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Abstract

The alternating direction method of multi-
pliers (ADMM) is a versatile tool for solv-
ing a wide range of constrained optimiza-
tion problems. However, its performance is
highly sensitive to a penalty parameter, mak-
ing ADMM often unreliable and hard to au-
tomate for a non-expert user. We tackle this
weakness of ADMM by proposing a method
that adaptively tunes the penalty parame-
ter to achieve fast convergence. The result-
ing adaptive ADMM (AADMM) algorithm,
inspired by the successful Barzilai-Borwein
spectral method for gradient descent, yields
fast convergence and relative insensitivity to
the initial stepsize and problem scaling.

1 Introduction

The alternating direction method of multipliers
(ADMM) is an invaluable element of the modern opti-
mization toolbox. ADMM decomposes complex opti-
mization problems into sequences of simpler subprob-
lems, often solvable in closed form; its simplicity, flex-
ibility, and broad applicability, made ADMM a state-
of-the-art solver in machine learning, signal processing,
and many other areas [Boyd et al., 2011].

It is well known that the efficiency of ADMM hinges
on the careful selection of a penalty parameter, which
is often manually tuned by users for their particular
problem instances. For gradient descent and proximal-
gradient methods, adaptive (i.e. automated) stepsize
selection rules have been proposed, which essentially
dispense with user oversight and dramatically boost
performance [Barzilai and Borwein, 1988, Fletcher,
2005, Goldstein et al., 2014b, Wright et al., 2009b,
Zhou et al., 2006].
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In this paper, we propose to automate and speed up
ADMM by using stepsize selection rules imported from
the gradient descent literature, namely the Barzilai-
Borwein “spectral” method for smooth unconstrained
problems [Barzilai and Borwein, 1988, Fletcher, 2005].
Since ADMM handles multi-term objectives and linear
constraints, it is not immediately obvious how to adopt
such rules. The keystone of our approach is to analyze
the dual of the ADMM problem, which can be writ-
ten without constraints. To ensure reliability of the
method, we develop a correlation criterion that safe-
guards it against inaccurate stepsize choices. The re-
sulting adaptive ADMM (AADMM) algorithm is fully
automated and fairly insensitive to the initial stepsize,
as testified for by a comprehensive set of experiments.

2 Background and Related Work

2.1 ADMM

ADMM dates back to the 1970s [Gabay and Mercier,
1976, Glowinski and Marroco, 1975]. Its convergence
was shown in the 1990s [Eckstein and Bertsekas, 1992],
and convergence rates have been the topic of much re-
cent work, e.g., by Goldstein et al. [2014a], He and
Yuan [2015], Nishihara et al. [2015]. In the last decade,
ADMM became one of the tools of choice to han-
dle a wide variety of optimization problems in ma-
chine learning, signal processing, and many other areas
[Boyd et al., 2011].

ADMM tackles problems in the form

min
u∈Rn,v∈Rm

H(u) +G(v),

subject to Au+Bv = b,
(1)

where H : Rn → R̄ and G : Rm → R̄ are closed,
proper, convex functions, A ∈ Rp×n, B ∈ Rp×m, and
b ∈ Rp. With λ∈Rp denoting the dual variables (La-
grange multipliers), ADMM has the form

uk+1 = arg min
u
H(u) +

τk
2
‖b−Au−Bvk +

λk
τk
‖22 (2)

vk+1 = arg min
v
G(v) +

τk
2
‖b−Auk+1 −Bv +

λk
τk
‖22 (3)

λk+1 =λk + τk(b−Auk+1 −Bvk+1), (4)
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where the sequence of penalties τk is the only free
choice, and has a high impact on the algorithm’s speed.
Our goal is to automate this choice, by adaptively tun-
ing τk for optimal performance.

The convergence of the algorithm can be monitored
using primal and dual “residuals,” both of which ap-
proach zero as the iterates become more accurate, and
which are defined as

rk = b−Auk −Bvk,
dk = τkA

TB(vk − vk−1),
(5)

respectively [Boyd et al., 2011]. The iteration is gen-
erally stopped when

‖rk‖2 ≤ εtol max{‖Auk‖2, ‖Bvk‖2, ‖b‖2}
‖dk‖2 ≤ εtol‖ATλk‖2,

(6)

where εtol > 0 is the stopping tolerance.

2.2 Parameter tuning and adaptation

Relatively little work has been done on automating
ADMM, i.e., on adaptively choosing τk. In the partic-
ular case of a strictly convex quadratic objective, crite-
ria for choosing an optimal constant penalty have been
recently proposed by Ghadimi et al. [2015], Raghu-
nathan and Di Cairano [2014]. Lin et al. [2011] pro-
posed a non-increasing sequence for the linearization
parameter in “linearized” ADMM; however, they do
not address the question of how to choose the penalty
parameter in ADMM or its variants.

