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Abstract

React Labs [8], a mobile polling application,
makes it possible to analyze individuals’ real-
time reactions and opinions on a large scale.
While users tend to respond nearly instanta-
neously to events as they see them [4], in the
setting of a televised debate users may actu-
ally be viewing the same event at different
times. As a result, the timestamps attached
to responses collected using React Labs may
not align correctly with a reference such as a
transcript of the debate.

We propose a generative model for this
problem in which each user responds to la-
tent events at a fixed scalar offset, also latent,
and we derive an Expectation Maximization
(EM) algorithm to estimate both the times
of events and the offsets of users.

We evaluate the method using a corpus of
reactions obtained during the first 2012 presi-

dential debate [3]. Since the true offsets of the
users in the real data are unknown, we create
artificial data with known offsets, add error
and omissions, and place these alongside real
data. The EM algorithm recovers the offsets
accurately, suggesting that this method may
be used to estimate offsets, which can then
be used to adjust response timestamps and
create a modified, more accurately aligned
dataset.

1 Introduction

1.1 React Labs
React Labs [3] is a mobile application plat-
form that allows users to respond in real time
to live events. Collecting these responses pro-
vides an opportunity for large-scale political
and social analysis. Its applications include
political polling, in which participants view-
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ing televised and live-streamed debates can
respond to a speaker’s statements by select-
ing one of a number of preset reactions.

Figure 1: React Labs: Educate screenshot

During the second 2012 presidential debate
between Barack Obama and Mitt Romney,
React Labs: Educate [8] collected more than
200,000 responses from more than 3,000 users
watching on television or streaming online.
The application’s interface shows the users
each person involved in the debate (including
the moderator), and four reactions: ”Agree,”
”Disagree,” ”Spin,” or ”Dodge.” The user se-
lects a person and a reaction to respond as
shown in the screenshot in Figure 1. For ex-
ample, a user may tap ”Obama” and then
”Agree” to indicate agreement with a state-
ment Obama has just made. Additionally,
the user can respond to survey questions to

provide information such as age, gender, and
political views.

The collected responses can then be used
to study what prompts certain types of re-
actions. For example, (Boydstun, Glazier,
Pietryka, Resnik) finds that users who placed
a higher priority on economic issues tended to
disagree with Romney’s statements regarding
the economy, and that Republicans tended to
disagree most with Obama when he discussed
foreign affairs [3].

1.2 Broadcast Delays
Much of the analysis that having this real-
time data makes possible is dependent on the
accuracy of the timestamps attached to the
reactions, since these link the reactions to
their causes. One possible source of error is
the delay between when a user experiences a
reaction to some event and when the user can
physically register this response. However,
studies suggest that this delay is minimal [4].

A more significant source of error is the ex-
istence of different delays for local television
broadcasts, even for a nationally broadcast
event on the same television network. Al-
though the application will record the time
of a response accurately, the responder might
be watching at a non-trivial offset from other
responders, sometimes as much as 5 or more
seconds. High-definition cable broadcasts
also tend to lag slightly behind standard-
definition broadcasts.

Although this almost certainly causes inac-
curacy in the collected responses, measuring
how much is difficult. Trying to correct the
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Figure 2: Modeling events, delays, and reactions

timestamps is then a very challenging task,
because both the offsets and the causes of the
reactions are unknown.

1.3 Related Work

This project is motivated by the application
of React Labs to political analysis described
in (Boydstun, Glazier, Pietryka, Resnik) [3].

(Listgarten, Neal, Roweis, Emili) [5] intro-
duces a Continuous Profile Model for aligning
and relating multiple continuous time series,
trained with an EM algorithm. This moti-
vated in part the EM approach for aligning
React Lab responses.

Some other work has addressed similar
problems involving learning hidden events
and causation. (Wingate, Goodman, Roy,
Tenenbaum) [6] introduces the Infinite La-
tent Events Model, which infers latent events
and causations between events from discrete
time-series data. (Simma, Jordan) [7] models
cascades of events with Poisson processes.

Much work has also been done to under-
stand delays in data networks. This paper
treats the television network as a black box
that causes delays independent of any user-
specific information, and incorporating any
knowledge of network delays is left for future
work.

1.4 Data

We use a set of 172,045 responses collected
from 3308 users during the second 2012 pres-
idential debate. Responses from participants
who watched streaming online were first dis-
carded to focus on television network-induced
delays, since streaming delays may be much
longer.

