5
| * 9224164 (feature) adds feat 2
| * 283e527 adds feat 1
|/
* 19e506b adds 2
* 7d58006 adds 1

git rebase

Git merge vs git rebase

git checkout feature
git merge master

Git merge Log

git rebase

Git merge vs git rebase

git rebase

Git merge vs git rebase

git rebase

[~]git log --all --graph --decorate --oneline

* 44cd78c (HEAD -> master) adds 7
* d1ad5e9 adds 6
| * 6cf4d13 (feature) adds 5
| * b7f520f adds 4
| * 755620b adds 3
| /
* adea689 adds 2
* 7b66d7c adds 1

git rebase

Git merge vs git rebase

Git checkout feature
Git rebase main

Git checkout main
Git rebase feature

git reset basics

● Allows user to modify their repository history

● Helps rollback to a specific commit

● Changes back to a specific commit in a brute-force kind of way that disrupts the

commit history of a repository.

● Used on your local, private repositories, especially if the repository is shared by

others

12

We have the following sequence of commits

13

● The above diagram is a linked list of commits

● Let’s say we made 4 commits so far, A,B,C,D

● As we can see our Master and Head pointer points to our latest commit D

git reset basics continued…

Moves both the head AND branch pointers to a specific commit and the commit history is

modified.

14

Recall git checkout

15

Move ONLY the HEAD pointer to a specific commit and the commit history remains untouched.

git reset --hard <hash>

16

● Most dangerous type of reset

● Moves the head and master pointer to the target commit

● Staging area and working directory are changed to match the specific commit

● Files in the staging area prior to running this command are discarded

○ Can cause large amounts of data loss if used incorrectly

git reset --soft <hash>

17

● Moves the head and master pointer to the target
commit

● Staging area and working directory are left
untouched

○ This is generally the safest option

git reset --mixed <hash>

18

● Meant to be a median between “--soft” and “--hard”,

● The DEFAULT option if a mode for reset is not specified

● Moves the head and master pointer to the target commit

● Changes the staging area to match the specific commit

● Files in the current staging area moved back to your current working directory

Fixing a team’s mistake

Demo of git reset and an introduction to git revert

Consider the follow Repository’s Commit History

20

Consider the same Repository’s Staging Area and
Working Directory

21

git reset --hard example

22

Notice how the staging area is now empty because Commit B’s Staging area was empty

git reset --hard example continued...

23

Run git log to see how the list of commits has been modified.

git reset --hard example continued...

24

Notice how the working directory files have been ‘reverted’ and now contain a different test.txt

git reset --soft example

25

Notice how the staging area remains untouched

git reset --soft example continued...

26

Notice how the log is the exact same as the log after we ran git reset --hard

git reset --soft example continued...

27

Notice how the working directory file has been left untouched

git reset --mixed example

28

Notice how the staging area is now empty because Commit B’s Staging area was empty

git reset --mixed example continued...

29

Notice how the log is the exact same as before

git reset --mixed example continued...

30

Notice how the modified file we added to the staging directory is now in our working directory.

Summarized Diagram

31

Popular Usage of git reset:

32

● If ever, you add a file to the staging area but want to remove the file from staging, we run
the following command: git reset HEAD TARGET-FILE

● If you ever want to abandon all local changes and start fresh with a copy of your remote
repository, run git reset --hard and then git pull

Which of the following commands only modify the commit
history

a) git reset --hard
b) git reset --soft
c) git reset --mixed
d) git reset --

Clicker Quiz

Which of the following commands only modify the commit
history

a) git reset --hard
b) git reset --soft
c) git reset --mixed
d) git reset --

Clicker Quiz

git revert

● Used for undoing changes to a repository.

● Revert does not modify the repository history

● Makes a new commit that that reverses any changes
to achieve the state of the specified commit

● Use this kind of version control on public branches
instead

35

git revert continued

36

Notice how the new head and master are essentially just a copy of the second commit

git revert example

37

1. Consider the following situation on

Test_Repo.

2. A team accidentally adds a file called

random.txt

3. We want to revert the other team’s

change in a safe manner

git revert example

38

To revert the last commit, we copy the hash and use git revert <hash>

As we see below, we have reverted their addition of the file and can
safely push these changes to the remote repository

When to use what?

39

Local Remote

● git revert

● git reset

● git cherry-pick

● git checkout

● git revert

● git cherry-pick

● git checkout

Fill in the blank:
“git revert is __________ , compared to git reset”

a) safer to use locally
b) brute force
c) safer to use remotely
d) more dangerous to use remotely

Clicker Quiz

Fill in the blank:
“git revert is __________ , compared to git reset”

a) safer to use locally
b) brute force
c) safer to use remotely
d) more dangerous to use remotely

Clicker Quiz

Advanced Git

Advanced Git commands

More Git Commands

43

git commit --amend git reflog

Lists the history of
updates to ref pointers
in your local repository

git clean

Modifies your most recent
commit by combining

changes in your staging
area with your previous

commit

Removes up untracked
changes files in your

repository. Keep in mind
that the -n or -f flag is

require

More Git Commands

44

git ls-files -s

Can be used with the “--
deleted”, “--modified”, or “--

others AND --exclude-
standard” flag to list the files

of each type

git reset --soft
HEAD~N

Removes last N by
moving the current

HEAD to the specified
commit

git diff --cached

Shows specific changes
in files that are

currently in the staging
area

Which of the following flags combine changes in your
staging area with your previous commit?

a) --add
b) --readd
c) --revert
d) --prevamend
e) --amend

Clicker Quiz

Which of the following flags combine changes in your
staging area with your previous commit?

a) --add
b) --readd
c) --revert
d) --prevamend
e) --amend

Clicker Quiz

Git Hooks

Git Hooks

Git can trigger custom scripts that perform certain operations.
These scripts are referred to as hooks.

[~]ls .git/hooks

pre-commit.sample
applypatch-msg.sample pre-merge-commit.sample
commit-msg pre-push.sample commit-msg.sample pre-rebase.sample
fsmonitor-watchman.sample pre-receive.sample
post-update.sample prepare-commit-msg.sample
pre-applypatch.sample update.sample

Creating a commit-msg Hook

[~] cd .git/hooks
[~] cp commit-msg.sample commit-msg
[~] chmod +x commit-msg

commit-msg Hook

#!/usr/bin/env ruby
message_file = ARGV[0]
message = File.read(message_file)
$format = /\[(\w+)\]:/
if !$format.match(message)

puts "[POLICY] Your message is not formatted correctly"
puts "[STANDARD] Your message should be in the format: ‘[module]:

commit message’ "
exit 1

end

Test commit-msg Hook

[~]git commit -m 'test'
[POLICY] Your message is not formatted correctly
[STANDARD] Your message should be in the format: ‘[module]:
commit message’

[~]git commit -m ”[test]: testing tests”

[main 3457535] [test]: testing tests
1 file changed, 1 insertion(+)

