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Abstract. There are two kinds of type disciplines of different natures:
On the one hand, we know that statically typed languages are reliable
and efficient, but it is not very convenient when it comes to program
prototyping or refactoring. On the other hand, dynamically typed lan-
guages does not prevent programs from execution through ahead-of-time
checks, which makes them flexible but mistakes become harder to spot
and over time programs more difficult to maintain.
It is only natural that we look into integrating static and dynamic type
systems. Among one of the related lines of research is gradual typing,
which intends to support not just fully static and full dynamic type sys-
tems but also those partially typed programs. By providing control over
which part of the program should be checked by the type system, pro-
grammers are free to evolve programs towards either static or dynamic
typing in a smooth and consistent manner.
Despite that gradual type systems are well-studied research topics, ex-
tending existing languages to support them is far from trivial task: to
make a successful gradual typing extension, the type system is needed to
be extended, types to be designed, extra features to be introduced and
tradeoff to be made, all of which require taking into account the design,
programming idiom and user community that the original language has.
In this survey, we will walk through the relevant research literature on
extending existing languages to support gradual types, discuss challenges
and solutions about making these extensions, and look into related works
and the future of gradual typing.
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1 Introduction

Type system defines sets of rules about programs, which can be checked by
a machine in a systematic way. One can assign types to appropriate language
concepts like variables, functions and classes to describe expected behaviors and
how they interact with each other. Then type system takes the responsibility of
ensuring that types are respected and type errors prevent erroneous part of a
program from execution.

There are other benefits of type systems besides automated checking: types
can be used to reveal optimization opportunities, can serve as simple documen-
tation to programmers or provide hints to development tools to allow auxiliary
features like automate navigation, documentation lookup or auto-completion.

All these benefits make type system an important part of programming lan-
guages, and there are different ways of accommodating languages with type sys-
tems. The most noticeable difference is the process of checking programs again
type rules, which is also known as type checking. It occurs either statically ahead
of program execution, or dynamically at runtime. For a static type system, ill-
typed programs are rejected by compiler and prevented from execution until all
type errors are fixed. For a dynamic type system, type information is examined
at runtime and type errors result in abortion of the program or exceptions being
raised instead of causing segmentation faults or other worse consequences. Static
and dynamic type system both have their advantages and disadvantages, and
languages make different choices depending on their needs.

In this section, we start off by discussing static and dynamic type systems,
which have inspired many lines of research that combine both within one system.
One instance among them is gradual typing, the main focus of this survey.

1.1 Strengths and Weaknesses of Static and Dynamic Typing

The difference between static and dynamic typing is the difference between
whether type checking occurs ahead of execution or at runtime. This section
discusses advantages and disadvantages of both.

Notation In the following sections we use τ0, τ1, . . . for type variables. bool,
num and str are types of boolean values, numbers and strings respectively.
Tuple types are notated as (τ0, τ1, . . .), and the type notation for functions that
takes as input a value of type τ0 and returns a value of τ1 is τ0 → τ1. We use o : τ
to mean that a term o is assigned type τ . For example f : (num,num)→ num
is a function that takes a tuple of two numbers as input and returns a number.

Static Type Systems A static type system is preferred if robustness and
performance is the main goal of a language. Because type checking occurs ahead
of execution, ill-typed programs are rejected before it can start, and when a
program typechecks, one can therefore expect no type error to occur and no
extra cost of typechecking is paid at runtime.
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For a static type system to work, all variables, functions, etc. in a program
will need to be assigned types. This is usually done by programmers or through
the means of type inference, which is a technique that infers types using available
type information. This is both an advantage and a disadvantage of a static type
system: having type annotations improves readability and since programmers
are required to keep the consistency between type and code, type also serves
as simple, faithful documentation. But on the other hand, extra maintenance
on type annotations is required just to allow program execution. This might be
undesirable in situations where a trial-and-error style of programming is prefer-
able.

Having static known type information also helps in terms of performance.
For example, In machine instructions, primitive arithmetic operations would
only deal with operands of compatible types: addition can only add together two
integers or two floating numbers. However, in many programming languages, ad-
dition is polymorphic and when it comes to the case of adding an integer and an
floating number, the integer is implicitly converted into a floating number before
performing the actual addition. For a statically typed system, type information
can be used ahead of execution to figure out exactly whether it is necessary
to insert conversions and where they are required. But a dynamic typed lan-
guage might struggle because type information is only available at runtime. As
a consequence, similar decisions about conversions have to be made at runtime,
imposing performance penalty.

Besides extra effort of maintaining type annotations, the disadvantage of a
statically type language often lies in the lack of runtime flexibility. If we want
to write a program that deals with data whose structure is unknown at compile
time, runtime inspection must be possible. While typical dynamically typed
languages allow inspecting of types or object properties, some extra work are
required for a statically typed language to maintain and check runtime type
information.

In addition, it is often less convenient for programmers to prototype in stati-
cally typed languages: it involves trial and error to find the best implementation
to solve a problem, which means the ability to write partial programs, make
frequent changes to structure of variables and functions, but these features are
not easily available for a statically typed language.

Dynamic Type Systems Dynamic type systems do typechecking at runtime,
which is best suited for languages designed for scripting and fast prototyping.
A shell script, for example, runs other executables and feeds one’s output to
another. In such a case, we have little to no knowledge about these executables
ahead of time to ask a type system to check it for us. And when it comes
to prototyping, it is usually more important to allow a trial-and-error type of
style of programming over concerns about robustness and correctness. In such a
scenario, it is more convenient if the type system does not prevent an incomplete
or ill-typed program from execution.
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However, it is also easy to spot weaknesses of dynamic type systems. Despite
that dynamically typed languages do not often provide a way of writing type
annotations, programmers usually have facts about expected behaviors of pro-
grams. These facts are often described in comments or through the naming of
variables and functions without a systematic way of verifying them. As program
develops, it is easy to make changes but leaving these descriptions untouched.
This troubles future maintainers to locate the problem and rediscover new facts,
causing maintenance difficulties.

Furthermore, without type information statically available, dynamic type
system needs to maintain runtime information and rely on it to implement ex-
pected semantics. For example, if it is allowed for a language to condition on
non-boolean values, its type has to be available at runtime in order to determine
how to interpret its value as a boolean at runtime.

Opportunity of optimization could also be obscured for a dynamically type
language. Array cloning, as an example, can be implemented efficiently as mem-
ory copy instructions knowing the array in question contains only primitive val-
ues but no reference or pointers. But without prior knowledge like this, every
element of the array has to be traversed and even recursively cloned, which is the
usual case for dynamically typed languages without sophisticated mechanism of
optimization.

1.2 Combining the benefits of the two

One might have noticed that static type systems and dynamic type systems
are not incompatible in a fundamental level: the former does type checking ahead
of execution while the latter maintain and inspect type information at runtime.

Indeed, researchers have been looking at different angles of the possibility of
integrating these two type disciplines within one. Several lines of research are
motivated, and in this section, we will discuss about these research works.

Design Goals Summarizing pros and cons of static and dynamic typed lan-
guages, we now have a picture of a resulting type system integrating the two, it
should be able to:

– Detect and rule out type errors ahead of program execution. This
is one main purpose of having a static type system. When a program starts
running, type errors should already be eliminated, leaving no need of type-
checking during execution.

– Delay typechecking until it is required at runtime. A dynamic type
system is known for its permissiveness on what programs it can accept: ill-
typed or partially written programs are still allowed to execute all the way
to its termination or until reaching their incomplete or ill-typed parts. This
makes it suitable in situations where static type information is limited or
fast prototyping is preferred over robustness or runtime performance.
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Aside from these two goals, a statically typed language receives benefits from
utilizing type information for other purposes like optimization or providing hints
to development tools. For the resulting system, we should be able to have these
benefits as well.

A Introduction to Gradual Typing Gradual typing [34] is one possible
approach that meets our design goals. It captures the fact that type information
might only be partially known ahead of execution by introducing a special type
that indicates partial types. It attempts to typecheck programs like a static
type system does, but delays typechecking on partial types until sufficient type
information is available at runtime.

In the following sections, we will introduce it as an extension to static type
system. But it is also possible and practical to support gradual typing by ex-
tending a dynamic type system. In fact, there are more instances of dynamically
typed languages making extensions to support gradual typing than that of stat-
ically typed ones.

Dynamic Type and Type Consistency In order to capture the idea that type
information might only be partially known ahead of execution, gradual type
system introduces a special type, which is called “dynamic type” by convention,
on top of a static type system and extends type judgment to allow a more
permissive form of type checking in the presence of dynamic types. For the rest
of this survey, we will use type dyn to indicate dynamic types when no language-
specific notations are available.

To demonstrate necessary changes to type judgments, we use statically typed
lambda calculus as a starting point.

