The Adaptive Preconditioned Conjugate
Gradient Method

Ping Chen

1 Introduction

Monteiro et al. proposed a new conjugate gradient type procedure for solving
Az = b where A is a symmetric positive definite n x n matrix in [2]. Instead of
having a fixed preconditioner, the preconditioner Z used in the new method can
be updated by multiplying by a rank one matrix F' so as to make the precondi-
tioned matrix ZT AZ better conditioned if necessary. Therefore, the new method
works better than the conjugate gradient method on extremely ill-conditioned
matrices. The update matrix F not only reduces the determinant of ZT AZ, but
also keeps the new minimum eigenvalue larger than 1. These special proper-
ties of F' make the iteration complexity bound reduced from O(y/k(A)loge~!)
to O(y/nloge™!) when obtaining an e-solution to Az = b, where k(A) is the
condition number of A.

2 Related Work

2.1 The Conjugate Gradient (CG) Method

The CG method ([3], [1]) is a well-known iterative method for solving Az = b
when A is symmetric and positive definite. Starting with an initial guess zg
(Azg & by) and an initial residue 79 (ro = b — Axg), at the k-th iteration, the
CG method finds a A-conjugate search direction py with plrg # 0, which is
indeed equivalent to piri_1 # 0. The initial direction p; is chosen as ro. The
current iterate zy, is updated using Tx—1 +agpy where ay, = r{_ 7i—1/pt App. A-
conjugacy restricts pJ Ap; = 0 for alli # j or py € span{Ap1, Aps, ..., Apr—1}+.
Therefore, the CG method establishes the following relationship among r; and
pi: span{p1,pa,...,pr} = span{ro,r1,...,Tk—1} = span{re, Arg,..., A¥"1rg}.
In addition, the residuals r; are mutually orthogonal. The span{ro, Aro, ..., Ax_170}
is called a Krylov subspace.

Unlike the steepest descent method which may suffer from slow convergence,
the CG method is guaranteed to terminate within n steps in exact arithmetic.
This is because the computed solution zj minimizes ¢ 4(z) = %xTAm —zTb over
the space zg + span{pi,p2,...,pr} and all search directions are linearly inde-
pendent. When A is symmetric positive definite, solving Az = b is equivalent to

minimizing ¢4 (z). The maximum number of iterations is equal to the number
of distinct eigenvalues of A ([3]). Another advantage of the CG method is that
it only requires one matrix-vector multiplication, three vector updates and two
inner products per iteration ([4]) with proper implementation, which makes it
an efficient technique.

2.2 The Preconditioned Conjugate Gradient (PCG) Method

The CG method works well on well-conditioned matrices (which have relatively
small condition numbers), but not on ill-conditioned matrices. The round-off
error introduced in computations makes it hard to preserve the orthogonality of
the residuals in practice. Preconditioning becomes necessary. The PCG method
([3]) aims to find a preconditioner M which reduces the condition number of
the matrix A with acceptable extra computational costs, e.g solving a system
Mz =r. The outline of the algorithm is given in Algorithm 1 ([1]).

Algorithm 1 The PCG Algorithm
1: k=0
2:rg=b— A.’Uo
3: while 7, # 0 do
4: Solve Mz, =1y,

5: k=k+1

6: if k=1 then

& P =ro

8: else

9: Br = ri_12h—1/r}_s2k—2
10: Pr = 2k—1 + BePr—1

11: end if

12: ap = r{_lzk_l/kaApk
13: T = Tp—1 + 0Pk

14: Tp = Tk—1 — Oék,Apk

15: end while

16: * = Tp

The performance of the preconditioned method highly depends on the choice
of preconditioners. The incomplete Cholesky preconditioner exploits the fact
that there exists a lower triangular matrix L such that A = LLT if A is sym-
metric positive definite. It tends to find a preconditioner in the form M = HHT
where H is close to L. The closer H to L the smaller the condition number
of the new A. Other preconditioners include incomplete block preconditioner,
those based on domain decomposition and polynomial preconditioners. Each
has its own restriction. It is helpful to note that any iterative method based on
the splitting A = M — N (the Jacobi, Gauss-Seidel, SOR and SSOR methods)
can be accelerated by the CG algorithm as long as M (the preconditioner) is
symmetric and positive definite. All these methods are well explained in [1].

2.3 Other Variations

Instead of solving Ax = b directly when A is unsymmetric, a normal equation
approach (the Conjugate Gradient Normal Equation Residual method) is to
solve the equivalent system AT Az = ATb. Another approach (the Conjugate
Gradient Normal Equation Error method) is to solve AATy = b first and com-
pute z = ATy as the final solution. The obvious drawback of these two ap-
proaches is squaring the condition number of A ([1]).

If A is symmetric positive definite, an alternative way (the Conjugate Residual
method) to solve Az = b is to solve Azz = A~2b since A? is also symmetric
positive definite.

The Generalized Minimal Residual (GMRES) method ([5]) is a generalized
CG method for solving systems with unsymmetric A. The flexible GMRES
(FGMRES) method ([6]) allows variable preconditioners.

3 The Adaptive PCG (APCG) Method

Assume that we have normalized A such that its smallest eigenvalue is larger
than or equal to 1, i.e., A > I. The PCG method with preconditioner M
transforms the original problem Az = b into an equivalent problem ZTAZz =
Zb with ZZT = M~! with hopes of improving the condition number of the
new matrix A = ZTAZ. If A is not well-conditioned, poor performance seems
to be inevitable. Instead of finding another preconditioner from scratch, the
APCG method attempts to make Z a good preconditioner for every iteration.
A preconditioner Z is considered good if it is a v-preconditioner at xj, satisfying
9(21)7Z(Z7AZ) 27 g(xr) < v]|Z7g(ai)|]? given v > n and g(ay) = Az — b,
The update step, which will be discussed shortly, only occurs when Z fails to
be a v-preconditioner. The number of updates is bound by O(Ny) with Ny =
% and ¢ = v/n thanks of the above mentioned special properties of
the update matrix F. The number N, decreases from infinity to O(n) as ¢
increase from 1 t0 Apaz(A)/n where Apqa.(A) is the largest eigenvalue of A.
In other words, the choices of v are limited in the range (n, Amqez(A)). When
V > Amaz(4), the APCG method reduces to the PCG method with no need
of updating. If Z is a v-preconditioner and ZTAZ > &I for some constant
¢ < 1 is preserved at every iteration, significant reductions in the number of
CG iterations are expected. It has been proven that an e-solution z to Az = b
with ¢4 (zr) < €pa(wo) can be obtained in O(Ny + /nloge™") steps.