Residual balancing (RB) [He et al., 2000, Boyd et al.,
2011] is the only available adaptive method for general
form problems (1); it is based on the following obser-
vation: increasing τk strengthens the penalty term,
yielding smaller primal residuals but larger dual ones;
conversely, decreasing τk leads to larger primal and
smaller dual residuals. As both residuals must be small
at convergence, it makes sense to “balance” them, i.e.,
tune τk to keep both residuals of similar magnitude.
A simple scheme for this goal is

τk+1 =


ητk if ‖rk‖2 > µ‖dk‖2
τk/η if ‖dk‖2 > µ‖rk‖2
τk otherwise,

(7)

with µ > 1 and η > 1 [Boyd et al., 2011]. RB has re-
cently been adapted to distributed optimization [Song
et al., 2015] and other primal-dual splitting methods
[Goldstein et al., 2015]. ADMM with adaptive penalty
is not guaranteed to converge, unless τk is fixed after
a finite number of iterations [He et al., 2000].

Despite some practical success of the RB idea, it suf-
fers from several flaws. The relative size of the resid-
uals depends on the scaling of the problem; e.g., with

the change of variable u ← 10u, problem (1) can be
re-scaled so that ADMM produces an equivalent se-
quence of iterates with residuals of very different mag-
nitudes. Consequently, RB criteria are arbitrary in
some cases, and their performance varies wildly with
different problem scalings (see Section 4.4). Further-
more, the penalty parameter may adapt slowly if the
initial value is far from optimal. Finally, without a
careful choice of η and µ, the algorithm may fail to con-
verge unless adaptivity is turned off [He et al., 2000].

2.3 Dual interpretation of ADMM

We now explain the close relationship between ADMM
and Douglas-Rachdord splitting (DRS) [Eckstein and
Bertsekas, 1992, Esser, 2009, Goldstein et al., 2014a],
which plays a central role in the proposed approach.
The starting observation is that the dual of prob-
lem (1) has the form

min
ζ∈Rp

H∗(AT ζ)− 〈ζ, b〉︸ ︷︷ ︸
Ĥ(ζ)

+G∗(BT ζ)︸ ︷︷ ︸
Ĝ(ζ)

, (8)

where F ∗ denotes the Fenchel conjugate of F , defined
as F ∗(y) = supx〈x, y〉 − F (x) [Rockafellar, 1970].

The DRS algorithm solves (8) by generating two se-

quences (ζk)k∈N and (ζ̂k)k∈N according to

0 ∈ ζ̂k+1 − ζk
τk

+ ∂Ĥ(ζ̂k+1) + ∂Ĝ(ζk) (9)

0 ∈ ζk+1 − ζk
τk

+ ∂Ĥ(ζ̂k+1) + ∂Ĝ(ζk+1), (10)

where we use the standard notation ∂F (x) for the sub-
differential of F evaluated at x [Rockafellar, 1970].

Referring back to ADMM in (2)–(4), and defining

λ̂k+1 = λk + τk(b−Auk+1−Bvk), the optimality con-
dition for the minimization in (2) is

0 ∈ ∂H(uk+1)−AT (λk + τk(b−Auk+1 −Bvk))︸ ︷︷ ︸
λ̂k+1

which is equivalent to AT λ̂k+1 ∈ ∂H(uk+1), thus1

uk+1 ∈ ∂H∗(AT λ̂k+1). A similar argument using
the optimality condition for (3) leads to vk+1 ∈
∂G∗(BTλk+1). Recalling (8), we arrive at

Auk+1 − b ∈ ∂Ĥ(λ̂k+1) and Bvk+1 ∈ ∂Ĝ(λk+1). (11)

Using these identities, we finally have

λ̂k+1 = λk + τk(b−Auk+1 −Bvk)

∈ λk − τk
(
∂Ĥ(λ̂k+1) + ∂Ĝ(λk)

)
(12)

λk+1 = λk + τk(b−Auk+1 −Bvk+1)

∈ λk − τk
(
∂Ĥ(λ̂k+1) + ∂Ĝ(λk+1)

)
, (13)

1An important property relating F and F ∗ is that y ∈
∂H(x) if and only if x ∈ ∂H∗(y) [Rockafellar, 1970].
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showing that the sequences (λk)k∈N and (λ̂k)k∈N sat-
isfy the same conditions (9) and (10) as (ζk)k∈N and

(ζ̂k)k∈N, thus proving that ADMM for problem (1) is
equivalent to DRS for its dual (8).