All type rules are preserved except for function applications, which are re-
placed by two rules in gradually typed lambda calculus:

(GAPP1)
Γ `G e1 : dyn Γ ` e2 : τ2

Γ `G e1e2 : dyn

(GAPP2)
Γ `G e1 : τ → τ ′ Γ `G e2 : τ2 τ2 ∼ τ

Γ `G e1e2 : τ ′

While GAPP1 allows a value of dynamic type to be typed as if it is a function,
GAPP2 is more interesting: it resembles function application of a static type
system, but instead of demanding τ2 = τ , it uses a new relation ∼, which is
called type consistency relation. To deal with dynamic types, type consistency
is introduced to accommodate type judgments for gradual typing. The following
shows rules for type consistency relation.
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(CREFL)
τ ∼ τ

(CFUNC)
σ1 ∼ τ1 σ2 ∼ τ2
σ1 → σ2 ∼ τ1 → τ2

(CUNR)
τ ∼ dyn

(CUNL)
dyn ∼ τ

As we can see, if dynamic types are not present at all, type consistency is the
same as type equality. Therefore we still can typecheck all static programs like
static type systems do. But we now can talk about types with partial information.
Roughly speaking, two types are consistent when there are sensible values that
belong to both of them. We demonstrate this by giving few examples:

– bool is consistent with type dyn. Despite that the latter is less precise, all
boolean values can also be of type dyn.

– num→ dyn is consistent with both dyn→ num and dyn→ dyn, because
a function of type num → num can belong to all these types at the same
time.

– dyn→ dyn is never consistent with bool, because the former is a function
type while the latter a boolean value, whose type structures do not match.

Now that we have dynamic types, it is no longer necessary to require every
term in a program to have a type ahead of execution. For any term missing type
information, we can simply assigned it with type dyn, and type rules will be
permissive to accept it as long as type consistency is met.

On the other hand, a dynamically type program can now be statically type-
checked by considering it to be a program without any type annotation. This
is still beneficial, as some literal values and primitives will have their built-in
types, an obvious misuse like taking the square root of a string value can now
be detected ahead of execution instead of raising runtime exceptions.

As a side note, it is intended that type consistency is not a transitive relation:
given that τ0 ∼ dyn and dyn ∼ τ1, transitivity will imply τ0 ∼ τ1, which would
allow any pair of types to match and therefore render static typechecking useless.

Cast Insertion and Runtime Typechecking As we can see gradual type system
attempts to contain both statically and dynamically typed programs. However,
because of the presence of dynamic types, the type system cannot be sound
by only having static typechecking. Imagine function f : num → dyn and
variable v : dyn, while function application f(v) can pass static typechecking,
the runtime value of t might turn out to be a string and this violates f ’s input
type num.

We can see what have gone wrong: while any number is also of type dyn, not
all values of dyn type can be numbers. In general, when we are using a value of
τ0 as if it is a value of τ1 and τ0 is less precise than τ1 (i.e. when downcasting
a value), we need confirmation that this conversion from τ0 to τ1 is safe. This is
exactly the idea behind cast insertion for gradual types.
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Casts are functions that when given a value and a type, check whether the
value agrees with the type, then either return the value if it is the case, or report
an error or abort the program. Before program execution, casts are inserted
to guard locations where downcasting happens. Cast insertion together with
static type checking grant soundness for gradual type systems: a program either
terminates successfully, raises type errors ahead of execution or during execution,
or results in error not captured by the type system.

For the previous example, suppose we now have a cast c : dyn → num. By
inserting the cast, function application f(v) becomes f(c(v)). This still type-
checks statically, but whenever we need to pass a runtime value to f , the value
is always checked by c to decide whether to pass the value to f or raise a type
error. Now that in the body of f , the type system guarantees that its argument
is a number.

Optional Type Annotations and “pay-as-you-go” It is important to realize that
gradual type systems are not just about accepting both fully typed programs and
those without any type annotation - it accepts programs that are partially typed.
This gives programmers more control over what they need from typechecking
(“pay-as-you-go”). As an example, one might wish to implement a function f
that expects a string value as input. There are multiple choices:

– We can give f a type annotation: f : str→ dyn. By doing so, type system
takes the responsibility of making sure that the input type is indeed a string.
This is the only available choice in statically typed languages.

– We can do it with our program: right after entering the body of f , we
write code to inspect type of the argument and take action accordingly.
A JavaScript program would do exactly this by branching on the result of
evaluating x && typeof x === "string" (suppose x is the argument). This
is often seen in a dynamically typed language, as there could be no other
means of verification. But if the type system of a gradually typed one does
not have sufficient type expressiveness to describe desired invariant, this still
remains an option.

– For time or performance concerns or when programmer expects a frequent
change of types during prototyping, we might wish to skip all static or run-
time checks for a portion of a program, which can be achieved by leaving
no type annotation. So programmers get just what they want from a type
system. 1

By making typechecking a choice, we have opened up some flexibilities: for
an originally statically typed program, we can now write terms without giving
types, this allows easy prototyping; for an originally dynamically typed program,
some parts of it might already been stable and robust enough, annotating these
parts with types strengthens it with type error detection ahead of execution,
machine-proved correctness, more opportunities of optimization and all other
benefits that a statically typed language can enjoy.

1 A gradual type system might still maintain runtime type information, which could
impose some overhead. See “type erasure” for detail and some viable solutions.
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Criteria for Gradual Typing There are certainly many possible ways of integrat-
ing static and dynamic typing and gradual typing just happens to be one of
them. Siek, Vitousek, Cimini and Boyland’s work [35] further introduces grad-
ual guarantee property to formalize the idea behind gradual typing. Our inten-
tion is not about giving proofs about whether a specific type system is qualified
as gradual typing, but to highlight the goals shared among this particular family
of type systems.

In the original work, the following aspects are demonstrated:

– Gradual typing includes both fully static and fully dynamic A grad-
ually typed language is equivalent to a superset of both a statically typed lan-
guage and a dynamically typed one: When a program is fully type-annotated
with no presence of dynamic types, it should behave the same as its stat-
ically typed counterpart; on the other hand, a program without any type
annotation should behave the same as its dynamically typed counterpart.
Executing such a program results in either a trapped error [9] or successful
termination.

– Gradual typing provides sound interoperability As for partially typed
programs, a gradual type system guarantees that, if the program typechecks
statically, runtime type errors only raises from portions with dynamic types.
This reflects Wadler and Findler’s work [42]: when a runtime cast fails, the
error always comes from “less-typed” part of the program.

– Gradual typing enables gradual evolution Adding type annotations
moves a program in the direction of static typing whereas removing type
annotations moves in the direction of dynamic typing. Gradual evolution
is the idea that programmers can freely add or remove type annotations
without worrying about changing program behavior, which allows programs
to evolve overtime: new features can be prototyped with no type annotation
and later type can be gradually added to the corresponding portion. And
old type annotations can be removed, giving more room for refactoring or
experimenting new ideas without upsetting type system.

Discussion Among various research works that combines benefit of static and
dynamic type checking, gradual typing extensions aim at making all existing
programs written in the original one still valid with little difference in seman-
tics. In addition, unlike other approaches, programmers have better control over
should and should not be typechecked.

Despite that gradual type systems are well-studied research topics, extend-
ing existing languages to support them is far from trivial task. To name few
differences, while theoretical type systems assume primitive types as simple as
just numbers and booleans, a practical language have various kinds of them
including integers, floating numbers, strings and arrays, which have not been
addressed much. In addition, language-specific features, idioms and common
practice needs to be carefully studied to allow existing code and language users
to transit smoothly into the extended language. In this survey we will explore
literatures that extends existing languages to support gradual typing. In section
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2, we will focus on benefits brought by these extensions. Section 3 discusses and
categorizes common and language-specific challenges researchers have to face
and solutions to them. Related work will be covered in section 4, and we draw
our conclusion in the last section.
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2 Benefits of Gradual Typing

Gradual typing not just allows language users to write partially typed pro-
grams, it also make it possible to bring in features meant for static or dynamic
typing. In fact, these extras are no less important than gradual typing itself,
as it helps make the language more convenient to use and therefore motivates
programmers to use gradual typing to their advantages.

In this section, we will explore some literatures from aspects of language
users and see in detail about these benefits gradual typing have granted us.

2.1 From JavaScript to Safe TypeScript

Starting as a scripting language, JavaScript has grown into a language that
powers many large web applications. Unfortunately, as a language that exists
over a long period of time, the language evolves but many of its flaws are still left
as it is for compatibility reasons, hindering productivity of even most experienced
programmers.

Among tools and extensions to JavaScript that attempt to ease this pain,
TypeScript is one closely related to gradual typing. Its syntax supports optional
type annotations [4] and is a superset of JavaScript’s syntax. A compiler type-
checks TypeScript source code and compile it into plain JavaScript, making it
ready to be executed out of box for JavaScript interpreters.

However, TypeScript is intentionally unsound: it is designed to typecheck
programs only statically and removes all traces of type when emitting code in
JavaScript. Therefore invariants about types cannot be enforced at runtime and
benefits from the type system is limited.

Nonetheless, TypeScript still serves as a reasonable starting point for Safe
TypeScript by Rastogi, Swamy, Fournet, Bierman & Vekris [27]. Safe TypeScript
shares the same syntax with TypeScript, but features a sound gradual type
system and efficient implementation2.

In this part we will visit language features of Safe TypeScript and see how it
improves JavaScript.