The condition that Z be a v-preconditioner can be achieved by multiplying
Z by a rank one update matrix F' whenever Z fails. The matrix F' is called
an Ellipsoid preconditioner, which is in the form of uI + (8 — u)pp?, where
v and 6 are constants and p is a unit vector. The vector p is normal to the
boundary of E(A) = {z|zTAz < 1} at the two points y and —y with y =
w/VwT Aw, w = £71/2ZTg(z},) and =z, is the current iterate. However, the
resultant preconditioner is a v-preconditioner at zg,z1,...,Tr—2 only and it
generates the same iterate xx_1 as Z does. As a result, a backtrack step is

required whenever Z is updated. A restart step happens when £ gets too small.
The detailed algorithm is shown as Algorithm 2.

Algorithm 2 APCG Algorithm

Require: A> I, b€ R*, 9o € R" and v >n, d € (0,1) and € > 0.
1: Set o = pa(zo) = 5(zo — 2*)TA(zo — z*) and Z = 1.
2 k=0,6=1,g0=Azo —b,d_1 =0, fo =0, and 7o = || Z7 go||>.
3: while ¢4 (zr) > e€do do

4: while g{ Z(ZTAZ)Z" g}, > vy, do
5: {Update Z}
6: w = f_%ZTgk
7 A=¢12TAZ
_ _Aw

% P Al
9: = VwT Aw

' || Awl|
10: 0 = min(ty/n, 1)
11: p=4/2=
12: F=ul+ (60— p)ppT
13: Z =ZF/u
14: E=¢&u?
15: if £ < then
16: go to Line 2 with Z = €2 Z and xo =), {Restart Step}
17: end if
18: k = maxz(k — 1,0) {Backtrack Step}

19: end while

20: if k> 0 then

21: Br = Yr/Vk-1

22: end if

23 dy=—ZZ"gp + Brdr1
24: ap = ’Yk/(dZ;Adk)
25: Tpt1 = T + apdy
26: gpt+1 = gk + apAdy
27: Y1 = || Z7 g |
280 k=k+1

29: end while

4 Experimental Results

4.1 Implementation

The APCG method is implemented using Matlab (version 7.0.0.19920), a high-
level technical computing language. Here, we discuss some practical issues.

4.1.1 APCG With Limited-memory

Appendix A shows the direct implementation of APCG method with some small
modification on stopping criteria, which we discuss later. Due to the possibil-
ity of continuous backtracking, the entire history of computer iterates has to
be stored. This could be extremely inefficient in terms of memory usage and
computation costs involved in backtracking especially when n is large. More
practically, we consider remembering the most recent m iterates only.

The updating procedure can be very expensive as well. Note that Z; =

Z(]%% . 5’;:1 = ZoFyF| ... Fy_, and F} (or F}) is dependent on Z;. Besides,

Fj is in the form of I + (Z—’J — 1)p;p] , where p; and ; are constants and p; is
a unit vector. Moreover, u; is determined by 6;. Hence, F} is determined by 6;
and p;. Another observation is that the preconditioner Z is not used directly at
the CG iterations. This suggests a way to avoid matrix-matrix multiplications
by using matrix-vector multiplications instead. We only need to store the initial
preconditioner Zjy, a set of #s and a set of ps. Detailed implementation can be
found in Appendix B.

4.1.2 Stopping Criteria

In practice, we do not know the optimal solution z, before hand, which makes
it impossible to access ¢4 (zy) nor ¢g. Instead, we use the relative error in the
residuals as the stopping condition. Therefore, the iteration stops whenever any
of the following conditions are met at the k-th iteration.

L |[rel] < ex [1b]]-
2. the algorithm backtracks more than m times if limited-memory used
3. the number of iterations exceeds the maximum number of iterations al-
lowed maxit.
4.1.3 System Information

All the experiments are run on a machine with Intel®Pentium®4 2.8GHz CPU,
512 MB of RAM, 80G hard drive.

4.2 Parameter Descriptions

Table 1 lists different parameters used in the APCG method and its limited-
memory variation.

4.3 Test Problems
4.3.1 A, =tridiag(—1,2,—1) With Scaling
The first type of test problems considered are matrices Ag in the form of tridiag(-

1,2,-1). The eigenvalues of Ag are 2 —2 cos ;—_,7_71 and j € {1,2,...,n}. The mini-

mum eigenvalue, Ay (Ag), is 2—2 cos 475 the maximum eigenvalue, Aoz (Ao),

Table 1: Used Parameters

| Name | description |

relative residual error tolerance

preconditioner goodness factor
restart control parameter
length of most recent history

S| ||

is 2 —2cos 5. It is clear that A.,;n(Ao) approaches 0, Ajqz(Ag) approaches
4, k(Ag) approaches oo as n increases. However, Ay does not satisfy Ag > I.
In other words, Amin(Ao) 2 1. This condition can be achieved by multiply-
ing Ag by Amin(Ao)™! + 1. In this way, we get a new set of problem A; with
k(A1) = k(Ap). The right hand side vector b is chosen to be the product of 4,
with the all ones vector. Equivalently, z* = ones(n, 1).

We set € = le—6; v € {2n, |(2n+Amaz(A1))/4], |(2n4+Amaz(A1))/2], [Amaz(A1)]};
6 € {0.1, 0.3, 0.5, 0.7, 0.9}; 2o = zeros(n,1); mazxit = 2n. The Experimental
Results obtained by the direct APCG method on various sized matrices with
different ¢ values and v = 2n are summarized in Table 2. The results with
a different v = |(2n + Apaz(A1))/4] are reported in Table 3. When we set
v =1(2n + Anaz(41))/2] or v = | Amaw(A1)], the APCG method behaves just
like the CG method except slight differences on the running times. On both
cases, it takes the APCG method n/2 CG iterations and 0 updates to converge
to the optimal solution. Table 4 reports the performance by the CG method
(using the pre-defined function pcg.m in Matlab). If the diagonal preconditioner
with M~ = the diagonal of A4 is used, we get the results as in Table 5.

The limited version of the APCG method without the need of explicit storage
for Z may speed up the updating process when n is small. While n is large, it
may often fail as it tends to backtrack more than m steps. This method is merely
another efficient way of implementing the original APCG method. In addition,
it lacks of theoretical convergence complexity bound when only keeping a short
history. We will not discuss this variation of the APCG method in details.

4.3.2 Ay = Ap—pl With Scaling And p Is A Positive Small Shift with
0 < p < Amin(Ao)

The second type are matrices Ay = Ay — ul with scaling. These matrices are
harder to solve than A; in the sense of having even bigger condition number.
The condition number of Ay = k(A2) = ’)\\Z“:Eﬁg)):ﬁ > i‘\:“:((ﬁ(‘;; (i.e.,k(A1)).

Using the similar parameter settings for matrices 4; and g = 0.9, we ob-
tained the results when v is chosen as 2n, [(2n 4+ Amaz(A42))/4] and [(2n +
Amaz(A2))/2], as shown in Table 6, 7 and 8 respectively. When letting v =
[Amaz(A2) |, the APCG method again works as the CG method, which is pre-
sented in Table 9. The performance by the PCG method with the diagonal
preconditioner can be found in Table 10.