2 Motivation
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2.1 The Alignment Problem

Let us use the term ”reaction-worthy event,”
or simply ”event,” to refer to statements
made in the debate that a user may respond
to. We make three simplifying assumptions
to approach the problem of aligning responses
to unknown events. First, we assume that
each of a given user’s responses is delayed
from the true time of the event by a constant
amount. This means that each user can be
assigned an offset, and if that offset is known
then the true times of the responses are also
known. Figure 2 portrays this model.

Second, we assume that the range of off-
sets is on the order of several seconds. In
our experiments we use a window of possi-
ble offsets between -5 and 5 seconds. This
window was chosen by analyzing a set of 20
local broadcasts for one of the 2012 presiden-
tial debates in order to assess the variability
of local broadcast delays.

Finally, we assume that many of the unseen
events cause multiple users to react. In the
context of a political debate, it seems reason-
able that certain events, for instance, a can-
didate’s statement of a position on a certain
issue, might cause reactions from many of the
responders.

We hypothesize that several users may all
respond to a subset of the more reaction-
worthy events, and that this may be used to
infer the true time of the event and align their
responses. For example, two users U1 and U2
may record reactions at times [10, 20, 30, 40]
and [11, 21, 31], respectively. If we shift the
responses of U2 by an offset of -1, the data
looks much more likely under our assump-

tion. Our approach is a formalization of this
idea.

2.2 Simple MLE Alignment
Our first approach to alignment estimates
only the offsets and ignores the estimation
of where the hidden events occur.

We treat the debate as a series of discrete
time steps [1, ..., T ]. At each point t, some
total number of responses from all users is
observed. One can interpret the density of
responses at t as the probability that any user
responds to an event at t. Call the size-T
array of these probabilities P . The algorithm
is shown in Figure 3.

Calculate P and smooth using Gaussian window
Repeat until no new offsets are assigned:

For each user u:
Let ∆u be a possible offset for u
Let Ru be set of observed responses for u

∆NEW = arg max∆u

∏
t∈Ru P [t+ ∆u]

Assign offset ∆NEW to u
For each t ∈ Ru:
t < −t+ ∆NEW

Recalculate and resmooth P

Figure 3: Simple alignment algorithm

To calculate the density of responses, we
need count the number of reactions at each
t. In reality, each reaction can fall into one of
several categories (Obama: Agree, Romney:
Agree, etc.) as in Figure 1. For now, this is
ignored, and all reaction types are treated as
equivalent.
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2.3 Evaluating Alignment
Evaluation on real data is challenging be-
cause the true offsets of users are not known,
nor are the times of the events that caused
the reactions. However, it is reasonable to
expect that within the dataset, there are sub-
sets of users who respond similarly. To eval-
uate how well similar sets of responses might
be aligned, we can duplicate certain sets of re-
sponses, assign each duplicate an artificially
generated (and therefore known) offset, and
then measure how well the algorithm recovers
these artificial offsets.

D users are chosen at random from the set
of all users. Each is ”cloned” K-1 times each,
creating K sets of reactions for each of the
D users, a total of D*K known offsets. For
the cloned data to be realistic, it is impor-
tant that they not be perfect copies of the
original D users. Therefore, when a set of re-
sponses is copied, each observation is omitted
with some probability pomit, and [0, err] sec-
onds of error is added uniformly at random to
each included observation. The offsets for the
cloned users are generated uniformly at ran-
dom in the range [-5, 5], and the offsets for
each of the D users from which clones are gen-
erated are assumed to be 0. The cloned data
are then included with data from N other dis-
tinct users, also selected at random from the
dataset.

The offsets ∆u for every user u are then
estimated with the alignment algorithm. Us-
ing the data ”as-is,” without calculating off-
sets, is equivalent to estimating ∆u = 0 for

all u. We therefore measure our estimate of
∆u against a baseline of ∆u = 0.

We use two methods for evaluating the
quality of the estimated offsets. The first is
the MSE (Mean Squared Error) of the esti-
mated offsets compared to the true offsets.
The second is the accuracy with which off-
sets are predicted exactly.

2.4 Results

Table 1 shows the average MSE and Accu-
racy of the estimated offsets over 10 runs, for
different values of D, K, and pomit.