Type Checking for Free Despite JavaScript is capable of examining type of
values at runtime, it does not have support for type annotations. This leads to
a common practice in which some lines of code are placed right after entering
the body of a function to check its argument types, report errors if any before
proceeding with actual implementation. This can be seen in the following code
snippet:

function f(x) {

if (typeof x !== 'string') {

// throw error

2 It is suggested that Safe TypeScript only cover a large fragment of JavaScript, but we
assume that this coverage is sufficient to support all essential features of JavaScript.
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}

return x + '!';

}

As a toy example, the function accepts a string value, then returns another
with exclamation sign concatenated to it. This does not look complicated, but
imagine in real projects, there would be multiple arguments to a function and
some of them have to go through this process of checking. Without machine-
checkable and consistent way of enforcing these invariants, it is easy to make
mistakes while maintaining code written in such a style.

By extending the language with type annotations, we can do something better
in Safe TypeScript:

function f(x : string) : string {

// now this check becomes unnecessary

if (typeof x !== 'string') {

// throw error

}

return x + '!';

}

In the code above, we just declared a function f that accepts one variable
x of string type, and returns a value of string type. Safe TypeScript then
performs typechecking and insert casts when needed to ensure that, when f is
called, its argument is indeed a string. This renders the typeof check at the
beginning unnecessary and therefore can be safely removed:

function f(x : string) : string {

return x + '!';

}

The use site of f might look like the following:

f('one'); // typechecks

f(1); // does not typecheck

function g(x) {

return f(x); // might be unsafe

}

Here Safe TypeScript is able to tell that: calling f with a string literal is safe,
and no extra cast is needed; the second call is immediately rejected because
number literal is clearly not a string; and for the third case where x is not
explicitly given a type, Safe TypeScript compiler will insert runtime type cast
and either allow it to proceed to the body f when x is indeed a string, or throw
an error before even entering the body of f.

Notice that by making use of type annotations, Safe TypeScript not only
allows clearer code, but also able to spot some type errors ahead of execution:



14 Javran Cheng

imagine the function application f(1), when its written in plain JavaScript, we
have to wait for the check in function body to throw an error, while annotating
x with a type allows Safe TypeScript to spot the error even before execution.

This benefit of detecting type errors earlier is not a specific one for Safe Type-
Script. In general, adding a phase of static typechecking to a dynamically typed
language might render some runtime checks no longer necessary. Once these
checks are removed, programs might end up running more efficiently without
compromising correctness.

Object-Oriented Programming in Safe TypeScript Although JavaScript
does not support classes3, its prototype-based model allows essential features of
object-oriented programming to be simulated in JavaScript. Designed to be a
superset of JavaScript, Safe TypeScript must accommodate such a programming
style as well.

TypeScript introduces the concept of interface to allow describing the struc-
ture of runtime objects and Safe TypeScript follows this concept as well. The
following example defines interface Point, which is a valid type for objects that
has two fields x and y whose types are all numbers:

interface Point { x: number; y: number }

function f(o: Point) {

// omitted

}

f({x: 1, y: 0}); // typechecks

f({x: 1, y: "a"}); // does not typecheck

f({x: 1, y: 0, z: 2}); // typechecks

f(1); // does not typecheck

As demonstrated by the example above, interface can only typecheck with
objects that has all expected fields of expected types.

Classes are given special treatment4 to cooperate better with model used by
JavaScript. To be more precise, it treats class types nominally but allows it to
be viewed structurally.

In addition to the Point interface defined above, suppose we have the fol-
lowing definition:

class CPoint implements Point {

constructor(public x: number, public y: number) {

this.x = x; this.y = y;

}

3 Classes were not standard features of JavaScript as of publication date of Safe Type-
Script.

4 While TypeScript treats classes structurally, this does not match with JavaScript
semantics. See “Nominal Type, Structural Type and Subtyping” of section 3.3 for
detail.
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}

function f1(v : {x: number, y: number}) { return true; }

// f2 is equivalent to f1

function f2(v : Point) { return true; }

function f3(v : CPoint) { return true; }

var obj1 = {x: 1, y: 2}; var obj2 = new CPoint(1,2);

f1(obj1); // typechecks

f1(obj2); // typechecks

f3(obj1); // does not typecheck

f3(obj2); // typechecks

This example demonstrates few features of interest:

– Structural view of classes Since interfaces are structural, f1 and f2 are
equivalent. In addition, objects created from object literals and instance
created from classes can both typecheck against it. In the example above,
despite that obj1 and obj2 are created in different ways, they both have
expected fields of expected types and therefore function calls f1(obj1) and
f1(obj2) do not raise any type error.

– Interface declaration In fact, implements Point is optional since inter-
faces are structural. It is nonetheless a good practice to write it out. Because
this not only serves as a simple documentation, but it also allows Safe Type-
Script to understand programmer’s intention so type system can warn user
when a declared interface is not actually satisfied.

– Nominal view of classes When using class names as types, Safe Type-
Script treats them nominally, this is consistent with JavaScript’s object
model and instanceof operator, as the latter does not allow a structural
match. Therefore while f3(obj2) typechecks, f3(obj1) does not.

2.2 From Scheme to Typed Scheme

Scheme is another dynamically typed language used for casual scripting as
well as industrial applications. Instead of relying on any specific type discipline,
programmers reason about their code in informal ways, which makes the lan-
guage highly flexible. But for the same reason, it becomes a real challenge to
design gradual type systems that can work well with scheme programs.

Tobin-Hochstadt and Felleisen’s work on Typed Scheme [40] provides a novel
and practical solution. In the same paper, the notion of occurrence typing is
introduced, which cooperates with Scheme well to form the building block of a
gradual type system for Scheme.

Support Informal Reasoning The following code5 shows a function definition
as typical style of programming in this language:

5 Most of the examples in this section are adapted from [40].
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;; a Complex is either

;; - a number

;; - (cons number number)

(define (creal x)

(cond [(number? x) x]

[else (car x)]))

It defines a function creal, which takes as argument a complex number.
Rather than relying on type systems, the contract is informally written in the
comment, which indicates that input value is supposed to be either a number
or a pair of numbers representing real and imaginary part respectively for a
complex number. Predicate6 number? distinguishes number representation from
the other one. So in first clause of cond, we know for sure that x is a number,
whereas the second clause deals with remaining case, so x must be a pair with
proper use of car to extract its real part. There are few key observations from
this example:

– Difference occurrences of the same variable might have different set of pos-
sible values.

– This style of informal reasoning relies on result of applying predicates, and a
predicate distinguishes one particular set of values from others. For example,
number? can distinguish numbers from other values.

– By reasoning about the execution path taken to reach certain point in the
program, predicates about a variable can be accumulated to further con-
straint the set of possible values.

These observations suggest that we could use predicates as some sort of
types when extending the language with gradual typing: say all values that make
predicate number? return true are Numbers, and all values that make predicate
cons? return true are pairs, we should be able to encode this complex number
representation using types. In fact, Typed Scheme version of it begins with such
a type definition:

;; a Complex is either

;; - a number

;; - (cons number number)

(define-type-alias Cplx (∪ Number (cons Number Number)))

Note that ∪ constructs a union type, it combines multiple types together so
a value satisfying any of these types will also satisfy the resulting union type. As
a separate note, Cplx is just an alias for the union type, it nonetheless improves
readability and allows other parts of the program to refer to it by name.

The body of the function in Typed Scheme looks like:

(define: (creal [x : Cplx]) : Number

(cond [(number? x) x]

[else (car x)]))

6 By Scheme convention, a predicate is a procedure that always return a boolean value.
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Note that despite x is of type Cplx as it enters the function body, it is actually
a number in first clause of cond and a pair of numbers in the second clause.
This phenomenon is captured by the idea of occurrence typing: one variable
can have different types for its different occurrences, and the type depends on
execution path it takes to reach that location. The use of predicate number?

allows type system to know that x in the first clause must be a number. By
eliminating the number type from Cplx, the type system can further conclude
that in the second clause x must be a pair of numbers.

With the help of local type inference [26], explicitly giving the return type
Number is sufficient to let the type system know that every clause of cond returns
a number so this part of the code can typecheck successfully.

Here is another example that shows a different kind of reasoning that Scheme
programmers would rely on: suppose we have stored a list of values of various
types in xs and the following code will compute the sum of all numbers from xs:

(foldl + 0 (filter number? xs))

Note that despite xs is a list that contains not just numbers, the invariant
of filter guarantees that (filter number? xs) will always return a list of
numbers so it will work properly to produce the desired result.

Typed Scheme is capable of encoding invariants about filter with its type
system, and this expression requires no modification at all to typecheck in
Typed Scheme. Having integrated the code into Typed Scheme, it can now enjoy
some benefits meant for static typing: suppose map is mistakenly used instead
of filter or number? is replaced by other predicates insufficient to conclude
whether a value in question is indeed a number, the type system is able to
recognize such errors and warnings will be given ahead of execution.

Refinement Type We have been using number? to distinguish numbers from
other type of values. In general, given a predicate f, we can define a type whose
values are the set of values that f hold true. This idea is captured in Typed
Scheme with refinement types [17]. The function below shows a valid use of
refinement types:

(: just-even (Number -> (Refinement even?)))

(define (just-even n)

(if (even? n) n (error 'not-even)))

In this example, type (Refinement even?) is defined by predicate even?,
which returns true if and only if input value is an even number. so we can
expected this function to either a value satisfying even?, or throw an error.