Table 2: Experimental Results of APCG Method on A; with various § value
and fixed v = 2n

Parameters Results

n € | v | 1) | m | converge? | update | CG iter | total CG iter | time | residual '
10 le-6 | 2n | 0.1 no 5 20 20 3.125e-2 1.520e5
50 | 1e-6 | 2n | 0.1 10 41 100 100 4.688¢-2 | 5.271e8
100 | 1le-6 | 2n | 0.1 no 89 200 200 5.781le-1 | 9.793el3
500 | le-6 | 2n | 0.1 no 466 1000 1000 1.739e2 | 6.044e26
1000 | le-6 | 2n | 0.1 no 946 2000 2000 2.416e3 | 2.802e30
10 le-6 | 2n | 0.3 no 5 20 20 0.000e0 1.520e5
50 le-6 | 2n | 0.3 no 41 100 100 4.688e-2 5.271e8
100 | le-6 | 2n | 0.3 no 89 200 200 4.688e-1 | 9.793el3
500 | le6 | 2n | 0.3 no 466 1000 1000 1.737e¢2 | 6.044e26
1000 | 1e-6 | 2n | 0.3 no 946 2000 2000 2.415e3 | 2.802e30
10 le-6 | 2n | 0.5 no 5 20 20 1.562e-2 1.520e5
50 le6 | 2n | 0.5 no 44 54 100 4.688e-2 | 3.086e-2
100 | 1le-6 | 2n | 0.5 no 95 130 200 4.688e-1 | 3.372el7
500 | 1le6 | 2n | 0.5 no 477 654 1000 1.744e2 | 3.416e34
1000 | 1e-6 | 2n | 0.5 no 966 1308 2000 2.419e3 | 4.287e30
10 le-6 | 2n | 0.7 no 5 2 20 0.000e0 4.285e3
50 le-6 | 2n | 0.7 yes 46 55 100 4.688e-2 le-6

100 | 1le-6 | 2n | 0.7 no 96 128 200 3.906e-1 | 3.783el4
500 | 1le-6 | 2n | 0.7 no 477 649 1000 1.743e2 | 3.302e45
1000 | 1e-6 | 2n | 0.7 no 968 1296 2000 2.419e3 | 2.057e75
10 [le6 | 2n] 0.9 yes 1 1 14 1.562e-2 | 0.000e0
50 le-6 | 2n | 0.9 yes 47 35 75 3.125e-2 le-6

100 | 1e6 | 2n | 0.9 yes ° 98 122 200 5.313e-1 3e-5

500 | 1le-6 | 2n | 0.9 no 480 612 1000 1.764e2 | 4.310e103
1000 | 1e-6 | 2n | 0.9 no 977 1090 2000 2.424e3 | 6.094e89

. Tt is the relative residual ||A * * — b||/||b|| where z* is computed solution

2. Although the algorithm returns flag = 1 since residual > €, we consider the APCG

method converges as the returned solution is very close to the true solution.

Table 3: Experimental Results of APCG Method on A; with various § value

and fixed v = [(2n + Aoz (A1) /4]

Parameters Results

n € | v | é | m | converge? | update | CG iter | total CG iter | time | residual !
10 | le6 | |ZPAmaelAD | T 07 | - 1o 5 20 20 0.000e0 | 5.548e2
50 | le6 | [ZPAma=U)] T g | - 1o 32 100 100 4.688¢-2 | 8.898e5
100 | le-6 | [ZPAmaelAi)] J g7 [- no 65 200 200 3.906e-1 | 9.353e6
500 | leg | [Z2PmaelA)] 1o | - 10 253 1000 1000 1.651e2 | 2.814e8
1000 | le-6 | [Z2Pme=CA] [g | . no 432 2000 2000 2.339¢3 | 3.798el1
10 | le6 | |ZP2maeCl) | [03 | - no 5 20 20 1.563e-2 | 5.548e2
50 | le-6 | [Z2FAmasUA] T g3 | - no 32 100 100 4.688¢-2 | 8.898e5
100 | le-6 | [ZPAmaelA)] | 03 | - no 65 200 200 3.594e-1 | 9.353e6
500 | le6 | [Z2PAme=Ul)] [g3 | no 253 1000 1000 1.651e2 | 2.814e8
1000 | leg | [Z2PAmaeldi) | T 03 | - no 432 2000 2000 2.340e3 | 3.798ell
10 | le6 | [ZPmaelA)] [g5 [- no 5 20 20 1.563e-2 | 5.548e2
50 | leg | [Z2PAmalA)| T g5 | - 1o 32 100 100 4.688¢-2 | 8.898¢5
100 | leg | [ZPAma=UA) | T g5 | - no 65 200 200 3.750e-1 | 9.353e6
500 | le-6 | |Z2FAmaslZ) | [05 | - no 253 1000 1000 1.651e2 | 2.814e8
1000 | le-6 | [Z2Pme=U] [g5 | - no 432 2000 2000 2.339e3 | 3.798ell
10 | le6 | |ZPAmaelA) | [o7 | - no 5 1 20 1.563e-2 | 2.487e2
50 | le-6 | [ZPme=UA)] [g7 | . 10 37 71 100 4.688¢-2 | 8.534e6
100 | le-6 | [ZPrmaelA)] | 07 [- 10 73 153 200 4.063e-1 | 1.382ell
500 | leg | [Z2PAmaelA) | T g7 | - 1o 311 818 1000 1.685e2 | 5.315el5
1000 | le-6 | [Z2FAmaalA) | T g7 | - 1o 773 1280 2000 2.391e3 | 9.36lel6
10 | le6 | |ZMPAmaelA) | T g9 | - yes 4 1 14 0.000e0 | 0.000e0
50 | leg | [Z2PmaelA)] T g9 | - yes 38 24 72 3.125e-2 le-6

100 | le-6 | [ZPAmaelAi)] | g9 | - yes * 81 104 200 4.688¢-1 | 1.7e5

500 | leg | [Z2PmaelA)] T g9 | - 10 392 619 1000 1.710e2 | 9.206e22
1000 | le-6 | |2Pme=Ui)] [g9 | . no 771 1253 2000 2.391e3 | 7.949¢29

L. 1t is the relative residual ||A * z* — b||/||b|| where z* is computed solution

2: Although the algorithm returns flag = 1 since residual > €, we consider the APCG

method converges as the returned solution is very close to the true solution.