2.4 Spectral stepsize selection

The classical gradient descent step for unconstrained
minimization of a smooth function F : Rn→ R has the
form xk+1 = xk − τk∇F (xk). Spectral gradient meth-
ods, pioneered by Barzilai and Borwein (BB) [Barzilai
and Borwein, 1988], adaptively choose the stepsize τk
to achieve fast convergence. In a nutshell, the stan-
dard (there are variants) BB method sets τk = 1/αk,
with αk chosen such that αkI mimics the Hessian of F
over the last step, seeking a quasi-Newton step. Using
a least squares criterion yields

αk = argmin
α∈R
‖∇F (xk)−∇F (xk−1)−α(xk−xk−1)‖22, (14)

which is an estimate of the curvature of F across the
previous step of the algorithm. BB gradient meth-
ods often dramatically outperform those with constant
stepsize [Fletcher, 2005, Zhou et al., 2006] and have
been generalized to handle non-differentiable problems
via proximal gradient methods [Wright et al., 2009b,
Goldstein et al., 2014b]. Finally, notice that (14) is
equivalent to approximating the gradient ∇F (xk) as a
linear function of xk,

∇F (xk) ≈ ∇F (xk−1) +αk(xk−xk−1) = αk xk + ak, (15)

where ak = ∇F (xk−1) − αk xk−1. The observation
that a local linear approximation of the gradient has
an optimal parameter equal to the inverse of the BB
stepsize will play an important role below.

3 Spectral penalty parameters

Inspired by the BB method, we propose a spectral
penalty parameter selection method for ADMM. We
first derive a spectral stepsize rule for DRS, and then
adapt this rule to ADMM. Finally, we discuss safe-
guarding rules to prevent unexpected behavior when
curvature estimates are inaccurate.

3.1 Spectral stepsize for DRS

Considering the dual problem (8). Following the obser-
vation in (15) about the BB method, we approximate
∂Ĥ and ∂Ĝ at iteration k as linear functions,

∂Ĥ(ζ̂) = αk ζ̂+Ψk and ∂Ĝ(ζ) = βk ζ+Φk, (16)

where αk > 0, βk > 0 are local curvature estimates
of Ĥ and Ĝ, respectively, and Ψk,Φk ⊂ Rp. Once we
obtain these curvature estimates, we will be able to
exploit the following proposition.

Proposition 1 (Spectral DRS). Suppose the DRS
steps (9)–(10) are applied to problem (8), where (omit-
ting the subscript k from αk, βk,Ψk,Φk to lighten the
notation in what follows)

∂Ĥ(ζ̂) = α ζ̂ + Ψ and ∂Ĝ(ζ) = β ζ + Φ.

Then, the minimal residual of Ĥ(ζk+1) + Ĝ(ζk+1) is
obtained by setting τk = 1/

√
αβ.

Proof. Inserting (16) into the DRS step (9)–(10) yields

0 ∈ ζ̂k+1 − ζk
τ

+ (α ζ̂k+1 + Ψ) + (β ζk + Φ), (17)

0 ∈ ζk+1 − ζk
τ

+ (α ζ̂k+1 + Ψ) + (β ζk+1 + Φ). (18)

From (17)–(18), we can explicitly get the update for

ζ̂k+1 as

ζ̂k+1 =
1− β τ
1 + α τ

ζk −
aτ + bτ

1 + α τ
, (19)

where a ∈ Ψ and b ∈ Φ, and for ζk+1 as

ζk+1 =
1

1 + β τ
ζk −

α τ

1 + β τ
ζ̂k+1 −

a τ + bτ

1 + β τ
(20)

=
(1 + αβ τ2)ζk − (a+ b)τ

(1 + α τ)(1 + β τ)
, (21)

where the second equality results from using the ex-
pression for ζ̂k+1 in (19).

The residual rDR at ζk+1 is simply the magnitude of
the subgradient (corresponding to elements a ∈ Ψ and
b ∈ Φ) of the objective that is given by

rDR = ‖(α+ β)ζk+1 + (a+ b)‖2 (22)

=
1 + αβ τ2

(1 + α τ)(1 + β τ)
‖(α+ β)ζk + (a+ b)‖2,

(23)

where ζk+1 in (23) was substituted with (21). The
optimal stepsize τk minimizes the residual

τk = arg min
τ
rDR = arg max

τ

(1 + α τ)(1 + β τ)

1 + αβ τ2
(24)

= arg max
τ

(α+ β)τ

1 + αβτ2
= 1/

√
αβ. (25)

Finally (recovering the iteration subscript k), notice

that τk = (α̂k β̂k)1/2, where α̂k = 1/αk and β̂k = 1/βk
are the spectral gradient descent stepsizes for Ĥ and
Ĝ, at ζ̂k and ζk, respectively.