More practical examples include use refinement types to distinguish raw input
from validated ones:

(: sql-safe? (String -> Boolean))

(define (sql-safe? s) ...)

(declare-refinement sql-safe?)
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In this example, user implements predicate sql-safe? to verify that a raw
string contains no SQL injection or other contents of malicious attempt. Then a
refinement type is declared using this very function. This makes available type
(Refinement sql-safe?) to rest part of the program so that when a program-
mer mistakenly uses string that contains raw input rather than verified strings,
predicate sql-safe? will raise a type error instead of allowing program to pro-
ceed with potentially malicious raw input.

There are many other features introduced by Typed Scheme, but we can
clearly see that extending Scheme with gradual typing brings benefits of static
typing into the language.

2.3 From Python 3 to Reticulated Python

Python 3 (Python for short) is another dynamic typed language. M. Vitousek,
M. Kent and Baker’s work on Reticulated Python [41] (Reticulated for short)
explored extending Python with gradual typing.

Reticulated makes use of Python’s annotation syntax [43] to allow type an-
notation on function definitions and their arguments. Given proper definition of
Int, we can write annotated function distance like below:

def distance(x: Int, y: Int)-> Int:

return abs(x - y)

Python allows annotations to be arbitrary expressions, therefore Reticulated
types are a subset of Python expressions as shown below:

labels l

type variables X

base types B ::= Int | String | Float | Bool | Byte
types T ::= Dyn | B | X | List(T ) | Dict(T, T ) |

Tuple(T ) | Set(T ) |
Object(X){l : T} | Class(X){l : T} |

Function(P, T )

parameters P ::= Arb | Pos(T ) | Named(l : T )

Besides the dynamic type Dyn, all basic Python types and structures, and
user defined objects and classes can be expressed using this syntax. Also because
that all types are actual expressions, we get type synonym for free in Reticulated.

Function Types Besides conventional function invocation, Python supports
named arguments, which allows a function to be invoked with explicit argument
names. The example below shows 3 valid and calls to function distance and all
these calls are equivalent with x=10 and y=20 upon entering function body.
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distance(10,20)

distance(x=10, y=20)

distance(y=20, x=10)

Reticulated supports named arguments as well as conventional function in-
vocations through 3 different ways of constructing function parameter types.
For example, function distance, can be given type Function(P, Int) with 3
possible parameter types P:

– P = Named(x: Int, y: Int)) This type indicates that the function has two
arguments x and y in that order, which can either be called with or without
use of named arguments. In other words, Named can be used in any places
where Pos is expected.

– P = Pos(Int, Int) This type contains less information than Named, so it
has limited support for calls with named arguments. Nonetheless this is a
traditional function types used in many other languages.

– P = Arb This type allows functions of arbitrary parameters. This allows
typing functions that are otherwise hard to type. But since it contains no
useful information about a function, type system enforces no invariant on it.

Class and Object Types Python is an object-oriented programming language.
Programmers define classes and create objects from them. Both classes and
objects are runtime values in Python and Reticulated provides corresponding
types for both.

Consider the following example7:

@fields({'x': Int})

class Point1D:

def __init__(self: Point1D):

self.x = 0

def move(self: Point1D, x: Int)->1DPoint:

self.x += x

return self

p = Point1D()

It defines a class Point1D with one field x of Int type. And an object is
created from it through the constructor and is bound to variable p.

Reticulated derives class type from this definition:

Class(Point1D){

move: Function(Named(self: Point1D, x: Int), Point1D)

}

And object types are similar:

7 This example is adapted from [41]
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Object(Point1D){

move: Function(Named(x: Int), Point1D)

}

While object can access methods of its class, it is also possible to assign meth-
ods and fields to objects to change its behavior. Therefore Reticulated makes
object type open with respect to consistency.

Other Features There are other features of Reticulate. In particular, it is not
only a practical gradual type extension, but serves as an experiment of exploring
different dynamic semantics which will have a large impact on the performance of
a gradually typed language. Please refer to Objects and Dynamic Semantics
of section 3.3 for a detailed discussion.

In addition, despite Python syntax supports annotation at function defini-
tion, it does not provide a way of annotating local variables with types. Instead,
Reticulated perform dataflow-based type inference on code blocks, which allows
it to infer variable types for programmers.

2.4 From Smalltalk to Gradualtalk

Smalltalk is a language of highly dynamic nature: every Smalltalk environ-
ment can be seen as a live system and programmers write their code, run and
debug it using the same environment. Additionally, Smalltalk programmers rely
on idioms that are difficulty to type properly. All of this facts makes extending
Smalltalk to support gradual typing a proper challenge.

In this part, we will visit Allende, Callau, Fabry, Tanter and Denker’s work
on Gradualtalk [2], which shows us a well combination of various features in
order to extend Smalltalk into a gradual typed language that programmers can
enjoy.

Annotating Programs with Types In Smalltalk there are objects that re-
ceive and process messages. The following example computes euclidean distance
for points8:

Point >> distanceTo: p

| dx dy |

dx := self x - p x.

dy := self y - p y.

^ (dx squared + dy squared) sqrt

Gradualtalk extends this syntax to allow type annotation on parameter, re-
turn value and local variables.

8 Most examples regarding Gradualtalk is taken and adapted from [2]
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Point >> (Number) distanceTo: (Point) p

| dx dy |

dx := self x - p x

dy := self y - p y

^ (dx squared + dy squared) sqrt

Since local variable dx and dy are not explicit type-annotated, they receive
Dyn as default type.

Blocks are basic features in Smalltalk, whose corresponding types are avail-
able in Gradualtalk in the form of normal function types.

Polygon >> (Number) perimeter:

(Point Point -> Number) metricBlock

...

This definition expects metricBlock to be block that takes as argument two
points, and returns a number.

Self Types One practice in Smalltalk and many object-oriented languages is
called “method chaining”: some methods of an object returns the object itself.
By doing so, method invocations on same object can be chained together as a
sequence of operations.

The following example shows a setter of an object: it accepts a number and
assign it to y member of that object.

Point >> (Point) x: (Number) aNumber

x := aNumber.

Suppose we have a similar setter for y, we can write obj x: 1 y: 2 to set x
and y to their new values respectively for an object obj, and the whole expressive
results in the value of the object obj, which allows the chain to extend further.

Notice that if we want to have this class extended by others, its setter with
be assigned with type Point rather than the extended class. Therefore some
type information will be lost in the way. To deal with this problem, Gradualtalk
introduces self type:

Point >> (Self) y: (Number) aNumber

y := aNumber.

The only different is in its return type, instead of Point, it is annotated with
type Self. If any other class inherits from it, using the self type will make sure
the return type is the same as the extended class instead of sticking with Point,
this allows type information to be preserved in a more precise manner.
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Union Types Gradualtalk supports union types, which might be useful when
source code contains different branches and each of them returns different types.

Boolean >> (a | b)

ifTrue: (-> a) trueBlock

ifFalse: (-> b) falseBlock

Note that trueBlock and falseBlock might return different types, allowing
this method to have either a or b as return type will be incorrect, and simply
using Dyn type results in a lose of information. In Gradualtalk, this problem
is solved by introducing union types: type notation a | b is a type by itself
constructed from a and b, which can accept all values of either a or b.

Structural and Nominal Types A structural type describes the shape of an
object.

RBParser >> bracketsOfNode: ({

left (-> Integer) .

right (-> Integer)

}) node

The method above defines the argument type of node to have 2 methods:
left and right and both of them will return an integer when invoked.

A nominal type, on the other hand, is introduced by classes: for example an
instance of String will have String type. In addition, subtyping relations of
them are formed from existing inheritance relations.

Gradualtalk managed to unify them in an interesting way.

RBParser >> bracketsOfNode: (RBNode {

left (-> Integer) .

right (->Integer)

}) node

Note that in addition to the structural type we have seen, RBNode is a nominal
type, the type of node above limits the value to be not just an instance that
understands certain methods, but also requires it to be an instance of RBNode.

Another interesting example is the combination of structural type and nom-
inal type Dyn:

Canvas >> (Self) drawPoint: (Dyn {

x (-> Integer) .

y (-> Integer)}) point

point x. "safe call"

point y. "safe call"

point z. "not an error, considering point to be Dyn"

Besides calling x and y, a call to z does not raise an error ahead of execution:
thanks to the presence of Dyn, instead of raising a type error because z is not
a member of the structural part, the type system sees the Dyn part and try to
cast it to one that has member z.
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Type Aliases Gradualtalk supports type aliases. This does not expand expres-
siveness of type itself, but this allows programmers to refer to types instead of
write long types over and over again.

With type aliases comes the concepts of protocols. In Gradualtalk they are
just type aliases for structural and nominal types.

2.5 From C] 3.0 to C] 4.0

While we have seen many examples that a dynamically typed language gets
gradual type extensions, Bierman, Meijer and Torgersen’s work on C] 4.0 [22]
shows us a practical example of extending a statically typed language towards
gradual typing. This extension makes interoperation between statically and dy-
namically typed code more convenient and brings in features meant for dynam-
ically typed languages.

Interaction with Dynamic Objects The following code snippet shows how
C] 3.0 interact with JavaScript9:

...