Table 4: Experimental Results of CG Method on A;

| n | converge? | CGiter | time | relative residual |
10 yes 5 0.000e0 0.000e0
50 yes 25 0.000e0 0.000e0
100 yes 50 1.563e-2 0.000e0
500 yes 250 1.719e-1 0.000e0
1000 yes 500 3.906e-1 0.000e0

Table 5: Experimental Results of PCG Method with diagonal preconditioner on
Ay

| n | converge? | CG iter | time | relative residual |
10 yes 5 0.000e0 0.000e0
50 yes 25 0.000e0 0.000e0
100 yes 50 0.000e0 0.000e0
500 yes 250 7.812e-2 0.000e0
1000 yes 500 2.813e-1 0.000e0

4.4 Observations On The Experimental Results

On the first type of problems A, both the CG method and the PCG method
with the diagonal preconditioner converge to the optimal solution with only
n/2 steps. In practice with the presence of the roundoff errors, the CG based
methods sometimes take less than n steps to converge if they do converge. In
this case, if we start with a different initial guess, for example, a randomized
vector, it usually takes n steps to converge for both methods. For the second
type of problems Az, both methods take n/2 steps to converge when n is small
(10,50,100) and diverge when n = 500 and n = 1000. The outcome is expected
as matrices As is worse conditioned compared with A;.

On the other hand, the APCG method does not perform as well as the other
two methods. First of all, the APCG method seldom converges to the opti-
mal solution even with different v and § values. Moreover, if it does converge, it
takes more memory storage and execution time than the above mentioned meth-
ods. Each iteration in the CG method requires one matrix-vector multiplication,
three vector updates and two inner products. The PCG method with the diag-
onal preconditioner requires an extra matrix-vector multiplication: z = M ~!Ir.
Each CG iteration in the APCG method, as described in Algorithm 2, requires
at least three matrix-vector multiplications, three vector updates and two inner
products. The concept of adaptively updating the preconditioner demands ex-
tra O(n?) storage for the preconditioner. This storage requirement is replaced
by computational costs if we do not store this preconditioner explicitly. Each
update iteration needs at least four matrix-vector multiplications, one outer

Table 6: Experimental Results of APCG Method on A, with various § value
and fixed v = 2n

Parameters Results
n € | v | é | m | converge? | update | CG iter | total CG iter | time | residual !
10 | 1le6 | 2n | 0.1 no 8 20 20 0.000e0 2.454e7
50 le-6 | 2n | 0.1 no 49 100 100 4.688¢-2 | 1.936el12
100 | 1le-6 | 2n | 0.1 no 97 200 200 5.625e-1 | 2.20lelb
500 | le6 | 2n | 0.1 no 492 1000 1000 1.747e2 | 1.074e54
1000 | 1le-6 | 2n | 0.1 no 986 2000 2000 2.420e3 | 5.989e65
10 | 1le6 | 2n | 0.3 no 8 20 20 1.563e-2 | 2.454e7
50 le-6 | 2n | 0.3 no 49 100 100 4.688¢-2 | 1.936el12
100 | 1le-6 | 2n | 0.3 no 97 200 200 4.688¢-1 | 2.201el5
500 | 1le-6 | 2n | 0.3 no 492 1000 1000 1.750e2 | 1.074e54
1000 | 1le-6 | 2n | 0.3 no 986 2000 2000 2.422e3 | 5.898e65
10 | 1le6 | 2n | 0.5 no 11 9 20 1.562e-2 | 2.958e2
50 le-6 | 2n | 0.5 no 50 68 100 4.688¢-2 | 3.039e12
100 | 1le-6 | 2n | 0.5 no 99 134 200 4.063e-1 | 1.154e34
500 | 1le-6 | 2n | 0.5 no 494 659 1000 1.750e2 | 6.232e58
1000 | 1e-6 | 2n | 0.5 no 992 1313 2000 2.421e3 | 2.059e148
10 le-6 | 2n | 0.7 yes 6 7 9 0.000e0 1.000e-6
50 le-6 | 2n | 0.7 no 50 70 100 4.688e-2 | 2.743e22
100 | 1le-6 | 2n | 0.7 no 98 136 200 4.063e-1 | 1.245e43
500 | 1le-6 | 2n | 0.7 no 496 660 1000 1.751e2 | 5.844e127
1000 | 1e6 | 2n | 0.7 1o 993 1311 2000 2.429e3 | 2.993e148
10 | 1e6 | 2n | 0.9 yes 5 6 6 3.125e-2 | 0.000e0
50 le-6 | 2n | 0.9 no 53 69 100 9.375e-2 | 2.751e19
100 | 1le-6 | 2n | 0.9 yes 102 25 9 3.125e-1 | 1.000e-6
500 | le-6 | 2n | 0.9 no 497 610 1000 1.842e2 | 3.024e€95
1000 | 1e-6 | 2n | 0.9 no 996 1178 2000 2.523e3 | 8.273e147

. Tt is the relative residual ||A * 2* — b||/||b|| where z* is computed solution

Table 7: Experimental Results of APCG Method on A, with various § value

and fixed v = [(2n + Aoz (A2)) /4]

Parameters Results
n € | v | é | m | converge? | update | CG iter | total CG iter | time | residual !
10 | le6 | |ZHPAmael) | T g7 | - 1o 6 20 20 0.000e0 | 7.392e4
50 | le6 | [TPAma=Ula)] T g | 1o 33 100 100 4.688¢-2 | 1.789¢6
100 | le-6 | [ZPAmael2)] J g7 [- no 64 200 200 4.531e-1 | 7.403e6
500 | leg | [Z2Pmaell)] T g | - 10 271 1000 1000 1.656e2 | 1.641e8
1000 | le-6 | |Z2Pme=Ul2)] [g7 | . no 444 2000 2000 2.340e3 | 2.594e9
10 | le6 | |2E2maell2) | [g3 | - no 6 20 20 1.563e-2 | 7.392e4
50 | le-6 | [Z2FAmasUA2)] T g3 | . no 33 100 100 4.688¢-2 | 1.789¢6
100 | le-6 | |ZnPAmael2)] | g3 | - no 64 200 200 4.063e-1 | 7.403e6
500 | le6 | [ZPAmaell)| 193 | - 10 271 1000 1000 1.658¢2 | 1.641e8
1000 | le-6 | [Z2PAma=(l2)] [g3 | . no 444 2000 2000 2.339e3 | 2.594e9
10 | le6 | [ZPAmaea)] [g5 [- no 6 20 20 0.000e0 | 7.392e4
50 | leg | |Z2PAmalR)| T g5 | - 1o 33 100 100 4.688¢-2 | 1.789¢6
100 | leg | [ZPAma=Ul) | T g5 | no 64 200 200 3.906e-1 | 7.403e6
500 | le-6 | |Z2HFAmaslf) | [g5 | - no 271 1000 1000 1.659%¢2 | 1.641e8
1000 | le-6 | [Z2PAma=(a)] [g5 | no 444 2000 2000 2.339e3 | 2.594e9
10 | le6 | |ZPAmael) | [o7] . no 7 7 20 1.563e-2 | 3.780e2
50 | leg | [ZPmaell)| T g7 | - yes > 38 50 100 4.688¢-2 | 2.000e-6
100 | le-6 | [Z2Pimaela)] | 07 [- 10 80 112 200 3.906e-1 | 1.136e3
500 | leg | [Z2PAmaeld2)] [g7 | - 1o 339 820 1000 1.686e2 | 6.541e9
1000 | le-6 | [Z2FAmaal2) | T g7 | - 1o 770 1283 2000 2.390e3 | 2.175el4
10 | le6 | |ZnHPAmael) T g9 | - no 7 3 20 0.000e0 | 4.876e0
50 | leg | [Z2Pmall)| T g9 | - yes > 39 59 100 1.250e-1 | 4.300e-4
100 | le-6 | [ZPAmael2)] | g9 [- no 81 94 200 4.375e-1 | 5.925e-2
500 | leg | [Z2Pmaelf2)| T g9 | - 10 394 614 1000 1.725¢2 | 2.338¢20
1000 | le-6 | |2Pme=U2)] [g9 | . no 781 1253 2000 2.388e3 | 7.184e20

L. 1t is the relative residual ||A * z* — b||/||b|| where z* is computed solution

2: Although the algorithm returns flag = 1 since residual > €, we consider the APCG

method converges as the returned solution is very close to the true solution.

