
Active Image Clustering: Seeking Constraints from Humans to Complement
Algorithms

Arijit Biswas and David Jacobs
Computer Science Department

University of Maryland, College Park
arijitbiswas87@gmail.com, djacobs@umiacs.umd.edu

Abstract

We propose a method of clustering images that combines
algorithmic and human input. An algorithm provides us
with pairwise image similarities. We then actively obtain
selected, more accurate pairwise similarities from humans.
A novel method is developed to choose the most useful pairs
to show a person, obtaining constraints that improve clus-
tering. In a clustering assignment elements in each data
pair are either in the same cluster or in different clusters.
We simulate inverting these pairwise relations and see how
that affects the overall clustering. We choose a pair that
maximizes the expected change in the clustering. The pro-
posed algorithm has high time complexity, so we also pro-
pose a version of this algorithm that is much faster and
exactly replicates our original algorithm. We further im-
prove run-time by adding heuristics, and show that these do
not significantly impact the effectiveness of our method. We
have run experiments in two different domains, namely leaf
images and face images, and show that clustering perfor-
mance can be improved significantly.

1. Introduction

Clustering, or unsupervised learning, is a critical part of
the analysis of data. There has been a huge volume of work
on clustering, producing many interesting and effective al-
gorithms. However, all clustering depends on some method
of computing a distance between items to be clustered that
reflects their similarity. For most tasks, automatically com-
puted distances provide useful information about similarity,
but still produce significant errors. This leads even the best
clustering algorithms to produce clusters that do not contain
objects from the same class.

We therefore propose a new clustering method that
brings a human into the loop. In many tasks, experts, or
even naive humans, can provide very accurate answers to
the question of whether two objects belong in the same

Figure 1: Pipeline of our system: Active-HACC is our pro-
posed active algorithm for selecting data-pairs to get con-
straints and HACC is a constrained clustering algorithm.

cluster. In spite of this accuracy, it is not practical to ex-
pect people to cluster thousands of objects into meaningful
groups. Our goal, therefore is to meld human and auto-
matic resources by directing valuable human attention to
those judgments that are most critical to improving cluster-
ing produced by automatic means.

To illustrate the value of this approach, we use the exam-
ple of clustering in surveillance videos and plant images.

• There are many applications for clustering faces or ac-
tions in surveillance videos. This could allow, for ex-
ample, an analyst to determine whether the same per-
son has visited a number of locations, or find differ-
ent people who have performed similar actions. Im-
ages from videos have variations in pose, illumination
and resolution that make automatic analysis extremely
challenging, so that automatic clustering will be quite
error-prone. But a person can readily look at two face
images or actions and tell if they are similar.
• There has been a great deal of interest recently in ob-

taining large, labeled image sets for plant species iden-
tification [6]. Classifiers that can identify species re-
quire large sets of leaf images, labeled by species.
Accurately labeling such images requires experience
and botanical knowledge. One approach that can re-

1

duce this effort is to cluster all the images into groups
that each come from a single species, and then have
botanists label each group. Initial clustering can be
performed using generic algorithms that measure the
similarity of two leaves, but this clustering will be
quite noisy, because such algorithms are still imper-
fect. At the same time, we observe that even an un-
trained person can compare two leaf images and pro-
vide an accurate assessment of their similarity.

We may then summarize the clustering problem we have
solved as having the following characteristics:

• We begin with a collection of objects that can be
grouped into a set of disjoint clusters.
• We have an automatic algorithm that can give us some

useful information about the similarity of two objects.
• A person can make these judgments with much greater

accuracy than existing algorithms.

We also assume that a person always provides correct
constraints and that we know the number of clusters be-
forehand. In practice, humans are highly accurate at image
comparison. For example, [13] shows that humans achieve
99.2% accuracy in a face comparison task, even without
the option of responding “don’t know”. Like much work
in clustering and all prior work on active clustering, we fo-
cus on the problem of forming clusters. Many approaches
have been developed for determining the number of clusters
[19] but this is outside the scope of our current work.