Proposition 1 shows how to adaptively choose τk: be-
gin by obtaining linear estimates of the subgradients
of the two terms in the dual objective (8); the geomet-
ric mean of these optimal gradient descent stepsizes
is then the optimal DRS stepsize, thus also the opti-
mal ADMM penalty parameter, due to the equivalence
shown in Subsection 2.3.
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3.2 Spectral stepsize estimation

We now address the estimation of α̂k = 1/αk and β̂k =
1/βk. These curvature parameters are estimated based
on the results from iteration k and an older iteration
k0 < k. Noting (11), we define

∆λ̂k := λ̂k − λ̂k0
∆Ĥk := ∂Ĥ(λ̂k)− ∂Ĥ(λ̂k0) = A(uk − uk0).

Assuming, as above, a linear model for ∂Ĥ, we expect
∆Ĥk ≈ α∆λ̂k + a. As is typical in BB-type methods
[Barzilai and Borwein, 1988, Zhou et al., 2006], α is
estimated via one of the two least squares problems

min
α
‖∆Ĥk − α∆λ̂k‖22 or min

α
‖α−1∆Ĥk −∆λ̂k‖22.

The closed form solutions for the corresponding spec-
tral stepsizes α̂k = 1/αk are, respectively,

α̂SD
k =

〈∆λ̂k,∆λ̂k〉
〈∆Ĥk,∆λ̂k〉

and α̂MG
k =

〈∆Ĥk,∆λ̂k〉
〈∆Ĥk,∆Ĥk〉

, (26)

where, following Zhou et al. [2006], SD stands for
steepest descent and MG for minimum gradient. The
Cauchy-Schwarz inequality implies that α̂SD

k ≥ α̂MG
k .

Rather than choosing one or the other, we suggest the
hybrid stepsize rule proposed by Zhou et al. [2006] and
Goldstein et al. [2014b],

α̂k =

{
α̂MG
k if 2 α̂MG

k > α̂SD
k

α̂SD
k − α̂MG

k /2 otherwise.
(27)

The spectral stepsize β̂k = 1/βk is similarly set to

β̂k =

{
β̂MG
k if 2 β̂MG

k > β̂SD
k

β̂SD
k − β̂MG

k /2 otherwise,
(28)

where β̂SD
k = 〈∆λk,∆λk〉/〈∆Ĝk,∆λk〉, β̂MG

k =

〈∆Ĝk,∆λk〉/〈∆Ĝk,∆Ĝk〉, ∆Ĝk = B(vk − vk0), and
∆λk = λk − λk0 . It is important to note that α̂k and

β̂k are obtained from the iterates of ADMM, i.e., the
user is not required to supply the dual problem.

3.3 Safeguarding

On some iterations, the linear models (for one or both
subgradients) underlying the spectral stepsize choice
may be very inaccurate. When this occurs, the least
squares procedure may produce ineffective stepsizes.
The classical BB method for unconstrained problems
uses a line search to safeguard against unstable step-
sizes resulting from unreliable curvature estimates. In
ADMM, however, there is no notion of “stable” step-
size (any constant stepsizes is stable), thus line search

methods are not applicable. Rather, we propose to
safeguard the method by assessing the quality of the
curvature estimates, and only updating the stepsize if
the curvature estimates satisfy a reliability criterion.

The linear model (16) assumes the change in dual
(sub)gradient is linearly proportional to the change
in the dual variables. To test the validity of this as-
sumption, we measure the correlation between these
quantities (equivalently, the cosine of their angle):

αcor
k =

〈∆Ĥk,∆λ̂k〉
‖∆Ĥk‖ ‖∆λ̂k‖

and βcork =
〈∆Ĝk,∆λk〉
‖∆Ĝk‖ ‖∆λk‖

. (29)

The spectral stepsizes are updated only if the correla-
tions indicate the estimation is credible enough. The
safeguarded spectral adaptive penalty rule is

τk+1 =


√
α̂kβ̂k if αcor

k > εcor and βcork > εcor

α̂k if αcor
k > εcor and βcork ≤ εcor

β̂k if αcor
k ≤ εcor and βcork > εcor

τk otherwise,

(30)

where εcor is a quality threshold for the curvature esti-
mates, while α̂k and β̂k are the stepsizes given by (27)–
(28). Notice that (30) falls back to constant τk when
both curvature estimates are deemed inaccurate.

3.4 Adaptive ADMM

Algorithm 1 shows the complete adaptive ADMM
(AADMM). We suggest only updating the stepsize ev-
ery Tf iterations. Safeguarding threshold εcor = 0.2
and Tf = 2 generally perform well. The overhead of
AADMM over ADMM is modest: only a few inner
products plus the storage to keep one previous iterate.