Table 8: Experimental Results of APCG Method on A, with various § value

and fixed v = [(2n + Aoz (A2)) /2]

Parameters Results
n € | v | é | m | converge? | update | CG iter | total CG iter | time | residual !
10 | le6 | |ZHPAmael) | T o7 | - 1o 6 20 20 0.000e0 | 7.392e4
50 | le6 | [ZPAma=Ula)] T g | 1o 9 100 100 3.125¢-2 | 1.368¢0
100 | le-6 | [ZnPimael2)] J g7 [- no 10 200 200 2.969e-1 | 1.83le-1
500 | le-6 | [Z2PAme=(l2)] g7 | . 10 10 1000 1000 1.197e2 | 7.018e-3
1000 | le-6 | [Z2Pme=Ul2)] [g7 | . no 2000 2000 1.738¢3 | 4.450e-3
10 | le6 | |ZE2maella) | [g3 | - no 6 20 20 3.125e-2 | 7.392e4
50 | le-6 | [Z2FAmaslA2)] T g3 | . no 9 100 100 4.688¢-2 | 1.368¢0
100 | le6 | |ZnHAmeel) | T g3 [- no 10 200 200 2.969e-1 | 1.83le-1
500 | le6 | [ZPAmaell)] 193 | - 10 10 1000 1000 1.199¢2 | 7.018e-3
1000 | le-6 | [Z2Pma=(l2)] [g3 | . no 8 2000 2000 1.739e3 | 4.450e-3
10 | le6 | [ZPmae)] [g5 [- no 6 20 20 0.000e0 | 7.392e4
50 | leg | [Z2PAmalR)] T g5 | - 1o 9 100 100 6.250e-2 | 1.368¢0
100 | le6 | |2FAmaet2)] | g5 [- 10 10 200 200 2.969e-1 | 1.83le-1
500 | le6 | [Z2PAma=tla)] [g5 | 1o 10 1000 1000 1.199e2 | 7.018e-3
1000 | le-6 | [Z2PAma=(a)] [g5 | no 2000 2000 1.750e3 | 4.450e-3
10 | le6 | |ZPAmael) | [o7 [- no 6 7 20 0.000e0 | 6.618e2
50 | leg | [ZPmeell)| T g7 | - 10 9 100 100 1.094e-1 | 1.368¢0
100 | le-6 | [ZPimaela)] | 07 [- 10 10 200 200 3.125e-1 | 1.83le-1
500 | leg | [Z2PAmaeld2)| T g7 | - 1o 10 1000 1000 1.200e2 | 7.018¢-3
1000 | le-6 | [Z2PAmaal2) | T g7 | - 1o 8 2000 2000 1.739e3 | 4.450e-3
10 | le6 | |ZnHAmael) T g9 | - yes 2 5 6 0.000e0 | 0.000e0
50 | leg | [Z2Pmall)| T g9 | - no 27 13 100 6.250e-2 | 2.953e-2
100 | le-6 | |ZnPimael2)] | g9 [- no 10 200 200 3.281e-1 | 1.83le-1
500 | le-6 | [Z2PAme=(l2)] g9 | . 10 10 1000 1000 1.200e2 | 7.018e-3
1000 | le-6 | |Z2Pme=U2)] [g9 | . no 8 2000 2000 1.740e3 | 4.450e-3

L. 1t is the relative residual ||A * z* — b||/||b|| where z* is computed solution

2: Although the algorithm returns flag = 1 since residual > €, we consider the APCG

method converges as the returned solution is very close to the true solution.

Table 9: Experimental Results of CG Method on A,

| n | converge? | CG iterations | time | residual]
10 yes 5 3.125e-2 | 0.000e0
50 yes 25 1.563e-2 | 0.000e0
100 yes 50 0.000e0 | 0.000e0
500 no - - -
1000 no - - -

Table 10: Experimental Results of PCG Method with diagonal preconditioner
on A2

| n | converge? | CG iterations | time | residual |
10 yes 5 1.563e-2 | 0.000e0
50 yes 25 0.000e0 | 0.000e0
100 yes 50 0.000e0 | 0.000e0
500 no - - -
1000 no - - -

product and two inner products. The updating procedure makes the APCG
method backtrack or restart if necessary. This in turn takes more CG iterations
than necessary, as suggested by the difference between CG iter and total CG
iter.

The APCG method prefers large § values. The performances with lower §
values (0.1, 0.3, 0.5) do not vary a lot on both types of problems. We see a
slightly better performance when § value is increased to 0.9. In other words,
it benefits from frequent restarts. It is not necessary for v to be as large as
Amaz (4) so that the APCG method acts like the CG method. For instance,
v = [(2n + Amaz(A1))/2] is sufficient for the APCG method to work like the
CG method for matrices A;.

5 Conclusion and Future Work

Though the idea of adaptively updating the preconditioner sounds encourag-
ing, we find out that it does not out perform other CG based procedures. In
the future, we may consider deriving a different update matrix F, which does
not require any backtracking. In this way, we may avoid intensive storage re-
quirement and reduce computational costs involved on backtracking. Another
possibility is to replace Z with a different preconditioner without violating the
constraint ZTAZ > I whenever the method restarts, which gives us a flexible
APCG method.

13

References

[1] Gene H. Golub and Charles F. Van Loan, Matriz Computations, The John
Hopkins University Press, 3rd ed., 1996.

[2] Renato D.C. Monteiro, Jerome W. O’Neal and Arkadi Nuemirovski, A New
Conjugate Gradient Algorithm Incorporating Adaptive Ellipsoid Precondi-
tioning, Technical Report, Georgia Institute of Technology, 2004.

[3] Stephen G. Nash and Ariela Safer, Linear and Nonlinear Programming,
McGraw-Hill, 1996.

[4] Wolfram Research, MathWorld,
http:/ /mathworld.wolfram.com/ConjugateGradientMethod.html.