Given this problem formulation, we have proposed an
algorithm that does the following:

1. Cluster objects into groups, combining automatically
computed distances with any constraints provided by
people.

2. Choose a useful question to ask a person. The person
will compare two objects and indicate whether they be-
long to the same group (or answer “don’t know”).

3. Repeat, using the information provided by the person
as a new constraint.

4. Continue asking questions until a reasonable clustering
is achieved or the human budget is exhausted.

We show the pipeline of our algorithm in Figure 1 (face
images from [16]).

We do experiments to evaluate our algorithm in two dif-
ferent domains: face images and leaf images. Since we as-
sume that people are highly accurate, in experiments we can
simulate their behavior using ground truth.

2. Related Work
Combining active learning [2, 18] with constrained clus-

tering [4] has been a growing area of interest in machine

learning as well as in computer vision. Some active con-
straint clustering approaches are also known for image clus-
tering [7, 9]. In [7], the authors have proposed a heuris-
tic, which works reasonably well but has several parameters
that must be tuned properly for different datasets. In [9], the
authors take a fuzzy clustering based approach to find im-
ages near cluster boundaries to form useful data pairs.

In [3], Basu et al. also proposed an active clustering al-
gorithm. They suggest two major phases in an active learn-
ing setting namely “Explore” (cluster center initialization)
and “Consolidate” (data points are added to cluster centers).
In problems with a large number of clusters (which is very
common in the image clustering domain), the “Explore”
stage itself takes a large number of questions to initialize
the distinct cluster centers. Mallapragada et al. [15] have
proposed an approach that uses a min-max criterion to find
informative questions. They rely on the “Explore” stage in
the beginning as [3] does. There are also a couple of active
clustering algorithms [22, 23] based on spectral eigenvec-
tors, but they are good for two-cluster problems only.

In [11], Huang et al. have proposed an active frame-
work for constrained document clustering. This paper is
philosophically similar to our approach, i.e. they also try
to ask questions to maximize the gain. They begin with a
skeleton structure of neighborhoods covering all the clus-
ters. They then search for an informative data pair to match
an unlabeled data point to one of the centroids of the ex-
isting neighborhoods. Also, they use an “Explore” stage to
build an initial skeleton structure, which we already know
to be a potential problem when there is a large number of
clusters. Another approach by Huang et al. [10] has an
active constraint clustering algorithm for documents with
language modeling and it is not clear how we could adopt
this algorithm for image clustering.

3. Our Approach
We now describe our approach to active clustering. We

first motivate this approach with a simple example, and then
describe technical details.

3.1. High Level Intuition

We have developed a novel algorithm that determines
which questions to ask a person in order to improve clus-
tering. This algorithm is based on the intuitive idea of ask-
ing questions that will have the largest expected effect on
the clustering. This really has two components. First, if we
ask a person to compare two objects, her answer will only
affect the clustering immediately if it differs from it; that is,
if the person says either that two objects that are not cur-
rently in the same cluster should be, or that two objects that
are in the same cluster should not be. Any answer that dif-
fers from the current clustering must result in our moving at
least one object to a different cluster, but some answers will

affect many more objects. So the second component of our
algorithm is to ask questions whose answers might have a
big effect on the way objects are clustered.

Figure 2: Toy example to motivate our approach.

To provide better intuition about our approach, we con-
sider the simple toy example of clustering a set of 2D points.
Figure 2 shows a collection of such points as black disks.
The circles indicate four clusters that might be formed by
an automatic clustering algorithm. We have marked five
of these points with the letters “A” to “E” for ease of ref-
erence. We now imagine that an expert can compare two
of these points and tell us whether they truly belong in the
same cluster. Considering the following possibilities, we
find:
• Comparing B and C is not that desirable, since it is

likely that we have already correctly placed them in
different clusters. A human opinion about these two
points is unlikely to change anything.
• Comparing A and B (or A and C) will tell us in which

cluster A truly belongs. Since A is between two clus-
ters, it is quite possible that this question will change
the cluster to which we assign A. However, the answer
to this question will only affect A.
• Comparing D and E will provide the most informa-

tion. These two clusters are close, and it is somewhat
ambiguous whether they should be separated into two
clusters, or joined into one. So it is reasonably likely
that a person might say D and E belong in the same
cluster. If they do, this will lead us not only to treat
D and E differently, but in fact to join the two clusters
together, affecting the grouping of many points.