Algorithm 1 Adaptive ADMM (AADMM)

Input: initialize v0, λ0, τ0, k0 = 0,
1: while not converge by (6) and k < maxiter do
2: uk+1 = arg minuH(u)+ τk

2 ‖b−Au−Bvk+ λk

τk
‖22

3: vk+1 = arg minv G(v)+ τk
2 ‖b−Auk+1−Bv+λk

τk
‖22

4: λk+1 ← λk + τk(b−Auk+1 −Bvk+1)
5: if mod(k, Tf ) = 1 then

6: λ̂k+1 = λk + τk(b−Auk+1 −Bvk)

7: Estimate spectral stepsizes α̂k, β̂k in (27) (28)
8: Estimate correlations αcor

k , βcor
k in (29)

9: Update τk+1 in (30)
10: k0 ← k
11: else
12: τk+1 ← τk
13: end if
14: k ← k + 1
15: end while
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3.5 Convergence

He et al. [2000] proved that convergence is guaranteed
for ADMM with adaptive penalty when either of the
two following conditions are satisfied:
Condition 1 (Bounded increasing).

∞∑
k=1

(ηk)2 <∞, where ηk =

√
max{ τk

τk−1
, 1} − 1. (31)

Condition 2 (Bounded decreasing).

∞∑
k=1

(θk)2 <∞, where θk =

√
max{τk−1

τk
, 1} − 1. (32)

Condition 1 (Condition 2) suggests that increasing (de-
creasing) of adaptive penalty is bounded. In practice,
these conditions can be satisfied by turning off adap-
tivity after a finite number of steps, which we have
found unnecessary in our experiments with AADMM.

4 Experiments

4.1 Experimental setting

We consider several applications to demonstrate the
effectiveness of the proposed AADMM. We focus on
statistical problems involving non-differentiable objec-
tives: linear regression with elastic net regulariza-
tion [Efron et al., 2004, Goldstein et al., 2014a], low
rank least squares [Yang and Yuan, 2013, Xu et al.,
2015], quadratic programming (QP) [Boyd et al., 2011,
Ghadimi et al., 2015, Goldstein et al., 2014a, Raghu-
nathan and Di Cairano, 2014], basis pursuit [Boyd
et al., 2011, Goldstein et al., 2014a], consensus `1-
regularized logistic regression [Boyd et al., 2011], and
semidefinite programming [Burer and Monteiro, 2003,
Wen et al., 2010]. We use both synthetic and bench-
mark datasets (obtained from the UCI repository and
the LIBSVM page) used by Efron et al. [2004], Lee
et al. [2006], Liu et al. [2009], Schmidt et al. [2007],
Wright et al. [2009b], and Zou and Hastie [2005]. For
the small and medium sized datasets, the features are
standardized to zero mean and unit variance, whereas
for the large and sparse datasets the features are scaled
to be in [−1, 1].

For comparison, we implemented vanilla ADMM
(fixed stepsize), fast ADMM with a restart strat-
egy [Goldstein et al., 2014a], and ADMM with residual
balancing [Boyd et al., 2011, He et al., 2000], using (7)
with µ = 10 and η = 2, and adaptivity was turned off
after 1000 iterations to guarantee convergence. The
proposed AADMM is implemented as shown in Algo-
rithm 1, with fixed parameters εcor = 0.2 and Tf = 2.

We set the stopping tolerance to εtol = 10−5, 10−3,
and 0.05 for small, medium, and large scale problems,

respectively. The initial penalty τ0 = 0.1 is used for all
problems, except the canonical QP, where τ0 is set to
the value proposed for quadratic problems by Raghu-
nathan and Di Cairano [2014]. For each problem, the
same randomly generated initial variables v0, λ0 are
used for ADMM and all the variants thereof.

4.2 Applications

Elastic net (EN) is a modification of `1-regularized
linear regression (a.k.a. LASSO) that helps preserve
groups of highly correlated variables [Zou and Hastie,
2005, Goldstein et al., 2014a] and requires solving

min
x

1

2
‖Dx− c‖22 + ρ1‖x‖1 +

ρ2
2
‖x‖22, (33)

where, as usual, ‖ · ‖1 and ‖ · ‖2 denote the `1 and `2
norms, D is a data matrix, c contains measurements,
and x is the vector of regression coefficients. One way
to apply ADMM to this problem is to rewrite it as

min
u,v

1

2
‖Du− c‖22 + ρ1‖v‖1 +

ρ2
2
‖v‖22

subject to u− v = 0.

(34)

The synthetic dataset introduced by Zou and Hastie
[2005] and realistic dataset introduced by Efron et al.
[2004], Zou and Hastie [2005] are investigated. Typical
parameters ρ1 = ρ2 = 1 are used in all experiments.