[5] Youcef Saad and Martin H. Schultz, GMRES: A Generalized Minimal
Residual Algorithm For Solving Nonsymmetric Linear Systems, STAM J.
Sci. Stat. Comput., Vol. 7, No. 3, July 1986, 856-869.

[6] Youcef Saad, A Flexible Inner-Outer Preconditioned Algorithm, SIAM J.
Sci. Stat. Comput., Vol. 14, No. 2, March 1993, 461-469.

A Direct Implementation

function [xstar,flag,relres,update,cg_iter,resvec,total_iter] = ...

APCG(A,b,nu,delta,x0,tol,maxit,Z);
APCG Adaptive Preconditioned Conjugate Gradient Method

Reference:

Renato D.C. Monteiro, Jerome W. 0’Neal and Arkadi Nuemirovski,

A New Conjugate Gradient Algorithm Incoporating Adaptive Ellipoid
Preconditioning

Technical Report, Georgia Institute of Technology, 2004.

This function attempts to solve the system of linear equations A*x=b

Input and Parameter:

A - The n-by-n coefficient matrix A must be symmetric and positive
definite. Also, A’s minimum eigenvalue has to be larger than or
equal to 1.

b - The right hand side column vector b must have size n-by-1.

nu - Specifies the constant used to test if Z is a nu-preconditioner at

certain iterate. If it is not, updating Z is required. It must be

between n and the maximum eigenvalue of A. See the paper.
delta - Specifies the constant used to control restart. 0 < delta < 1.
x0 - Specifies the initial guess. If it is [], default value (all zero

14

% vector) will be used.

% tol - Specifies the tolerance of the method. If it is [], default value
% le-6 is used.

% maxit - specifies the maximum number of iteratiomns. If it is [], default
% value 2*n is used.

% Z - Specifies the n-by-n initial preconditioner with default value

yA speye(n) if it is [].
h

% Output

A ——

% xstar - computed solution to A*x = b
% flag - a) if 0, APCG converged to the desired tolerance TOL within
% MAXIT iterations.

% b) if 1, APCG iterated MAXIT times but did not converge, and the
% latest computed iterate returned as xstar

% c) if 2, preconditioner Z was ill-conditioned, as it fails to

% satisfy the minimum eigenvalue of Z’AZ is larger than or equal
% to 1. The latest computed iterate is returned as xstar.

% relres - returns the relative residual norm(b-A*x)/norm(b). If flag is

% 0, then, relres <= tol.

% update - returns the number of iterations of updating the preconditioner
% cg_iter - returns the number of CG iterations within one restart round,

% at which the returned xstar computed.
% resvec - returns a vector of the residual norms at each iteration
% including NORM(b-A*XO0) .

% total_iter - returns the total number of CG iterations within multiple
% restarts

% Note: This comment document follows the format of pcg method by MatLab.
% The error checking and setting default value code are adapted from
% pcg method.

format long;

if (nargin < 4)
error (’MATLAB:APCG:NotEnoughInputs’, ’Not enough input arguments.’);
end

% Check matrix and right hand side vector inputs have appropriate sizes
[m,n] = size(A);
if (m "= n)

error (’MATLAB: APCG:NonSquareMatrix’, ’Matrix must be square.’);
end
if “isequal(size(b),[m,1])

es = sprintf([’Right hand side must be a column vector of’

> length %d to match the coefficient matrix.’],m);

15

error (’MATLAB:APCG:RHSsizeNotMatchCoeffMatrix’, es)

end
m = size(b,1);
n = m;

if (size(b,2) ~= 1)
error (’MATLAB: APCG:RHSnotColumnVec’,. ..
’Right hand side must be a column vector.’);
end

% Assign default values to unspecified parameters

if (nargin < 6) || isempty(tol)
tol = le-6;

end

if (nargin < 7) || isempty(maxit)
maxit = 2%n;

end

if (nargin < 8) || isempty(Z)
Z = speye(n);

end

% Check for all zero right hand side vector => all zero solution

n2b = norm(b); % Norm of rhs vector, b

if (n2b == 0) % if rhs vector is all zeros
xstar = zeros(n,1); % then solution is all zeros
flag = 0; % a valid solution has been obtained
relres = 0; % the relative residual is actually 0/0
iter = 0; % no iterations need be performed
resvec = 0; % resvec(1l) = norm(b-A*x) = norm(0)
return;

end

if ((nargin >= 5) && “isempty(x0))
if “isequal(size(x0),[n,1])
es = sprintf([’Initial guess must be a column vector of’
> length %d to match the problem size.’],n);
error (’MATLAB:APCG:WrongInitialGuessSize’, es);
end
else
x0 = zeros(n,1);
end

if ((nargin >= 8) && “isempty(Z))
if “isequal(size(Z), [m,m])
es = sprintf([’Preconditioner must be a square matrix’
> of size Jd to match the problem size.’],m);

16

error (’MATLAB: APCG:WrongPreconditionerSize’, es);

else
vec
if vec(n) < 1
flag = 2;
sprintf

es

eig(Z’*A*Z);

([’Preconditioner has to make the minimum’

’ eigenvalue of the preconditioned A larger than’
> or equal to 1°’]);
error (’MATLAB:APCG:I11ConditionedPreconditioner’,es);

return;
end
end
end

% Set up for the method
total_iter = 0;
cg_iter = 0;

k=1;

1;

d_previous = zeros(n,1);
g{1} = A*x0 - b;

beta = zeros(maxit+1,1);
beta(1l) = 0;

gamma = zeros(maxit+1,1)

xi

gamma (1) = norm(Z’*g{1},
X{1} = x0;

update = 0;

r_flag = 0;

r0 = -g{1};

flag = 1;

normr = norm(r0);

tolb = tol * n2b;

if (normr <= tolb)
xstar = x0;

flag = 0;
relres = normr/n2b;
total_iter = 0;
cg_iter = 0;
resvec = normr;
return;
end
resvec = zeros(maxit+1,1);
resvec(l) = normr;

%total iteration including restart
%CG iteration counter

h
h
h
h

start index of iterates

constant used in updating iteratiomns
initial search direction

-r0, following the paper’s notation

% initial beta value used in CG iterations
5

2)"2; Ynorm of preconditioned g0

% initial guess as the first iterate

% update iteration counter

% flag indicating a restart

% initial residual

% Initial guess is a good enough solution

% Preallocate vector for norm of residuals
% resvec(l) norm(b-A*x0)

17

% loop over maxit iterations (unless convergence or failure)
while resvec(k) > tolb && total_iter < maxit

while g{k}’>*(Zx(Z’>*(A*(Z*(Z’*g{k}))))) > nu*gamma (k)

end

w o= xi”(-1/2)* (2’ *g{k});

A_hat = xi~(-1)*Z’*Ax*Z;