Consequently, we select questions for human attention
that maximize the product of the probability that the answer
will cause a change in our current clustering and the size
of this change, should it occur. Finding the best such ques-
tion can potentially require a large amount of computation.
If we are clustering N objects, then there will be O(N2)
same-or-different questions to consider, and for each we
must determine its possible effects. For this reason, we
adopt a simple, greedy clustering algorithm. Without hu-
man assistance, this algorithm does not perform well, but
by using a simple clustering algorithm, we can more eas-
ily and quickly select good questions to ask a human, and
rapidly improve our clustering performance.

In order to further speed up our algorithm, we have also
experimented with two additional heuristics.
First, when our estimate of the probable response of a hu-
man indicates that it is very likely that the human response

will agree with the current clustering, we do not bother to
simulate the results of a different response. For all datasets
we exclude simulation of pairs which are very unlikely to
be in the same cluster. For larger datasets (of size more than
1000), we initially use K-means [14] to group very close
points together and represent them using their centroids and
then run our algorithm. We refer to this heuristic as H1.
Second, we observe that when we simulate an additional
constraint between a data pair, change in clustering assign-
ments is often limited to clusters that contain the points in
that pair. Determining those changes is much faster than
checking for all possible changes. We perform experiments
with this approximation and we find that it makes our algo-
rithm’s performance a little worse but much faster. We refer
to this heuristic as H2.

3.2. Components of Our Algorithm

We now explain our algorithm and its components more
formally. We define the best image pair that we will present
to a person for labeling as:

(d̂i, d̂j) = argmax
di,dj

EJ(di, dj) (1)

EJ(di, dj) is the expected change in the clustering if a
question is asked about an image pair di and dj . Since we
do not know the ground truth clustering, we cannot choose
image pairs that are guaranteed to increase the quality of
the clustering. One of the main insights of our work is that
by finding pairs that most rapidly change the clustering we
quickly converge to a good clustering. Now, we formally
describe how we compute the components needed to deter-
mine EJ(di, dj) given we have any distance matrix for a
dataset.

3.2.1 Consensus Clustering based Pairwise Probability
Distribution

We first need to estimate the probability that each data pair
will be in same cluster. We have borrowed ideas from con-
sensus clustering [17] (also referred to as aggregation of
clustering) to find those probabilities. In consensus cluster-
ing we typically compute multiple clusterings of the same
dataset and then produce a single clustering assignment that
reflects a consensus. Consensus clustering in unsupervised
learning is similar to ensemble learning in a supervised
framework. However we avoid any optimization, and just
use multiple clusterings to estimate the probability that the
elements of a pair belong to the same cluster.

Specifically, if we have N data points and S clusterings,
let As be the N ×N matrix where element (i, j) is 1 if the
i-th and j-th data points are in the same cluster in the s-th
clustering, and zero otherwise. We use the K-means algo-
rithm to produce clusters, each time beginning with differ-
ent random initial cluster centroids. Now if P is the prob-
ability matrix for N data points where again element (i, j)

is the pairwise probability of the i-th and j-th data points
being in the same cluster,

P =
1

S

S∑
s=1

As (2)

If (di, dj) is any pair of points and R is a random vari-
able corresponding to pair (di, dj) resulting from the above
random process then we estimate P (di, dj) = prob(di =
dj |R) = R. di = dj implies di and dj are from same class.
We experimentally verify that this method produces reason-
able values. In Figure 3 (data from [1]), we plot prob(di =
dj |R) = R and a histogram generated from the results of
those experiments showing the fraction of times that a pair
with a given R is from the same cluster. Our heuristic pro-
vides a good estimate of prob(di = dj |R) = R, which
grows more accurate for larger data sets.

Figure 3: Pairwise probability distribution of real data.