Figure 4: Distribution of event probabilities it-
erations 0-4

Figure 4 displays the probabilities at each
E[t] over 5 iterations using the estimated off-
sets at each iteration. The sharp spikes after
the final iteration show where the cloned re-
sponses have been aligned.

While simple, this approach performs well
enough to motivate a more thorough model
and analysis in the following sections.
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D K perr pomit Avg. MSE
Baseline

Avg.
MSE

Avg. Acc
Baseline

Avg.
Acc

Reduction
in MSE

Reduction
in Error

20 2 1 0.4 4.965 0.545 0.993 0.780 79.1% 51.8%
100 2 1 0.4 5.128 0.540 0.111 0.996 97.8% 99.1%
100 5 1 0.4 7.958 0.273 0.1000 0.997 98.7% 99.6%
100 2 1 0.6 4.992 0.546 1.369o 0.955 72.3% 89.9%

Table 1: Recovering offsets for duplicated data: N=1000, 10 iterations

U Set of all users
T Number of discrete time points in the debate
u User u
p Probability of an event at any t
E[t] ∈ 0, 1 1 if an event occurs at time t
pu Probability that user u reacts to an event
∆u Offset for user u
Ru = {t1, t2, ..., tk} Observed reactions for user u
σ2 Parameter of Normal Distribution

Table 2: Definitions

3 An EM Algorithm for
Alignment

3.1 Model

We develop the following generative model
for the response data using the definitions in
Table 2:

For u ∈ U :
Choose ∆u ∼ Normal(0, σ2)

For t = 0, 1, 2, ..., T :
Choose E[t] ∈ {0, 1} ∼ Bern(p)

For u ∈ U :
Choose r ∈ {0, 1} ∼ Bern(E[t] ∗ pu)
If r == 1:

Add r + ∆u to Ru

Figure 5: Generative Process

As before, we interpret the debate as a se-
ries of discrete time points. At each time t,
a reaction-worthy event occurs with probabil-
ity p. Each user u responds to this event with
probability pu. If the user responds, then a
reaction is recorded at time t+∆u in order to
account for the offset ∆u. The offsets are gen-
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erated from a Normal distribution with zero
mean.

The sets of reactions Ru are the only ob-
servable variables. Each ∆u and E[t] is unob-
servable, and p, σ2, and each pu are parame-
ters of the model.

3.2 Expectation Maximization

Given a probabilistic model involving both
hidden variables and unknown parame-
ters, an Expectation-Maximization algorithm
maximizes the likelihood the model by iter-
atively estimating the values of the hidden
variables and the parameters [1].

In the E-step, the algorithm computes a
distribution Q over the values of each hidden
variable Z, given the values of the observed
variables, X [2]:

Q(Z = z) = p(Z = z|X; Θ) (1)

Next, new values for the parameters are
estimated in the M-Step:

Θ = arg max
Θ

∑
Z

∑
Z=z

Q(Z = z)log(
p(x, z; Θ)

Q(Z = z)
)

(2)
That is, we choose the set of parameters Θ

that maximize the log likelihood of the ob-
served data, accounting for each possible set-
ting z of random variable Z proportionally to
Q(Z = z).

3.3 E-Step and M-Step Updates
For the model described in Figure 5, the E
step must calculate the distribution over the
possible values of each ∆u and of each E[t].
For each ∆u :

Q(∆u = δ) ∝ P (Ru) ∗ P (Ru) ∗ P (δ) (3)

P (Ru) =
∏
t∈Ru

puE[t− δ] (4)

P (Ru) =
∏
t/∈Ru

(1− pu)E[t− δ] + (1−E[t− δ])

(5)

P (δ) =
1

σ
√

2π
e−

δ2

2σ2 (6)

Eq. 3 states that the (posterior) probabil-
ity of setting δ for offset ∆u is proportional to
the product of three probabilities: The prob-
ability of observing each reaction in Ru (Eq.
4), the probability of not observing reactions
at other times (Eq. 5), and the probability of
offset δ under the Normal distribution (Eq.
6). The current estimates of the E[t]s are
used for calculating E[t− δ] in Eq. 3-4.