ScriptObject map = win.CreateInstance("VEMap", "myMap");

map.Invoke("LoadMap");

...

string latitude, longtitude;

...

var x = win.CreateInstance("VELatLong", latitude, longitude)

var pin = map.Invoke("AddPushpin", x);

pin.Invoke("SetTitle", name);

...

In order to interact with JavaScript, method calls are made using string-based
interface, which are verbose, fragile to maintain.

With C] 4.0, the source code can be simplified a little bit:

...

dynamic map = win.CreateInstance("VEMap", "myMap");

map.LoadMap();

...

string latitude, longtitude;

...

var x = win.CreateInstance("VELatLong", latitude, longitude)

var pin = map.AddPushpin(x);

pin.SetTitle(name);

...

9 Examples and code snippets in this part are adapted from [22]
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Note that C] 3.0 uses a bidirectional type system: such a system allows
program to be partially typed, and the type system will use type inference tech-
niques to assign terms to all remaining un-annotated terms. However, when this
process fails, C] 3.0 will abort compilation and request programmers to provide
more information until every term in the program is assigned a type, either by
hand or by type inference.

In the example above, notice how types are changed to dynamic and methods
are called as if there are regular objects. These improvements are more than just
syntactic, as the extended type system is more permissive about partially typed
programs: instead of standard type inference that gives up when the information
is insufficient, in the extended system dynamic types are used and this allows
the compilation to continue.

Using Features Intended For Dynamic Languages The extension also
makes available some features meant for dynamic languages directly in C], one
example is the use of ExpandoObject:

...

dynamic contact = new ExpandoObject();

contact.Name = "Erik"

contact.Address = new ExpandoObject();

contact.Address.State = "WA";

...

It is known that statically typed languages lack some flexibility when it comes
to structured data: we either need to declare a record type that matches actual
structure, or use a dictionary in which one key and one value type are declared.
However, with the introduction of ExpandoObject, by simply assigning values
to properties of instance of ExpandoObject, they are brought into existence
without boilerplate about type casts. This not only helps a static language to
deal with data of dynamic nature, but also helps in terms of fast prototyping,
in which programmers cares more about having a working implementation than
maintain type precision.
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3 The Way Towards Gradual Typing

In previous chapter we have explored the benefits gradual typing can bring
in for existing languages. Now we takes a step further to discuss the way towards
making these extensions.

Despite that we have gradual guarantee [35] and other theoretical works to
serve as guidelines for gradual typing extensions, there is no canonical way of
supporting gradual typing and design choices have to be made depending on
various facts like original type discipline, common practice, performance and
even user community.

Additionally, adding gradual types to an existing language is not just an effort
of putting theories of gradual typing into practical use, but also introductions
of new language features that take the advantage of gradual typing and help
development or improve performance in these languages.

In this chapter, we will explore various issues regarding type system exten-
sions, design choices, implementation, and other technical details. This allows us
to obtain more understanding and insight about the way towards gradual typing
for existing languages.

3.1 Extensions to Type Systems

For statically typed languages, gradual type system introduces dynamic types,
which then allows presence of partial type information in types. For dynamically
typed languages, gradual type extension enables type annotations or enriches
its type expressiveness to allow programmers to enforce invariants in a more
uniform and machine-checkable way. While type soundness is established by a
cooperative work of static and dynamic typechecking, gradual typing itself opens
up possibility of some other interesting extensions that makes the extended lan-
guage more convenient to use and more attractive to programmers.

These extensions can be split into two categories: essential extensions are
those necessary for a complete gradual typing support; and complementary
extensions are those that improves type expressiveness but a type system with-
out them does not compromise completeness.

Essential Extensions We are looking at research works that falls into type
disciplines of two different nature: JavaScript, Scheme, Python 3 and Smalltalk
are all dynamically typed languages, from which much similarity shows up. On
the other hand, we have C] 3.0, a statically typed langauge.

Extension from Dynamically Typed Languages The approach used by Safe Type-
Script and Reticulated Python is to first perform static typechecking in the pres-
ence of dynamic types. If it succeeds, programs written in extended languages are
then translated into original languages. The translated program could contain
runtime checks with some values instrumented, these checks and instruments are
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either implemented by inserting expressions or statements in place or making
calls to external libraries10.

This approach grants high compatibility with original languages: source code
written in extended language can be compiled and then used as if it is written in
the original language, and thanks to the fact that all existing dynamically typed
languages we are discussing have decent supports for modern package managers,
including runtime support is as simple as making a dependency declaration for
the packages using the extension. Besides, by compiling to the original languages,
we can be confident to some extent that the language implementations are in-
dependent of any specific implementation of the original languages, albeit some
language extensions do make assumption about implementations of their original
languages11.

Gradualtalk is an extension to Pharo Smalltalk. It consists of 3 parts: the
core allows representing types in Smalltalk, the typechecker is responsible of
performing static typechecks and finally a type dictionary for storing type infor-
mation.

Typed Scheme takes a similar approach: the implementation is a macro that
takes source code in Typed Scheme, does static typechecking and inserts casts
when needed and translates the result. This phase either results in failure in
static typechecking, in which case the detected type error needs to be addressed,
or successful translated code in PLT Scheme with casts inserted in the form of
contracts.

Extension from A Static Type System The work on C] 4.0 shows us how statically
typed language can be extended to support gradual typing. This approach is
novel because C] 3.0 uses a bidirectional type system [26] rather than a standard
static type system. There are two distinct phase in a bidirectional type system: in
typechecking phases, we determine whether a particular type can be assigned
to a given term, whereas in type synthesis phases, we are given a term and
tasked to determine a type for it. As bidirectional type checking is a variant
of coercive subtyping [7], both phases generate translated terms with explicit
coercions. During the process of checking types for a C] program, these two
phase naturally interleaves each other to progressively assign types to terms and
turn implicit coercions into explicit ones. Upon successful completion of this
process, all coercions are made explicit and dynamic types are no longer needed
and simply replaced by basic object types.

As shown in Siek’s work in [33], making dynamic type the top type in sub-
typing order allows any two types to be coercible. C] 4.0 avoids this problem by
not allowing dynamic types to be implicitly converted to any other types dur-
ing typechecking phases. It turns out that this approach is sufficient to achieve
transitivity of subtyping even when dynamic types are present.

10 These libraries are also known as “runtime”s and often shipped with the gradual
type extension to support runtime checks.

11 Part of Python is written in C, which does not respect the indirection that Reticu-
lated proxies use and a work around requires removing and re-installing proxies at
the boundary of Python and C [41].
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The type system of C] 4.0 shows that it is possible for a static type sys-
tem to allow transitivity of subtyping when making gradual type extensions.
But whether this technique is applicable to standard static type system is still
remained as an open question.

Complementary Extensions While essential extensions establish the com-
pleteness of gradual type systems, complementary extensions are not exactly
requirements. After all, programmers can always choose not to use explicitly
typed terms and leave types of them inferred or defaulted to dynamic types.
This is however unsatisfactory, as using dynamic types often result in a lost of
type information in the process. Therefore extra features of type systems are
usually introduced to improve type expressiveness and in general make language
more convenient to use.

Union Type Practical languages utilize control flows to be able to determine
the sequence of operations to perform base on runtime values. This allows same
block of code to return values of different types and simply assigned returned
value to a most general type results in information loss.

Imagine the following code in Typed Scheme:

(lambda (x: number)

(if (> x 0) x #f))

Depending on the test (> x 0), we either get a number or the boolean value
#t as result, which can be expressed through union type (∪ Number Boolean).

Union type is a simple extension employed by Typed Scheme and Gradualtalk
to solve this problem. By notation, an union type U = τ0 ∪ τ1 ∪ . . . is a superset
of all τxs involved. For any value v, v : U typechecks as long as v : τx does. By
performing flow analysis on a block of code, we can find a list of types of return
values to then construct a union type to allow preserving more type information.

Type for Objects Object allows related values and codes to be organized together
and is an important concept in various languages. Many language rely heavily
on object-oriented programming, which demands proper type system support
for them. Siek and Taha pioneered gradual typing for objects [33], which treats
objects structurally as a pack of methods with labels. However, when applying
to existing languages, this approach results in various issues that goes beyond
type system. We will have a separated section regarding these issues.

Occurrence Typing Supporting gradual typing requires having matching types
for values and functions in the languages. Most extensions we have discussed have
concepts of classes and objects, they are typed either structurally or nominally.
However, instead of using classes or objects like other languages do, typical
Scheme programs prefers using composed data structures as simple as just pairs,
vectors and they are distinguished through testing the shape of the value or
symbol comparison. To solve this potential mismatch between values and types,
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occurrence typing is introduced. The idea is that the difference occurrences of
the same variable would have different types depending on the context where it
occurs. Types are defined by specifying some boolean-returning unary functions
as type discriminators. When such a function p? in question returns non-falsy
value for a value v, the type system will consider v to have value p. This way, a
if-expression that depends of value of (p? v), will have its two branches with
different types of v, one with type p and another with non-p type.

Despite this extension is shown only in Typed Scheme, we believe it can
be applied to other languages as well: the latest version of TypeScript has im-
plemented type guard [38], which uses this exact technique to improves the
expressiveness of its type.