3.2.2 Minimum Spanning Forests (MSF)

We perform clustering by creating a Minimum Spanning
Forest (MSF). We define an MSF as a collection of trees
which we get if we run Kruskal’s algorithm[12] and stop
when we have K spanning trees. We can think of cluster-
ing as finding a forest with K spanning trees from a set of
disconnected nodes. We use a constrained clustering algo-
rithm very similar to Kruskal’s algorithm but also respects
constraints. In the clustering community a similar approach
is well-known as bottom up or hierarchical agglomerative
clustering (HAC). We assume we are provided with the dis-
tance matrix for a given dataset. We can consider each im-
age of the dataset as an individual node in a complete graph
G = (V,E) and let their mutual distances represent edge
weights. We can also have information about a pair of im-
ages being in the same cluster (“must-link” constraints) or
different clusters (“can’t-link” constraints). Let us assume
we create a copy of the graph G without any edges and call
it F = (V, ∅). First, we add edges corresponding to must-
link constraints to the forest F. Next we sort the edges in
E in an ascending order of their weights and store them in
a queue Ep. We start popping edges from Ep and add to
F . While doing this, we always maintain the tree structure,
i.e. do not add an edge between two nodes if the nodes are

already connected. We will also not add an edge between
two trees if there is any can’t-link constraint between any
of the pairs of nodes in those two trees. We continue doing
this until we have K trees in the forest (referred as MSF in
future). We refer to this algorithm as HAC with constraints
(HACC).

We will discuss later why we build on the MSF rather
than constrained K-means [21] or other constrained algo-
rithms [24].

Since we are working with hierarchical clustering with
constraints we have to discuss feasibility and dead-end is-
sues [8]. The feasibility problem is defined as, given a set
of data and set of constraints, does there exist a partitioning
of the data into K clusters? In our problem the answer is ob-
viously yes because all of the constraints are true. However
determining whether there is a feasible solution which sat-
isfy all constraints is NP-complete [8]. In HACC, dead-end
situations (reaching an iteration with more than K clusters,
where no further pair of clusters can be joined without vio-
lating any of the constraints) can occur in principle, but in
practice we find this is not a problem.

3.3. Our Algorithm (Active-HACC)

In 3.2.1, we estimate a distribution that allows us to de-
termine the probability that a person will provide a con-
straint that differs from the current clustering. In this sec-
tion, we determine the magnitude of the change this will
have on the current clustering. To do this, we define a
measure of similarity between two clustering assignments,
which we call Relative Jaccard’s Coefficient, by analogy to
the Jaccard’s Coefficient [20]. If C1 and C2 are two cluster-
ing assignments of the same dataset, the Relative Jaccard’s
Coefficient of clustering C2 with respect to C1 is defined as:

JCCC1(C2) =
SS

SS + SD +DS
(3)

where SS is the number of pairs that are in the same cluster
in both C1 and C2, SD is the number of pairs that are in
same cluster in C1 but in different clusters in C2, and DS
is the number of pairs that are in different clusters in C1

but are in same cluster in C2. This becomes the traditional
Jaccard’s coefficient if C1 is the ground truth clustering.

Now, we describe our algorithm, assuming that we have
asked q questions and need to determine the (q+1)-th ques-
tion to ask. We define:

D: The dataset, that should be clustered.

K: Number of clusters.

di, dj : Any pair of images from D.

Cq: The set of can’t-link constraints obtained after we
have asked q questions.

Mq: The set of must-link constraints obtained after we
have asked q questions. Note |Cq|+ |Mq| = q.

Hq = HACC(D,Cq,Mq) : HACC is the clustering
function on a given dataset D, using the must-link con-
straints (Mq) and can’t-link constraints (Cq). Hq is the clus-
tering that is produced.

J
di,dj ,y
q+1 = JCCHq (HACC(D,Cq,Mq∪di = dj)) : Rel-

ative Jaccard’s Coefficient of a clustering after q + 1 ques-
tions with respect to Hq , if the (q + 1)-th constraint is that
di and dj are in same cluster.

J
di,dj ,n
q+1 = JCCHq

(HACC(D,Cq∪di 6= dj ,Mq)) : Rel-
ative Jaccard’s Coefficient of a clustering after q + 1 ques-
tions with respect to Hq , if the (q + 1)-th constraints is that
di and dj are not in same cluster.