Low rank least squares (LRLS) uses nuclear ma-
trix norm (sum of singular values) as the convex sur-
rogate of matrix rank,

min
X

1

2
‖DX − C‖2F + ρ1‖X‖∗ +

ρ2
2
‖X‖2F , (35)

where ‖ · ‖∗ denotes the nuclear norm, ‖ · ‖F is the
Frobenius norm, D ∈ Rn×m is a data matrix, C ∈
Rn×d contains measurements, and X ∈ Rm×d is the
variable matrix. As shown by Yang and Yuan [2013]
and Xu et al. [2015], ADMM can be applied after
rewriting (35) as

min
U,V

1

2
‖DU − C‖2F + ρ1‖V ‖∗ +

ρ2
2
‖V ‖2F ,

subject to U − V = 0.

(36)

A synthetic problem is constructed using a random
data matrix D ∈ R1000×200, a low rank matrix X ∈
R200×500, and C = DW + Noise. We use the binary
classification problems introduced by Lee et al. [2006]
and Schmidt et al. [2007], where each column of X
represents a linear exemplar classifier, trained with a
positive sample and all negative samples [Xu et al.,
2015]; ρ1 = ρ2 = 1 is used for all experiments.
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Table 1: Iterations (and runtime in seconds) for the various algorithms and applications described in the text. Absence
of convergence after n iterations is indicated as n+. AADMM is the proposed Algorithm 1.

Application Dataset
#samples ×
#features1

Vanilla
ADMM

Fast
ADMM

Residual
balance

Adaptive
ADMM

Elastic net
regression

Synthetic 50 × 40 2000+ (1.64) 263 (.270) 111 (.129) 43 (.046)
Boston 506 × 13 2000+ (2.19) 208 (.106) 54 (.023) 17 (.011)

Diabetes 768 × 8 594 (.269) 947 (.848) 28 (.020) 10 (.005)
Leukemia 38 × 7129 2000+ (22.9) 2000+ (24.2) 1737 (19.3) 152 (1.70)
Prostate 97 × 8 548 (.293) 139 (.049) 29 (.015) 16 (.012)

Servo 130 × 4 142 (.040) 44 (.017) 27 (.012) 13 (.007)

Low rank
least squares

Synthetic 1000 × 200 543(31.3) 129(7.30) 75(5.59) 13(.775)
Madelon 2000 × 500 1943(925) 193(89.6) 133(60.9) 27(12.8)

Sonar 208 × 60 1933(9.12) 313(1.51) 102(.466) 31(.160)
Splice 1000 × 60 1704(38.2) 189(4.25) 92(2.04) 18(.413)

QP and
dual SVM

Synthetic 250 × 500 439 (6.15) 535 (7.8380) 232 (3.27) 71 (.984)
Madelon 2000 × 500 100 (14.0) 57 (8.14) 28 (4.12) 19 (2.64)

Sonar 208 × 60 139 (.227) 43 (.075) 37 (.069) 28 (.050)
Splice 1000 × 60 149 (4.9) 47 (1.44) 39 (1.27) 20 (.681)

Basis
pursuit

Synthetic 10 × 30 163 (.027) 2000+ (.310) 159 (.031) 114 (.026)
Human1 1024 × 1087 2000+ (2.35) 2000+ (2.41) 839 (.990) 503 (.626)
Human2 1024 × 1087 2000+ (2.26) 2000+ (2.42) 875 (1.03) 448 (.554)
Human3 1024 × 1087 2000+ (2.29) 2000+ (2.44) 713 (.855) 523 (.641)

Consensus
logistic

regression

Synthetic 1000 × 25 301 (3.36) 444 (3.54) 43 (.583) 22 (.282)
Madelon 2000 × 500 2000+ (205) 2000+ (166) 115 (42.1) 23 (20.8)

Sonar 208 × 60 2000+ (33.5) 2000+ (47) 106 (2.82) 90 (1.64)
Splice 1000 × 60 2000+ (29.1) 2000+ (43.7) 86 (1.91) 22 (.638)

News20 19996 × 1355191 69 (5.91e3) 32 (3.45e3) 18 (1.52e3) 16 (1.2e3)
Rcv1 20242 × 47236 38 (177) 23 (122) 13 (53.0) 12 (53.9)

Realsim 72309 × 20958 1000+ (2.73e3) 1000+ (1.86e3) 121 (558) 22 (118)

Semidefinite
programming

hamming-7-5-6 128 × 1792 455(1.78) 2000+(8.60) 1093(4.21) 284(1.11)
hamming-8-3-4 256 × 16128 418(6.38) 2000+(29.1) 1071(16.5) 118(2.02)
hamming-9-5-6 512 × 53760 2000+(187) 2000+(187) 1444(131) 481(53.1)
hamming-9-8 512 × 2304 2000+(162) 2000+(159) 1247(97.2) 594(52.7)
hamming-10-2 1024 × 23040 2000+(936) 2000+(924) 1194(556) 391(193)
hamming-11-2 2048 × 56320 2000+(6.43e3) 2000+(6.30e3) 1203(4.15e3) 447(1.49e3)

1 #constrains × #unknowns for canonical QP; #vertices × #edges for SDP.