Parametric Polymorphism The idea behind parametric polymorphism (a.k.a.
generic programming in some languages) is that some functions and structures
can work uniformly regardless of the value it is operating on. Besides its presence
in C] 3.0, Safe TypeScript, Typed Scheme, Reticulated Python and Gradualtalk
all include this feature to further extend their type expressiveness.

The following illustrates this feature in Safe TypeScript:

interface Pair<A,B> { fst: A; snd: B }

function pair<A,B>(a: A, b: B}: Pair<A,B> {

return {fst: a, snd: b};

}

In this example, Pair is a structure that contains two pieces of data and pair

a function as its constructor. The two pieces of data can be retrieved by accessing
fst and snd attributes without specific knowledge of actual data types. Type
variables are A and B, which allows getting data types back once Pair<A,B> is
known.

This feature is made possible in Safe TypeScript by extending typing context
with type variables and allowing type abstraction at appropriate places (e.g. in
interfaces or function declarations as shown above). In Gradualtalk, same feature
is implemented based on Ina and Igarashi’s work [21].

3.2 Cast Insertion

Cast insertion provides the mechanism for runtime typechecking. Casts are
functions that takes a single value, checks whether the value is of expected type
then either throws type error or proceed the program with the value just checked.
Static typechecking for a gradual type system has an extra purpose of inserting
casts: when dynamic types are encountered during static typechecking, the type
information at hand is insufficient to guarantee type safety. Therefore casts are
inserted in appropriate places so they can be checked at runtime.

Taking Safe TypeScript as an example:

function toOrigin(q: {x: number, y: number}) {q.x = 0; q.y = 0;}

function toOrigin3d(p: {x: number, y: number, z: number}){
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toOrigin(p); p.z = 0;

}

toOrigin3d({x: 17, y: 0, z: 42})

The code above is translated into JavaScript:

function toOrigin(q) { q.x = 0 ; q.y = 0; }

function toOrigin3d(p) {

toOrigin(RT.shallowTag(p, {"z": RT.num})); p.z = 0;

}

toOrigin3d({x: 17, y: 0, z: 42})

in which RT is Safe TypeScript runtime. Notice how argument of toOrigin

requires an object that contains both x and y attributes while in the body of
toOrigin3d, it only tags object p, which is known to have x, y and z, with
extra attribute z. Thanks to static typechecking, we have reduce the amount of
runtime checks by skipping checking types already known statically.

While static typechecking is performed during compilation, dynamic type-
checking is embedded in code and therefore impose a runtime overhead over
original programs. To make the performance of partially typed programs close
with its dynamically typed counterparts, It is essential to reduce the amount of
dynamic checks. For value of primitive types, we can do no better than simple
cast insertions, but there are still space when it comes to structured data and
functions, researchers have come up with different strategies to balance between
type safety, efficiency or design simplicity. We will explore thees strategies in
next section.

3.3 Blame Tracking

When a cast involves function types, it cannot be checked immediately [15,
32]. For example, it requires function applications to provide an argument list
to check argument types of a function type, and checks on return types cannot
be done before the function in question returns. Since these checks are delayed,
it is possible that when a runtime cast fails, information necessary to local the
actual problem is far way from it.

Gradualtalk uses blame tracking [42] to solve this problem: when a check is
delayed, the type system keeps track of the information, which allows blames
to be assigned properly when the check fails. In Reticulated, guarded dynamic
semantics implements blame tracking: the static type system provides error mes-
sages and line numbers, which is kept in the proxies so that actual source of error
can be identified properly.

3.4 Object-Oriented Programming

Object-oriented programming is a popular style of programming. All lan-
guages we have discussed so far supports it to some extent. Among these lan-
guages, some even have the language itself designed to embrace its philosophy.
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To have a sound and efficient gradual typing support for it becomes center of
topic.

Unified Concepts Despite that each language have a slightly different model
of objects, they do have concepts in common. In this section, we give definition to
some important concepts in object-oriented programmming to allow discussing
them in an unified way.

An object o is a single value that contains fields (somethings also called
properties or attributes) and methods. Unique labels ls are assigned to all
fields and methods. By using notation o.l, we can access (i.e. read from or
write to) fields and methods of object o. Fields are values, and methods are
functions within whose body gain access to a special variable (called this or
self by convention) which can be used to refer to the object itself.

A special kind of singleton objects are called classes. For a class C, we can
create (a.k.a. instantiate) objects by calling constructor. The created object is
considered an instance of class C.

Classes can form a partial order of subclass relations: if a class C0 extends
from another class C1, we say C0 is a subclass of C1 and C1 a superclass of C0.
Methods can be shared through the mechanism of class-instance and inheritance
relation: when we try to access o.l, l is looked up in the order of instance itself
(some languages disallow objects to have their own methods therefore skipping
this step), its class, and superclass of its class, all the way through this chain of
inheritance until hitting the top object. The lookup resolves to the first successful
one, but if no method matching l is found, program throws an error to inform
about an unknown method being invoked.

Sometimes the concept of interfaces (or protocols) is used. It is a set
of field or method labels with associating any values or functions to them. Any
object that can resolve all labels list by an interface is considered to implement
that interface.

Nominal Type, Structural Type and Subtyping There are two different
approaches of assigning objects with types:

– Nominal types are derived from class definitions, these types usually have
a matching name with its corresponding class. Nominal types follow the
traditional sense of inheritance: one must explicitly extend from another
class to make it a subclass of the other (with a commonly assumed exception
that topmost class is always a superclass of other classes).

– Structural types, on the other hand, views an object structurally. Inheri-
tance, or rather subtyping, in this case is closer to an interface: if one object
can resolve all labels of another object, it is considered a subtype of it. This
approach is sometimes known as duck typing.

Despite that these two approaches coincide with each other in many ways,
they are not actually compatible. And due to the highly dynamic nature of
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some languages, it will not be sufficient to simply having either structural and
nominal types. Therefore researchers often end up with a hybrid approach to
allow coexistences of these two approaches.

To illustrate the problem, suppose we have the following definitions in Python
(assuming all methods will return values of the same type):

class A:

def foo(self):

...

class B(A):

def bar(self):

class C:

def foo(self):

...

def bar(self):

...

While a nominal type allows a variable v : A to be assigned an instance of B,
assigning an instance of C to v is forbidden by the type system: despite having
all methods that A requires, it is not explicitly extending A to form a proper
relation of inheritance.

Structural type is more of a relaxed relation in this case: A is simply {foo : τ}
(for whatever appropriate type τ), B and C are both equivalent to {foo : τ, bar :
τ}. Therefore structurally, B and C are both subtypes of A despite no being
explicitly declared.

Another interesting example comes from TypeScript. Suppose we have the
following definition12:

interface Point { x: number; y: number }

class MovablePoint implements Point {

constructor(public x: number, public y: number) {

this.x = x; this.y = y;

}

public move(dx: number, dy: number} {

this.x += dx; this.y += dy;

}

}

function mustBeTrue(x : MovablePoint) {

return !x || x instanceof MovablePoint;

}

12 This example is taken and adapted from [27].
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// typechecks, but returns false

mustBeTrue({

x: 1, y: 2,

move: function(dx,dy) {

...

}

});

One might expect calls to function mustBeTrue to always return true, but
in TypeScript this is not the case. As TypeScript treats classes structurally,
any object that has field x, y and move of matching types can typecheck with
MovablePoint without being an actual instance of it. So instanceof operator,
which only respects the prototype chain, is inconsistent with TypeScript’s type
system.

To solve this problem, Safe TypeScript treats class types nominally but allows
it to be viewed structurally. Taking the same example but assume that we are
using Safe TypeScript, instances of MovablePoint can still be used in places
where type {x: number, y: number, move(dx: number, dy:number): any}
or {x: number, y: number} is expected. But in order to typecheck a value
against MovablePoint, the value now has to be an instance of MovablePoint.

Among other languages we studied, Typed Scheme extends its structure sys-
tem and uses nominal types 13; Reticulated Python chooses the structural ap-
proach - despite class inheritance being allowed, duck typing is generally con-
sidered idiomatic approach in Python. On the other hand, Gradualtalk takes an
approach similar to that of Safe TypeScript’s: it implements a unified syntax to
allow an object to be typed nominally and structurally at the same time.

Objects and Dynamic Semantics While most of extensions we have studied
so far agrees on how casts are inserted around primitive values as originally
suggested in [34], objects and dynamic semantics are always center of discussion
among languages that relies heavily on it.

For this part, our discussion follows the work on Reticulated Python, as
Reticulated is not just an implementation of gradually typed Python, but also a
testbed of 3 different dynamic semantics, which covers most of the cases. Along
the way, approaches from other literature of similar nature will be discuss and
added as well.

There are 3 different approaches implemented by Reticulated, known as
guarded, transient and monotonic.

For starter, an example in Reticulated is given:

class Foo:

bar = 42

def g(x):

13 Thanks to the expressiveness of refinement type, it is still possible to test an object
structurally.
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x.bar = 'hello'

def f(x:Object({bar: Int})->Int:

g(x)

return x.bar

f(Foo())

Note that function g mutates the type of x.bar therefore its callee f no
longer have a x of proper type to return Int. When different dynamic semantics
are applied, the result varies as well and in following parts we will visit these
approaches in order.