P = A_hatx*w;

tau = sqrt(w’*p)/norm(p,2);

p = p/norm(p,2);

theta = min(tau*sqrt(n),1);

mu = sqrt((n - theta"2)/(n-1));
Z = Z + (theta/mu -1)*Z*p*p’;
xi = xi*x(mu~(-2));

if xi > delta

if k==
else
k = max(k-1,1);
end
else
Z = xi~(-1/2)*Z;
X{1} = X{k};
cg_iter = 0;
k=1;
xi=1;

d_previous = zeros(n,1);
g{1}=A*X{1} - b;

beta(1l) = 0;

gamma (1) = norm(Z’*g{1})"2;
resvec(1l) = norm(g{1});

r_flag = 1;
end

update = update +1;

if r_flag ==
break;
else
H
end

18

if r_flag ==
r_flag = 0;
continue;
end

if k ==

d{k} = -Z*Z’*g{1} + beta(l)*d_previous;
else

beta(k) = gamma(k)/gamma(k-1);

d{k} = -Z*Z2’*g{k} + beta(k)*d{k-1};
end

alpha = gamma (k) /((d{k}’*A)*d{k});

X{k+1} = X{k} + alpha*d{k};
g{k+1} = g{k} + alpha*(A*d{k});
gamma (k+1) = norm(Z’*g{k+1})"2;
resvec(k+1) = norm(g{k+11});

k = k+1;

cg_iter = cg_iter + 1;
total_iter = total_iter + 1;
end

xstar=X{k};

normr = resvec (k) ;

relres = normr/n2b;

if (normr <= tolb)
flag = 0;
resvec = resvec(1:k);

else

resvec = resvec(1:k+1);

end

B Efficient Implementation

function [xstar,flag,relres,update,cg_iter,resvec,total_iter] = ...
APCG_implicit(A,b,nu,delta,m,x0,tol,maxit,Z);

% APCG_implicit Limited Memory version of Adaptive Preconditioned

h Conjugate Gradient Method

% This method differs from the APCG method in the way that only m latest
% iterates are kept. Hence, if the method needs to backtrack more than m

19

times, the procedure halts with a failure. Also, we don’t store matrices
Z, A_hat, F explicitly to make it memory efficient.

Reference:

Renato D.C. Monteiro, Jerome W. 0’Neal and Arkadi Nuemirovski,

A New Conjugate Gradient Algorithm Incoporating Adaptive Ellipoid
Preconditioning

Technical Report, Georgia Institute of Technology, 2004.

This function attempts to solve the system of linear equations A*x=b
Input and Parameter:

A - The n-by-n coefficient matrix A must be symmetric and positive
definite. Also, A’s minimum eigenvalue has to be larger than or
equal to 1.

b - The right hand side column vector b must have size n-by-1.

nu - Specifies the constant used to test if Z is a nu-preconditioner at

certain iterate. If it is not, updating Z is required. It must be
between n and the maximum eigenvalue of A. See the paper.
delta - Specifies the constant used to control restart. 0 < delta < 1.

m - Specifies the length of recent iterates. If it is [], 20 is used as
the default value.

x0 - Specifies the initial guess. If it is [], default value (all zero
vector) will be used.

tol - Specifies the tolerance of the method. If it is [], default value

le-6 is used.
maxit - specifies the maximum number of iterations. If it is [], default
value 2*n is used.
Z - Specifies the n-by-n initial preconditioner with default value

speye(n) if it is [].
Output
xstar - computed solution to A*x = b

flag - a) if 0, APCG converged to the desired tolerance TOL within
MAXIT iterations.
b) if 1, APCG iterated MAXIT times but did not converge, and the
latest computed iterate returned as xstar
c) if 2, preconditioner Z was ill-conditioned, as it fails to
satisfy the minimum eigenvalue of Z’AZ is larger than or equal
to 1. The latest computed iterate is returned as xstar.
d) if 3, the method tries to backtrack more than m times. The
current iterate will be returned as xstar.
relres - returns the relative residual norm(b-A*x)/norm(b). If flag is
0, then, relres <= tol.

20

% update - returns the number of iterations of updating the preconditioner
% cg_iter - returns the number of CG iterations within one restart round,

% at which the returned xstar computed.
% resvec - returns a vector of the residual norms at each iteration
% including NORM(b-A*X0).

% total_iter - returns the total number of CG iterations within multiple
% restarts

% Note: This comment document follows the format of pcg method by MatLab.
% The error checking and setting default value code are adapted from
% pcg method.

format long;

if (nargin < 4)
error (’MATLAB:APCG_IMPLICIT:NotEnoughInputs’, ’Not enough input arguments.’);
end

% Check matrix and right hand side vector inputs have appropriate sizes
[s,n] = size(A);
if (s "= n)

error (’MATLAB:APCG_IMPLICIT:NonSquareMatrix’, ’Matrix must be square.’);
end
if “isequal(size(b),[s,1])

es = sprintf([’Right hand side must be a column vector of’

> length %d to match the coefficient matrix.’],s);
error (’MATLAB:APCG_IMPLICIT:RHSsizeNotMatchCoeffMatrix’, es)

end
s = size(b,1);
n=s;

if (size(b,2) "= 1)
error (’MATLAB:APCG_IMPLICIT:RHSnotColumnVec’,...
’Right hand side must be a column vector.’);
end

% Assign default values to unspecified parameters

if (nargin < 5) || isempty(m)
m = 20;

end

if (nargin < 7) || isempty(tol)
tol = 1le-6;

end

if (nargin < 8) || isempty(maxit)

maxit = 2%n;
end

21

if (nargin < 9) || isempty(Z)
Z = speye(n);
end

% Check for all zero right hand side vector => all zero solution

n2b = norm(b); % Norm of rhs vector, b

if (n2b == 0) % if rhs vector is all zeros
xstar = zeros(n,1); % then solution is all zeros
flag = 0; % a valid solution has been obtained
relres = 0; % the relative residual is actually 0/0
iter = 0; % no iterations need be performed
resvec = 0; % resvec(1l) = norm(b-A*x) = norm(0)
return;

end

if ((nargin >= 6) && ~isempty(x0))
if “isequal(size(x0),[n,1])
es = sprintf([’Initial guess must be a column vector of’
> length %d to match the problem size.’],n);
error (’MATLAB:APCG_IMPLICIT:WrongInitialGuessSize’, es);
end
else
x0 = zeros(n,1);
end

if ((nargin >= 9) && “isempty(Z))
if “isequal(size(Z),[s,s])
es = sprintf([’Preconditioner must be a square matrix’
> of size %d to match the problem size.’],s);
error (’MATLAB: APCG_IMPLICIT:WrongPreconditionerSize’, es);
else
vec = eig(Z’*AxZ);
if vec(n) < 1
flag = 2;
es = sprintf([’Preconditioner has to make the minimum’
’ eigenvalue of the preconditioned A larger than’
> or equal to 1°’]);
error (’MATLAB:APCG_IMPLICIT:I11ConditionedPreconditioner’,es);
return;
end
end
end

% Set up for the method

total_iter = 0; %total iteration including restart
cg_iter = 0; %CG iteration counter