Support vector machine (SVM) and QP: the
dual of the SVM learning problem is a QP

min
z

1

2
zTQz − eT z

subject to cT z = 0 and 0 ≤ z ≤ C,
(37)

where z is the SVM dual variable, Q is the kernel ma-
trix, c is a vector of labels, e is a vector of ones, and
C > 0 [Chang and Lin, 2011]. We also consider the
canonical QP

min
x

1

2
xTQx+ qTx subject to Dx ≤ c, (38)

which can be solved by applying ADMM to

min
u,v

1

2
uTQu+ qTu+ ι{z: zi≤c}(v)

subject to Du− v = 0;

(39)

here, ιS is the indicator function of set S: ιS(v) = 0,
if v ∈ S, and ιS(v) =∞, otherwise.

We study classification problems from Lee et al. [2006]
and Schmidt et al. [2007] with C = 1, and a ran-

dom synthetic QP [Goldstein et al., 2014a], where
Q ∈ R500×500 with condition number ' 4.5× 105.

Basis pursuit (BP) seeks a sparse representation of
a vector c by solving the constrained problem

min
x
‖x‖1 subject to Dx = c, (40)

where D ∈ Rm×n, c ∈ Rm,m < n. An extended form
with D̂ = [D, I] ∈ Rm×(n+m) has been used to re-
construct occluded and corrupted faces [Wright et al.,
2009a]. To apply ADMM, problem (40) is rewritten as

min
u,v

ι{z:Dz=c}(u) + ‖v‖1 subject to u− v = 0. (41)

We experiment with synthetic random D ∈ R10×30.
We also use a data matrix for face reconstruction
from the Extended Yale B Face dataset [Wright et al.,
2009b], where each frontal face image is scaled to
32× 32. For each human subject, an image is selected
and corrupted with 5% noisy pixels, and the remaining
images from the same subject are used to reconstruct
the corrupted image.



Zheng Xu, Mario Figueiredo, Tom Goldstein

Consensus `1-regularized logistic regression is
formulated as a distribute optimization problem with
the form

min
xi,z

N∑
i=1

ni∑
j=1

log(1 + exp(−cjDjxi)) + ρ‖z‖1

subject to xi − z = 0, i = 1, . . . , N,

(42)

where xi ∈ Rm represents the local variable on the
ith distributed node, z is the global variable, ni is
the number of samples in the ith block, Dj ∈ Rm is
the jth sample, and cj ∈ {−1, 1} is the corresponding
label. The goal of this example is to test AADMM also
in distributed/consensus problems, for which ADMM
has become an important tool [Boyd et al., 2011].

A synthetic problem is constructed with Gaussian ran-
dom data and sparse ground truth solutions. Binary
classification problems from Lee et al. [2006], Liu et al.
[2009], and Schmidt et al. [2007] are also used to test
the effectiveness of the proposed method. We use
ρ = 1, for small and medium datasets, and ρ = 5 for
the large datasets to encourage sparsity. We split the
data equally into two blocks and use a loop to simulate
the distributed computing of consensus subproblems.

Semidefinite programming (SDP) solves the
problem

min
X
〈F,X〉 subject to X � 0, D(X) = c, (43)

where X � 0 means that X is positive semidefi-
nite, X, F, Di ∈ Rn×n are symmetric matrices, in-
ner product 〈X,Y 〉 = trace(XTY ), and D(X) =
(〈D1, X〉, . . . , 〈Dm, X〉)T . ADMM is applied to the
dual form of (43),

min
y,S

− cT y subject to D∗(y) + S = F, S � 0, (44)

where D∗(y) =
∑m
i=1 yiDi, and S is a symmetric pos-

itive semidefinite matrix.

As test data, we use 6 graphs from the Seventh DI-
MACS Implementation Challenge on Semidefinite and
Related Optimization Problems (following Burer and
Monteiro [2003]).

4.3 Convergence results

Table 1 reports the convergence speed of ADMM and
its variants for the applications described in Subsec-
tion 4.2. Vanilla ADMM with fixed stepsize does
poorly in practice: in 13 out of 23 realistic datasets, it
fails to converge in the maximum number of iterations.
Fast ADMM [Goldstein et al., 2014a] often outper-
forms vanilla ADMM, but does not compete with the
proposed AADMM, which also outperforms residual
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Figure 1: Relative residual (top) and penalty parameter
(bottom) for the synthetic basis pursuit (BP) problem.

balancing in all test cases except in the Rcv1 problem
for consensus logistic regression.