Now, we ask the user about the pair:

(d̂i, d̂j) = argmax
di,dj

EJ(di, dj) (4)

Where EJ(di, dj) is the expected change in the Relative
Jaccard’s Coefficient and is defined as follows:

EJ(di, dj) = |JCCHq (Hq)− (P (di, dj)J
di,dj ,y
q+1 +

(1− P (di, dj))J
di,dj ,n
q+1)|

(5)

Note that JCCHq
(Hq) = 1 and P (di, dj) is the probability

of di and dj being in the same cluster.
Now we can see that if points di and dj are in the

same cluster after q questions, then HACC(D,Cq,Mq ∪
di = dj) = Hq and if they are in different clusters then
HACC(D,Cq ∪ di 6= dj ,Mq) = Hq . So we have:
• di and dj are in the same cluster after q questions:

EJ(di, dj) = |(1− P (di, dj))(1− J
di,dj ,n
q+1)| (6)

• di and dj are in different clusters after q questions:

EJ(di, dj) = |P (di, dj)(1− J
di,dj ,y
q+1)| (7)

Using this approach, we find the data pair that will pro-
duce the greatest expected change in the clustering. Af-
ter receiving an answer from the user, we update our con-
straints and continue.

When we plot the clustering performance, we show the
Jaccard’s Coefficient relative to ground truth, as the number
of questions increases. This curve does not always increase
monotonically, but it generally increases.

3.3.1 Complexity of the algorithm

We now discuss the rather high complexity of computing
a brute-force version of Active-HACC. We then consider
some optimizations and heuristics to improve this run time.
For each question we have O(N2) (N is the number of
points) possible pairs. To simulate what will happen for
each pair in a brute force way, we will have to run the con-
strained clustering algorithm for each pair. We now describe
the complexity of Active-HACC.

Algorithm 1 Active-HACC

Given: D, Max questions, Mq = ∅, Cq = ∅,
num questions=0
while num questions ≤Max questions do

HACC(D,Mq ,Cq)
For all pairs (di, dj), evaluate EJ(di, dj)
Find the pair (di, dj) with maximum EJ(di, dj)
Ask and Update Mq and Cq

num questions=num questions+1
end while
Output: HACC(D,Mq ,Cq)

Kruskal’s algorithm [12] for minimum spanning tree
runs in O(N2 logN) time (if |E| = O(N2)). HACC also
has O(N2 logN) complexity from a very similar analysis
to Kruskal’s, except for the issue of keeping track of the
can’t-links. To do this efficiently, we maintain an l× l lower
triangular matrix A in which l is the current number of clus-
ters. A(m,n) = 1 if m > n and there is a can’t-link con-
straint between clusters m and n, and A(m,n) = 0 other-
wise. Before merging two clusters m and n, we check that
A(m,n) = 0 (m > n). In this case, we assign cluster n to
have identity m. We update A by setting row m equal to the
OR of rows m and n, and removing row and column n. This
update takes O(N) time, and can occur in O(N) iterations.
So enforcing the can’t-link constraints adds O(N2) time to
Kruskal’s algorithm, which still runs in O(N2 logN) time.

If we run this variation on Kruskal’s algorithm for
O(N2) pairs, the complexity of choosing each question will
be O(N4logN). Even with moderate N (say N=100) we
cannot ask O(N) questions with this much cost for each
question. So we will propose a much less computationally
complex version of Active-HACC.

In part, this complexity helps motivate our use of a very
simple clustering algorithm such as HACC. Since we must
simulate O(N2) possibilities for each question, it is impor-
tant that the clustering algorithm be relatively cheap. More-
over, as we will see, HACC lends itself to incremental clus-
tering, in which simulating the effects of one constraint can
be done efficiently. At the same time, HACC is quite in-
teresting because the addition of one constraint can in some
cases significantly alter the clustering.