22

20 = Z; % change notation to follow the convention of Z
% as the most recent preconditioner

k=1; % start index of iterates

xi=1; % constant used in updating iterations

d = zeros(n,m); % preallocate vector of storing search directions
d_previous = zeros(n,1); % initial search direction

g = zeros(n,m); % preallocate space of computed gradients
g(:,1) = A*x0 - b; % -r0, following the paper’s notation
beta = zeros(m,1);

beta(l) = 0; % initial beta value used in CG iteratioms
gamma = zeros(m,1);

X(:,1) = x0; % initial guess as the first iterate
update = 0; % update iteration counter

r_flag = 0; % flag indicating a restart

r0 = -g(:,1); % initial residual

flag = 1;

normr = norm(r0);
tolb = tol * n2b;

if (normr <= tolb) % Initial guess is a good enough solution
xstar = x0;
flag = 0;

relres = normr/n2b;
total_iter = 0;
cg_iter = 0;

resvec = nNormr;

return;
end
resvec = zeros(maxit+1,1); % Preallocate vector for norm of residuals
resvec(1l) = normr; % resvec(l) = norm(b-A*x0)
bkcounts = 0; % Count number of consecutive backtracking
ind = mod(k,m); %current index in the memory list
if ind ==

ind = m;

end

bkcounts = 0;

%initialization of implicit storage of Z

counter = 1; % indicates how many non-I F compute
p_vec(:,1) = zeros(n,1); % p_vec stores all p vectors
theta_vec(1l) = 0; % theta_vec stores all theta values

23

% loop over maxit iterations (unless convergence or failure)
while resvec(k) > tolb && total_iter < maxit

% now compute g_k’Z(Z’AZ)Z’g_k needed to test if Z is nu-preconditioner
% the objective to choose a proper intermediate representation is to
% simplify computation process
h
% let vl = g _k’*Z = g_k’*Z0*FO*F2*...*%Fj with j = k-1
vl = g(:,ind) > *Z0;
for i = 1l:counter-1,
ttmp = theta_vec(i);
utmp = sqrt((n-ttmp~2)/(n-1));
vl = vl + (ttmp/utmp-1)*(vixp_vec(:,1))*p_vec(:,1i)’;
end

gamma (ind) = norm(v1’)"2;

% let v2 = g KRI*Z*xZ’> = v1*Z’
v2 = vl;
for i = counter-1:-1:1,
ttmp = theta_vec(i);
utmp = sqrt((n-ttmp~2)/(n-1));
v2 = v2 + (ttmp/utmp-1)*(v2xp_vec(:,1))*p_vec(:,1)’;
end
v2 = v2%xZ0’;

val = v2*x(A*v2’);

while val > nu*gamma(ind)
% Update is necessary, i.e, compute theta and vector p
% By the formula
% w=xi"(-1/2)*(Z°*g_k) = xi~(-1/2)*v1’
% A_hat = xi~(-1)*Z’*AxZ
% p = A_hat*w = xi"(-3/2)*Z’*A*xZ*Z’*g_k = xi~(-3/2) *Z’> *A*v2’;
p = xi"(-3/2)*(Z0’*x(Axv2’));
for i = 1:counter-1,
ttmp = theta_vec(i);
utmp = sqrt((n-ttmp~2)/(n-1));
p = p + (ttmp/utmp-1)*p_vec(:,i)*(p_vec(:,1)’*p);
end
normp = norm(p) ;
% tau = sqrt(w’*A_hat*w)/normp = sqrt(w’*p)/normp
% sqrt (xi~ (-1/2) * (v1i*p))/normp
tau = sqrt(xi~(-1/2)*(vixp)) /normp;
P = p/normp;

24

theta = tauxsqrt(n);

if theta < 1
mu = sqrt((n-theta"2)/(n-1));
theta_vec(counter) = theta;
p_vec(:,counter) = p;
counter = counter + 1;
else
mu = 1; % F = I, no need to store
end
xi = xi*x(mu~(-2));

if xi > delta
if k ==
bkcounts = 0;
else
bkcounts = bkcounts + 1;
if bkcounts >=m
xstar = X(:,ind);
resvec = resvec(1:k);
relres = resvec(k)/n2b;

disp(’The APCG_implicit method reached maximum number

flag = 3;
return;
end
k = max(k-1,1);
ind = mod(k,m);
if ind == 0
ind = m;
end
end
else
Z0 = xi~(-1/2)*Z0;
X(:,1) = X(:,ind);

total_iter = 0;

cg_iter = 0;

k=1;

xi=1;

d_previous = zeros(n,1);
g(:,1) = A*X(:,1) - b;
resvec(1) = norm(g(:,1));
beta(1l) = 0;

r_flag = 1;

bkcounts = 0;

25

of backtrack’);

ind = mod(k,m);
if ind ==

ind = m;
end

r_flag = 1;
end

update = update +1;

if r_flag ==
break;
end

% re-evaluate value due to the following reasons
% 1) Z may be updated by a non-identity F
% 2) g_k changes as k changes due to backtrack (if restart, it
% jumps out early and won’t reach here)
A
% The value of g k’Z(Z’AZ)Z’g_k is required to test inner while
% condition
vl = g(:,ind) ’*Z0;
for i = 1:counter-1,
ttmp = theta_vec(i);
utmp = sqrt((n-ttmp~2)/(n-1));
vl = vl + (ttmp/utmp-1)*(vi*p_vec(:,i))*p_vec(:,1)’;
end

% let v2 = g k7*ZxZ’> = v1xZ’
v2 = vi;
for i = counter-1:-1:1,
ttmp = theta_vec(i);
utmp = sqrt((n-ttmp~2)/(n-1));
v2 = v2 + (ttmp/utmp-1)*(v2*p_vec(:,1i))*p_vec(:,1)’;
end
v2 = v2xZ0’;

val = v2*x(A*xv2’);
end

if r_flag ==1
r_flag = 0;
continue;
end

26

end

if k ==

d(:,ind) = -v2’ + beta(ind)*d_previous;
else

pre_ind = mod(k-1,m);

if pre_ind ==

pre_ind = m;

end

beta(ind) = gamma(ind)/gamma(pre_ind);

d(:,ind) = -v2’ + beta(ind)*d(:,pre_ind);
end

alpha = gamma(ind)/(d(:,ind)’*(A*d(:,ind)));

next_ind = mod(k+1,m);

if next_ind ==
next_ind = m;

end

X(:,next_ind)
g(:,next_ind)

X(:,ind) + alpha*d(:,ind);
g(:,ind) + alpha*(A*d(:,ind));

k = k+1;
ind = next_ind;

resvec(k) = norm(g(:,ind));

cg_iter = cg_iter + 1;
total_iter = total_iter + 1;

xstar=X(:,ind);
normr = resvec(k);

relres = normr/n2b;
if (normr <= tolb)

flag = 0;

resvec = resvec(1:k);

else

end

resvec = resvec(1l:k+1);

27