Fig. 1 presents the relative residual (top) and penalty
parameter (bottom) for the synthetic BP problem.
The relative residual is defined as

max

{
‖rk‖2

max{‖Auk‖2, ‖Bvk‖2, ‖b‖2}
,
‖dk‖2
‖ATλk‖2

}
,

which is based on stopping criterion (6). Fast ADMM
often restarts and is slow to converge. The penalty
parameter chosen by RB oscillates. AADMM quickly
adapts the penalty parameter and converges fastest.

4.4 Sensitivity

We study the sensitivity of the different ADMM vari-
ants to problem scaling and initial penalty parame-
ter (τ0). Scaling sensitivity experiments were done by
multiplying the measurement vector c by a scalar s.
Fig. 2 presents iteration counts for a wide range of
values of initial penalty τ0 (top) and problems scale s
(bottom), for EN regression, canonical QP, and LRLS
with synthetic datasets. Fast ADMM and vanilla
ADMM use the fixed initial penalty parameter τ0, and
are highly sensitive to this choice, as shown in Fig. 2;
in contrast, AADMM is very stable with respect to τ0
and the scale s.
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(a) Elastic net regression (b) Quadratic programming (c) Low rank least squares
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Figure 2: Top row: sensitivity of convergence speed to initial penalty parameter τ0 for EN, QP, and LRLS. Bottom row:
sensitivity to problem scaling s for EN, QP, and LRLS.
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Figure 3: Sensitivity of convergence speed to safeguarding
threshold εcor for proposed AADMM. Synthetic problems
of various applications are studied. Best viewed in color.

Finally, Fig. 3 presents iteration counts when applying
AADMM with various safeguarding correlation thresh-
olds εcor. When εcor = 0 the new penalty value is al-
ways accepted, and when εcor =1 the penalty parame-
ter is never changed. The proposed AADMM method
is insensitive to εcor and performs well for a wide range
of εcor ∈ [0.1, 0.4] for various applications.

5 Conclusion

We have proposed adaptive ADMM (AADMM), a
new variant of the very popular ADMM algorithm
that tackles one of its fundamental drawbacks: crit-
ical dependence on a penalty parameter that needs
careful tuning. This drawback has made ADMM dif-
ficult to use by non-experts, thus AADMM has the
potential to contribute to wider and easier applica-
bility of this highly flexible and efficient optimization
tool. Our approach imports and adapts the Barzilai-
Borwein “spectral” stepsize method from the smooth
optimization literature, tailoring it to the more general
class of problems handled by ADMM. The cornerstone
of our approach is the fact that ADMM is equivalent
to Douglas-Rachford splitting (DRS) applied to the
dual problem, for which we develop a spectral stepsize
selection rule; this rule is then translated into a cri-
terion to select the penalty parameter of ADMM. A
safeguarding function that avoids unreliable stepsize
choices finally yields AADMM. Experiments on a com-
prehensive range of problems and datasets have shown
that AADMM outperforms other variants of ADMM
and is robust with respect to initial parameter choice
and problem scaling.



Zheng Xu, Mario Figueiredo, Tom Goldstein

References

J. Barzilai and J. Borwein. Two-point step size gra-
dient methods. IMA J. Num. Analysis, 8:141–148,
1988.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers. Foundations and Trends in Machine Learning,
3:1–122, 2011.

S. Burer and R. Monteiro. A nonlinear programming
algorithm for solving semidefinite programs via low-
rank factorization. Mathematical Programming, 95
(2):329–357, 2003.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines. ACM Trans. on Intelligent
Systems and Technology, 2(3):27, 2011.

J. Eckstein and D. Bertsekas. On the Douglas-
Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Math-
ematical Programming, 55(1-3):293–318, 1992.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani.
Least angle regression. The Annals of statistics, 32
(2):407–499, 2004.

E. Esser. Applications of Lagrangian-based alternat-
ing direction methods and connections to split Breg-
man. CAM report, 9:31, 2009.

R. Fletcher. On the Barzilai-Borwein method. In Op-
timization and control with applications, pages 235–
256. Springer, 2005.

D. Gabay and B. Mercier. A dual algorithm for the
solution of nonlinear variational problems via finite
element approximation. Computers & Mathematics
with Applications, 2(1):17–40, 1976.

E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson.
Optimal parameter selection for the alternating di-
rection method of multipliers: quadratic problems.
IEEE Trans. Autom. Control, 60:644–658, 2015.

R. Glowinski and A. Marroco. Sur l’approximation,
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