The Guarded Dynamic Semantics This approach wraps actual objects in a proxy
which builds itself up using sequences of casts. This keeps proxies to always be
one step alway from the actual object rather than building a chain of proxies
that compromises efficiency over time. Method invocations and field accesses are
relayed to the actual object, field writes and return values of method invocation
are checked at the boundaries of statically and dynamically typed code.

After translation, the relevant functions have casts inserted as following:

def g(x):

cast(x, Dyn, Object({bar: Dyn})).bar = 'hello'

def f(x:Object({bar: Int}))->Int:

g(cast(x, Object({bar: Int}), Dyn))

return x.bar

f(cast(Foo(), Object({bar:Dyn}), Object({bar:Int})))

When the control reach body of function g, g will have the most precise type
Object(bar:Int) inferred from the sequence of operations. And the write to
field bar will try casting a string into Int, which results in a failure.

Note that this approach have the problem that object identity is not pre-
served:

x is cast(x, Dyn, Object({bar:Int}))

As cast function wrap x in a proxy, it is no longer considered the same
object as x therefore returns False. However instance tests will still work, as
proxies are considered a subclass. And for a similar reason, type test on such a
value might fail because from outside it is a Proxy rather than an instance of
the relevant class.

The Transient Dynamic Semantics Instead of using proxies, the transient ap-
proach inserts casts at use sites or at sites where the value becomes relevant.
Under this approach, the same Reticulated function is translated as following:

def g(x):

cast(x, Dyn, Object({bar: Dyn})).bar = 'hello'

def f(x:Object({bar: Int}))->Int:
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check(x, Object({bar: Int}))

g(cast(x, Object({bar: Int}), Dyn))

return check(x.bar, Int)

f(cast(Foo(), Object({bar:Dyn}), Object({bar:Int})))

There are two differences: first, despite having the same name, cast is a
different function that just checks whether cast on object is allowed and then
returns it instead of wrapping it in a proxy; second, calls to check are inserted
around the body of f. In this dynamic semantics, it is the final call to check

inside the body of f that detects type error and throws, as x.bar is mutated
and its type no longer matches the return type of f.

The Monotonic Dynamic Semantics The monotonic approach relies on a slightly
strong assumption than the other two approaches: if any update happens to
object fields, it will not change its type. Instead of using a proxy, the object
keep type information of its own. As casts are execute on objects overtime, its
type information gets locked down to always become more precise.

The translation is the same as that of guarded dynamic semantics, but with
cast being a different function that applies monotonic approach.

Right before call to f, object newly created from Foo() is locked down to
have a type at least as precise as Object(bar:Int), this locks down type of
x.bar therefore raises an error when the body of g tries to write a mismatching
type to it.

A similar approach is used by Safe TypeScript, in which runtime type infor-
mation (RTTI) is maintained on objects themselves. And as program proceeds,
RTTI decreases with respect to the subtyping relation, which avoids some un-
necessary runtime checks to be performed over and over again. Additionally,
another improvement done by Safe TypeScript is the strategy of shallowly tag-
ging objects in RTTI, this avoids tagging objects that are never touched at the
cost of having to propagate RTTI when needed, in practice researcher finds it
to be a good tradeoff.

Type Dictionary This approach is used by Gradualtalk, but can also be adapted
to other languages of similar nature: in Smalltalk, certain classes are not allowed
to be modified because the virtual machine relies on them to implement funda-
mental behaviors. Therefore language implementor maintains a type dictionary
that keeps type information for objects instead of tagging directly on object
themselves. This can be considered to be strategy for prototyping gradual typ-
ing extension for a language when efficiency is not a urgent concern as work on
Gradualtalk is not (yet) focusing on performance either, and the tagging strategy
is not being stated in detail to give more insight.

RTTI and Differential Subtyping Runtime Type Information (RTTI) is one
part of the mechanism for Safe TypeScript to implement its dynamic typecheck-
ing. Much like the monotonic approach found in Reticulated Python, with casts
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inserted in appropriate places and objects instrumented, runtime casts can be
performed.

One key contribution of Safe TypeScript is its use of differential subtyping: it
is an extension that not only tells subtyping relations, but also allows splitting a
structural type into slices of interest. The observation is that, during static type-
checking, when subtyping relation is used, there is a potential loss in precision.
We can extend subtyping relation to compute the exact set of type information,
and encode in the form of RTTI instead of keeping types of all fields around
therefore improve performance.

Reference this or self In object-oriented programming, the body of class
methods have access to a special reference, which is usually named this14. This
reference allows the method to refer to the instance of the class and its members.

As we have seen in Section 2, simply assigning the class type in which the
method is defined to this reference does not always capture the most precise use
of this. For example, if one class C1 is extended from class C0, calling methods
defined in C0 will only allow this to be assigned type C0, ignoring the fact that
the class is extended and C1 should be a more precise type for this.

This problem is recognized and solved in the work of Reticulated Python,
Gradualtalk and Safe TypeScript, In Reticulated, self is bound separately from
all other method arguments15 to allow it to refer to the most precise class at
hand; Gradualtalk adapts “self type” from the work of Saito and Igarashi [29]
and use type system to allow it to be resolved to the current class. On the
other hand, Safe TypeScript is a prototype-based language and have a different
semantics for this reference. Its type system recognized the fact that this is
passed implicitly in function calls and keeps track of it. In addition, this is also
given special treatment so that when invoking a method of this, type system
is capable of searching the prototype chain to find it.

One more caution is taken in Safe TypeScript: as its this binds differently
than an object-oriented language, it is necessary to distinguish methods from
fields. For example16:

var ctr = {inc(): { this.f++; }, f: 0};

var i = ctr.inc; i();

In JavaScript semantics, while calling ctr.inc() will allow this to be bound
to ctr in the body of the function, but the call i() will cause this to be bound to
some other objects (depending on the context). In order to distinguish between
methods and fields, Safe TypeScript uses two different type notations: while
type {inc(): void; f: number} declares inc to be a method, type {inc: ()

=> void; f: number} declares inc to be a field, and the type system will act
accordingly.

14 Some languages would use self as its name.
15 In Python, method types are supposed to use self as the first argument explicitly.
16 This example is taken from [27].
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3.5 Type Inference

Programs with type inference and those with gradual typing have some sim-
ilarity in the sense that both allow programmers to write less type annotation
themselves. Many languages we have mentioned so far supports type inference to
some extent. TypeScript implements local type inference within method bodies,
as Safe TypeScript is built on top of it, it inherits this features as well. Retic-
ulated Python implements local type inference by using dataflow analysis to
compute possible types for each variables and then join these types to determine
what type should be assigned to each variables. A local type inference is also
employed in Typed Scheme.

3.6 Type Erasure and Optional Typing

Sometimes it is helpful to ensure that no runtime overhead is imposed on
some values: for a tag-based implementation of gradual typing, an large array
of objects will suffer from unnecessary taggings. In such cases, some languages
provide a way to ensure that no tag is attached to these objects. Note that this is
different from using dynamic types: when using dynamic types, as we have seen
in dynamic semantics, some implementation of gradual typing allows structure
of types to become more precise during execution, an erased type ensures that
no runtime tagging will happen therefore typing is avoided. Of course, without
tagging it is impossible to enforce some invariants at runtime, which remains as
a choice that programmers can do.

3.7 Challenges

There are still challenges and open questions present when making gradual
type extensions. This section attempts to organize them into common challenges
and language-specific ones.

Common Challenges

Keeping up with the original language One problem of making extensions to an
existing language lie in the fact that the extended one needs extra maintenance
efforts to keep being a superset of the original language. If the language being
extended is actively changing or extending its syntax, our gradual typed version
will have trouble keeping it up or even run into the problem of conflicting syn-
tax. This is particular true in case of JavaScript: nowadays ECMAScript Next
proposals are still being reviewed and some of them will eventually be accepted
into the language, which requires Safe TypeScript to bring in these new features
and careful adjustment might be required so that the syntax for optional type
annotation do not accidental conflict with the original language.
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Libraries maintenance Despite that gradual typed systems claim to provide
freedom of making choices between statically or dynamically typed, for this
feature to be useful, type signatures must be provided and kept up-to-date, which
might require extra maintenance effort. As an example, DefinitelyTyped [45] is
a repository that contains TypeScript type definitions for popular JavaScript
libraries and it has to be actively maintained to match its JavaScript counterpart.

eval function Languages of highly dynamic nature would provide a eval func-
tion, which when given a string or a abstract syntax tree, evaluates it as if it is
one part of the program and returns the result. It is difficult to assign types17

to these functions, as the resulting type depends on the input and running a
complete analysis on input is undecidable. Despite that eval function is pro-
vided for almost all languages of dynamic nature, the problem is minor. This
is because the use of such a function is generally considered temporary or bad
practice, development tools will give warnings regarding any use of eval and
ask programmers to try alternative approaches.

Problems with translation It is a popular approach that an extended language
have programs written in it translated into its original language. In some sense
this is a fragile approach as the runtime library could be modified to break its
runtime checking mechanism, and if the original language provides interface for
inspecting objects, information intended to be hidden could be revealed and
modified. This brings negative consequence for a tag-based gradual type exten-
sion.