3.4. FAST-Active-HACC

Our previous analysis assumes that we rerun HACC
O(N2) times to simulate the effects of every question we
consider asking. This is wasteful, since most new con-
straints only have a small effect on the clustering. We
save a good deal of effort by incrementally computing these
changes starting from the existing clustering. However,
these changes can be somewhat complex. When a can’t-
link constraint is added to points in the same cluster, we

must remove an edge from the current MSF, to disconnect
these points. Removing one edge can have a domino effect,
since there may be other edges that would have been added
if that edge had not been present. Similarly, adding a must-
link constraint might require us to merge two clusters that
have can’t-link constraints between them, requiring us to re-
move edges to separate any points connected by a can’t-link
constraint. We must simulate any effects of these changes.

Our complete algorithm is complex, and is described
in the supplementary material (available on author’s web-
page). Here we provide a couple of key intuitions. First,
we save a good deal of time by creating data structures once
that can be used in O(N2) simulations. Whenever we add
a can’t-link constraint between two points in a cluster, we
must remove the last edge added to the MSF that is on the
path between these points. To facilitate this, we keep track
of the path on the MSF between all pairs of points in the
same cluster. Also, as we perform the initial clustering,
whenever an edge is not added to the MSF because of a
can’t-link constraint or because it would destroy the tree
structure, we keep track of any edge which blocks it. That
is, edge B blocks edge A if edge A would be added if not
for the presence of edge B. Then, whenever an edge is re-
moved, we can reconsider adding any edge that was blocked
by this edge. Of course, as we “go back in time” and make
changes to the MSF, we must carefully account for any later
decisions that might also change.

In a second optimization, we notice that we do not need
to simulate the effects of all Can’t-Link constraints. If a
cluster has Nc elements, there are

(
Nc

2

)
possible Can’t-Link

constraints, but only Nc possible edges that can be removed.
This means that many can’t-link constraints will cause us to
remove the same edge from the MSF, and have the same
effect on the clustering. These can be simulated together.

Since this overall procedure is complex, code will be
made publicly available.

4. Experimental Results
We have experimented in two different domains, leaf

images and face images. For leaves, we create three sub-
sets from a huge corpora of leaf images used for Leafsnap
[1]. All leaf images are iPhone images of leaves on a white
background. The leaf subsets are called Leaf-100 (contain-
ing 100 images from 10 different species), Leaf-250 (250
images from 25 different species) and Leaf-1042 (1042 im-
ages from 62 species). Leaf-100 and Leaf-250 have same
number of leaves from all the species. But in Leaf-1042, the
number of leaves in each species vary from 4 to 31. Sim-
ilarly for faces, we have extracted three subsets of images
from a face dataset called PubFig [13]. The PubFig database
is a large, real-world face dataset consisting of 58,797 im-
ages of 200 people collected from the Internet. Unlike most
other existing face datasets, these images are taken in com-

Active-HACC Proposed active learning version for Im-
age Clustering

FAST-Active-HACC Faster version of our proposed algo-
rithm without any heuristic

FAST-Active-HACC-H1 Faster version of our proposed algo-
rithm with H1 only

FAST-Active-HACC-H1
H2

Faster version of our proposed algo-
rithm with H1 and H2 both

Random Constraints Seek pairwise constraints randomly and
use HACC

K-means without ques-
tions [14]

Simple K-means without any human in-
tervention

CAC1 [7] A heuristic to find the best pair
Active-PCKMeans [3] An active constrained clustering algo-

rithm

Table 1: Summary of the the algorithms that we compare.

pletely uncontrolled situations with non-cooperative sub-
jects. Thus there is large variation in pose, lighting, ex-
pression, scene, camera, and imaging conditions, etc. The
subsets of images are called Face-100 (100 images from 10
different people), Face-250 (250 images from 25 different
people) and Face-500 (500 images from 50 different peo-
ple). All of these face datasets have same number of images
in each class.

The distance matrix for face images and leaf images are
calculated based on algorithms in [5]. Once we get the
distance matrix, we can run our proposed algorithm on all
these datasets. The main objective of running experiments
on smaller datasets of size 100 and 250 is to show that even
if we use heuristics the performance of the algorithm is not
effected that much. The algorithm without heuristics is too
slow to run on larger datasets. For example we run our algo-
rithm on Face/Leaf-100 without any heuristic, with only H1
and then with H1 and H2 both. For Face/Leaf-250 we run
our experiment with only H1 and then H1 and H2 both. For
Face-500/Face-1042, we run one set of experiments using
both heuristics H1 and H2.