Sometimes interoperability has an impact on translation. CPython imple-
mentation of Python relies on calling C functions to achieve better performance,
which breaks proxies used by Reticulated. The workaround is to remove and
re-install proxies between language boundaries, which is not satisfactory.

In addition, despite that we can establish type soundness in the extended lan-
guage, a translated program will still be unnecessarily checked by the original
language. For instance, while Safe TypeScript maintains its own static type-
checking phase, it is implement as a plugin to TypeScript compiler, which is
incapable of turning off TypeScript’s own static typechecking. A similar situ-
ation happens to Reticulated, as it cannot turn off runtime checks impose by
Python itself.

JavaScript Originally designed for casual scripting and extended over a long
period of time, JavaScript admittedly contains many design flaws that program-
mers must be aware of and work around them. Any language extension claimed
to fully support JavaScript inherits these problems as well. Some goes to the
path of writing another language that compiles to JavaScript, therefore com-
pletely avoiding dealing with JavaScript directly for programmers. Other like
Safe TypeScript, only support a reasonable subset of JavaScript - some use of

17 To be more precise, we cannot determine any information about eval function’s
return type.
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language features are considered deprecated or bad practice, so not fully sup-
porting all programs that JavaScript accepts does not raise much concern in
practice.

Scheme Typical Scheme practice involve heavy use of macros. Despite Typed
Scheme is able to handle most of the macros by expanding them before type-
checking, some macro systems of sufficient complication require some under-
standing of their own invariants, which remains future work.

Another challenge that scheme faces is that the type expressiveness of Typed
Scheme not sufficient for some highly flexible functions: some functions can be
of indefinite arity, for example (map f xs), (map f xs ys) and (map f xs ys

zs) can all be valid given f of expected arity; a similar situation is with apply

function, which accepts a function and a list of arguments. Typed Scheme has
special cases to deal with these cases, but it is more desirable if these types can
be expressed using the type language.

Smalltalk Smalltalk features a live system: developers might modify code, run it
and debug it using the same execution environment, this raises several challenges
in the development of Gradualtalk:

– Granularity of the compiling process Smalltalk’s compile unit is smaller
than that of many other languages. Instead of doing per-class compilation,
Smalltalk compiles in the unit of method to allow a live system. This causes
troubles when defining methods with circular dependencies. Gradualtalk
solves this problem by decoupling typechecking and compiling process, so
a type error does not prevent compilation of a incomplete program.

– Work done by the typechecker can be obsolete When new meth-
ods are added or type signature for an existing type changes, typecheckers
can produce obsolete results. This is solved by using a dependency tracking
mechanism and with the use of ghost entities.

– Type errors in critical code Sometimes type errors can be critical: for
example, if default error handling function itself contains some kind of error,
this would result in an infinite loop. This is solved by allowing cast insertion
to be disabled.
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4 Related Work

Gradual Typing Siek and Taha’s work on Gradually Typed Lambda Calculus
[34] establishes the theoretical foundation for gradual typing. It is suggested
in the same paper that Cecil [11], Boo [13], extensions to Visual Basic.NET
and C] proposed by Meijer and Drayton [22], extensions to Java proposed by
Gray, Findler and Flatt [18] and the Bigloo [8, 30] dialect of Scheme [1] could
be formalized using this foundation. By the same authors, the idea is pushed
further for object-based languages [33]. As the concept of gradual typing gains
its popularity and being used vaguely to refer to any work regarding integrating
of static and dynamic type system, Siek, Vitousek, Cimini and Boyland present
gradual guarantee [35] to reiterate the intention behind gradual typing and serves
a more clear guideline for languages claimed to be gradually typed.

It is also important that gradual type system can deal with mutable references
properly. Siek and Taha [34] in their original work simply disallows implicit casts
that change the pointed-to type. Herman, Tomb, and Flanagan [19] come up with
an improved design that allows implicit casts between reference types as long
as the pointed-to types are consistent. Siek, Vitousek, Cimini, Tobin-Hochstadt
and Garcia [36] also proposed a monotonic approach for mutable references.

Soft Typing Cartwright and Fagan’s Soft Typing [10], is a type system intended
to free programers from writing type annotations. Type inference is used instead
to assign appropriate types to terms. While this design improves performance
of dynamically typed languages as the inferred information is used to removing
some runtime dispatching, it does not give programmers control over types.

Like Types Wrigstad, Nardelli, Lebresne, Östlund and Vitek [44] provides an
approach that integrates typed and untyped code in the language Thorn. They
use “like types” in the language to allow static typechecking as well as dynamic
checks when values are bound to the variable in question. In addition, opportu-
nities for compiler optimization is still available for the static region of programs.
As suggested in [35], this approach prioritize on efficiency and does not share
goal with gradual typing.

Contracts Gradual typing draws work on contracts by Findler and Felleisen
[15, 18], which provides a solution when it is required to check function types
at runtime. When applying a cast to a function, the types are not checked
immediately. Instead, when the function is applied, the actual arguments are
checked against argument type. Similarly, when the function returns, the return
value is checked against the return type.

Soft Contract Verification Nguyen, Tobin-Hochstadt and Van Horn’s Soft Con-
tract Verification [24] is closely related to gradual typing. In their work, they
use symbolic execution and allow use of external solvers without heavy encod-
ing. The system verifies contracts statically but when verification cannot draw
a conclusion, it falls back to runtime checks.
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Blame Tracking Wadler and Findler’s blame tracking [42] provides one approach
to keep track of related information with type system, which allows blames to
be assigned properly when the check fails.

Partial Type Systems The idea of allowing partial types in a type system is
not new. Anderson and Drossopoulou formalized BabyJ [3], which has nominal
type system that allows permissive types. This concept is similar to dynamic
types in a gradual type system. But unlike gradual typing, the type system is
nominal and does not takes into account function types. Both Thatte’s Quasi-
Static Typing [39] relies on subtyping, which creates a fundamental problem
that prevents type system from catching all type errors even when programs are
fully type annotated. Another type system that relies on subtyping is developed
by Riely and Hennessy [28] on a partial type system for Dπ, type Ibad is used
for untyped parts. However, by treating Ibad as the bottom type, it could allow
Ibad to be implicitly coercible to arbitrary types.

Type Annotation for Performance Some languages includes optional type an-
notations, but the annotation is used for improving performance rather than
typechecking. Common LISP [37] and Dylan [14,31] fall into this category.

Type Inference Type inference [12, 20, 23] removes some burden of writing type
annotations from programmers by using available type information to recon-
struct types for terms. It is syntactically similar to gradual typing as both ap-
proaches allow programmer to omit type annotations. While type inference sim-
ply rejects a program when it does not have sufficient information to fill out all
missing types, a gradual type system allows partial type to present in a program
and insert casts to enforce invariants at runtime instead. Local type inference [26]
sometimes are used in a gradual type system to either free programmers from
having to write out all type annotations or to accommodate the fact that some
languages do not have a way of attaching variables to an explicit type.

Optional Type System In an optional type system [5], type annotations are op-
tional and have no impact on the semantics of the language. Example includes
Strongtalk [6]. While static typechecking is still present, no runtime checks are
inserted so the language does not receive full benefits of a type system. Nonethe-
less, sometimes it might be desirable to ensure that certain part of the program
does not have runtime checks inserted by the type system. Some gradual type
systems like Safe TypeScript [27] does allow writing types in a specific way to
effectively switch some part of the program to use an optional type system.

Type System Integrations There are other examples of combining different type
systems and taking advantage of both. Ou, Tan, Mandelbaum and Walker [25]
define a language that combines standard static typing with dependent typing.
Flanagan’s Hybrid Type Checking [16] combines standard static typing with
refinement types. Automated theorem proving technique is employed to try to
satisfy predicates and runtime checks are inserted when theorem prover yields
no conclusive results.
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5 Conclusion

Gradual typing is an approach that brings benefits of static and dynamic
type system together in a sound and efficient manner. From aspect of program-
mers, gradual type extensions makes it possible for dynamically typed languages
to express program invariants in a unified and machine-checkable way, and for
statically typed languages, programs are allowed to be partially typed to obtain
some more flexibility for situations like refactoring or fast-prototyping. Addi-
tionally, the ability of evolving the program towards either fully static or fully
dynamic programs is also open and intended to be smooth.

In this survey, we motivated gradual typing, visited designs and implementa-
tions of Safe TypeScript, Typed Scheme, Reticulated Python, Gradualtalk and
C]. The way towards gradual typing for an existing language is not unique, be-
cause there are different language goals, programming idiom and established user
community to be taken into account. However, to create a convincing gradual
type extension, the way often involves not just making type system extensions
and choosing dynamic semantics wisely, but also complementary features that
enriches type expressiveness or reveals more opportunities for optimization or
development tool supports.

There are still open questions present in making and maintaining these lan-
guage extensions and the majority is about performance and keeping up with
original languages. But this is understandable as many gradual type extensions
we have discussed so far serve as proof of concept or prioritize correctness over
performance. There are considerable amount of room for improvement and we
remain confident that gradual typing extensions are practical and their benefit
are significant for existing languages in long run.
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