4.1. Empirical Observations
We have run our algorithm on all of the datasets de-

scribed above. All the algorithms that we compare are de-
scribed in Table 1. Figures 4a-4d (where Jaccard’s Coef-
ficient corresponding to one misclassification per cluster is
displayed using green squares) show performance evalua-
tions of all the algorithms on Leaf-250, Face-250, Leaf-
1042 and Face-500 (we include results for Leaf-100 and
Face-100 in the supplementary material). We use S=100
to find the pairwise probability distributions. We see how
Jaccard’s Coefficient changes with the number of questions.
Since we have the ground truth for these datasets we were
able to calculate the Jaccard’s Coefficient with respect to the
ground truth. In real world situations we will not have the
ground truth and will have to decide when we have reached
a good clustering. One possible way to stop asking ques-
tions is when clustering assignments do not change even
with additional constraints. Also, one of the advantages of

FAST-Active-HACC is that we do not need to set any pa-
rameters. One of our main interests is in problems that grow
big because the number of clusters becomes large. We make
the following observations from the experiments:
• In all of these experiments our algorithm significantly

outperforms all other algorithms. We were able to
greatly reduce the number of constraints required for
a reasonable clustering.
• We run both Active-HACC and FAST-Active-HACC

for the Leaf-100 and Face-100 datasets (shown in
supplementary material). We see that FAST-Active-
HACC is 25-30 times faster than Active-HACC for a
dataset of size 100. Overall we expect FAST-Active-
HACC to be O(N) faster than Active-HACC. Since
Active-HACC is slow, we could not experiment with it
in larger datasets. We also observe that FAST-Active-
HACC-H1 produces the exact same results as FAST-
Active-HACC for Leaf-100/Face-100. For a dataset of
size 1042, FAST-Active-HACC-H1 H2 takes around a
minute per question. We believe this could be further
sped up with more optimized code (our current imple-
mentation is in MATLAB) or parallel processing as our
algorithm is highly parallelizable.
• In Figure 4b, we compare the results for different algo-

rithms for the Leaf-1042 dataset. For this dataset only
we use K-means initially as part of H1, to reduce the
number of points to 700. Even with that, we get Jac-
card’s Coefficient of 0.8152 (one misclassification per
cluster on average) by asking just 3782 questions.
• We wanted to compare our algorithm with [9] and [11],

but a direct comparison on our image datasets is not
possible due to the complexity of their algorithm and
the lack of publicly available code. However we also
run experiments using the iris dataset to compare with
[9], on which they have reported results. This is a rel-
atively easy dataset with 150 points from 3 clusters in
4 dimensions. They have used the ratio of well cat-
egorized points to the total number of points as an
evaluation metric (let us call it RWCP). Our algorithm
reaches RWCP of 0.97 within three questions, where
they take ten questions to reach the same RWCP.
• One of the major differences in these domains is the

distance matrix. In leaf images the distance matrix
is more accurate than in face images. So even if we
have two similar datasets from two different domains,
we need more questions for face images than leaf im-
ages. For smaller datasets in which the distance matrix
is not very accurate, FAST-Active-HACC-H1 H2 be-
comes comparable to, though still better than [3].

5. Conclusions

We have presented an approach for image clustering that
incorporates pairwise constraints from humans. An algo-

rithm is developed for choosing data pairs to use when
querying a person for additional constraints. Since a brute
force version of our algorithm is time consuming we also
formulate a more complex but faster version in this paper.
Our algorithm outperforms all state-of-the-art results in im-
age clustering. Although this paper was focused on solving
image clustering, this idea could be extended to any cluster-
ing domain in general.

Acknowledgment: This work was supported by
NSF grant #0968546 and Army Research Office, ARO
#W911NF0810466.

References
[1] http://leafsnap.com/. 4, 6
[2] D. Angluin. Queries and concept learning. Machine Learn-

ing, 2(4):319–342, 1987. 2
[3] S. Basu, A. Banerjee, and R. J. Mooney. Active semi-

supervision for pairwise constrained clustering. In Fourth
SIAM International Conference on Data Mining, 2004. 2, 6,
7

[4] S. Basu, I. Davidson, and K. Wagstaff. Constrained Cluster-
ing: Advances in Algorithms. Data Mining and Knowledge
Discovery Series. IEEE Computer Society, 2008. 2

[5] P. Belhumeur. Personal communication with author. 2011. 6
[6] P. N. Belhumeur, D. Chen, S. Feiner, D. W. Jacobs, W. J.

Kress, H. B. Ling, I. Lopez, R. Ramamoorthi, S. Sheorey,
S. White, and L. Zhang. Searching the world’s herbaria: A
system for visual identification of plant species. In ECCV,
pages IV: 116–129, 2008. 1

[7] A. Biswas and D. Jacobs. Large scale image clustering
with active pairwise constraints. International Conference
in Machine Learning 2011 Workshop on Combining Learn-
ing Strategies to Reduce Label Cost. 2, 6

[8] I. Davidson and S. S. Ravi. Using instance-level constraints
in agglomerative hierarchical clustering: theoretical and em-
pirical results. Data Min. Knowl. Discov, 18(2):257–282,
2009. 4

[9] N. Grira, M. Crucianu, and N. Boujemaa. Active semi-
supervised fuzzy clustering for image database categoriza-
tion. In Multimedia Information Retrieval, pages 9–16.
ACM, 2005. 2, 7

[10] R. Huang and W. Lam. An active learning framework for
semi-supervised document clustering with language model-
ing. Data Knowl. Eng, 68(1):49–67, 2009. 2

[11] R. Huang, W. Lam, and Z. Zhang. Active learning of con-
straints for semi-supervised text clustering. In SDM. SIAM,
2007. 2, 7

[12] Kruskal, J. B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proc. of the AMS, 2:48–
50, 1956. 4, 5

[13] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.
Attribute and simile classifiers for face verification. In ICCV,
pages 365–372. IEEE, 2009. 2, 6

[14] J. MacQueen. Some methods for classification and analysis
of multivariate observations. In Proc. of the 5th Berkeley
Symp. on Mathematics Statistics and Probability, 1967. 3, 6

(a) Leaf-250 dataset (b) Leaf-1042 dataset

(c) Face-250 dataset (d) Face-500 dataset

Figure 4: Performance plot showing how the Jaccard’s Coefficient increase with the number of questions. Our proposed
algorithm Active-HACC significantly outperforms all other algorithms we compare.

[15] P. K. Mallapragada, R. Jin, and A. K. Jain. Active query
selection for semi-supervised clustering. In ICPR, pages 1–
4, 2008. 2

[16] A. Martinez and R. Benavente. The AR Face Database. CVC
Technical Report #24, 1998. 2

[17] K. Punera and J. Ghosh. Consensus-based ensembles of soft
clusterings. Applied Artificial Intelligence, 22(7&8):780–
810, 2008. 3

[18] B. Settles. Active learning literature survey. Technical report,
2010. 2

[19] C. A. Sugar and G. M. James. Finding the number of clusters
in a data set: An information theoretic approach. pages 750–
763, 2003. 2

[20] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison-Wesley, 2005. 4

[21] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Con-
strained K-means clustering with background knowledge. In
ICML, pages 577–584, 2001. 4

[22] X. Wang and I. Davidson. Active spectral clustering. In
ICDM, pages 561–568. IEEE Computer Society, 2010. 2

[23] Q. Xu, M. desJardins, and K. Wagstaff. Active constrained
clustering by examining spectral eigenvectors. In Discovery
Science, volume 3735. Springer, 2005. 2

[24] S. Yan, A. H. Wang, D. Lee, and C. L. Giles. Pairwise con-
strained clustering for sparse and high dimensional feature
spaces. In PAKDD, volume 5476 of Lecture Notes in Com-
puter Science, pages 620–627. Springer, 2009. 4