Each E[t] must then be calculated using
the distributions over the ∆u already com-
puted. If we could treat each E[t] as indepen-
dent, then this calculation would be simple:

Q(E[t] = 1) ∝
∏
u∈U

p(Ru|E[t]) ∗ p

Q(E[t] = 0) ∝
∏
u∈U

p(Ru|E[t]) ∗ (1− p) (7)

However, this is not the case. Consider an
example in which two reactions from users u1
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and u2 are observed at t=100 and 101. This
can be explained by the model in one of two
ways: (A) Both reactions are caused by sep-
arate events and u1 and u2 have the same
offsets, or (B) A single event caused both re-
actions, and the offsets of u1 and u2 differ by
1. If p is relatively low, then (B) is far more
likely. So when calculating the distribution
over settings of E[100] we must also look at
the possible settings of E[101].

This applies to all E[t], so without the as-
sumption of independence, we must calculate
the distribution over settings of a single vari-
able E with an exponential number of set-
tings.

Since this is intractable, we instead approx-
imate each E[t] individually based on the ob-
served reactions. We allow each reaction from
every user to contribute a ”vote” for an event
at time t proportional to the probability of
the offset that would have been necessary to
observe the reaction based on an event at t
and the previous estimate of E[t].

Q(E[t]) ∝∑
u∈U

∑
∆u=δ

∑
tr∈Ru
tr+δ=t

Q(∆u = δ) + E[t] (8)

The Q(E[t]) are then scaled to match the
current estimate of p. Using this approxi-
mation, re-estimating p and each pu does not
make sense, so the algorithm is in effect stuck
with the initial estimate of both.

We choose σ2 = 25 so that all possible off-
sets within the window of [-5, 5] that the algo-
rithm considers are within one standard de-
viation of the mean (0).

4 EM Experiment

4.1 Recovering Offsets of Synthetic
Data

To verify that the algorithm is working, we
generate several sets of synthetic data accord-
ing to the model defined in Figure 5. The es-
timate of p is the average number of responses
per user over T , and the estimate of each pu
is the number of responses from user u over
T . σ2 is fixed at 25.

In all test runs the offsets and events were
successfully recovered, and the per-user re-
sponse probabilities pu were estimated accu-
rately. This provides assurance that the algo-
rithm works as desired and that the approx-
imation of E[t] is reasonable.

4.2 Evaluation on Cloned Data

We then evaluate the algorithm using cloned
data as in section 2.3. After running EM, we
select the maximum likelihood estimate of ∆u

for each user as the estimated offset.

Table 3 displays the results for several ex-
periments with different parameters. Figures
6 and 7 show the change in MSE and accu-
racy over iterations for several representative
runs of EM. Figure 8 shows several sets of
reactions as they are aligned in EM.
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D K perr pomit Avg. MSE
Baseline

Avg.
MSE

Avg. Acc
Baseline

Avg.
Acc

Reduction
in MSE

Reduction
in Error

20 2 1 0.4 4.695 0.546 0.693 0.958 85.6% 91.1%
100 2 1 0.4 5.181 0.539 0.024 0.997 99.6% 99.3%
100 5 1 0.4 8.114 0.273 0.0298 0.997 99.6% 99.6%
100 2 1 0.6 4.862 0.548 0.292 0.976 94.0% 94.7%

Table 3: Recovering offsets for duplicated data with EM: N=1000, 10 iterations

Figure 6: MSE over iterations 1-10

Figure 7: Accuracy over iterations 1-10

Figure 8: Sample of reactions before and after
alignment

5 Discussion

5.1 Results
The EM algorithm is consistently able to re-
cover offsets for artificial but realistic users
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with high accuracy. As opposed to using
the unmodified original data, accounting for
these offsets almost entirely eliminates errors
in reaction placement as determined by MSE
and accuracy (Figure 3).

The simpler model discussed in Section 2
works surprisingly well, but EM performs
better in general and is more resilient to omis-
sion. With the omission probability set to
60%, EM achieved a 94% reduction in MSE,
while the simpler model recorded a 72.3% re-
duction.

We have applied the algorithm to the full
dataset to obtain an offset for each user in-
cluded in the 2012 presidential debate corpus.
These offsets will be used to adjust the times-
tamps of each reaction and to improve the ac-
curacy of analysis done with the dataset [3].

5.2 Future Work
The generative process described in Figure 5
is simple and presents several possibilities for
expansion. One possibility would be to in-
corporate information from the debate tran-
script, such as which candidate is speaking at
time t, and relate this to user features such
as political affiliation and reaction types. For
instance, it is probably more likely that an
Obama supporter responds ”Obama:Agree”
to a statement made by Obama than to a
statement made by Romney a few seconds
later. One could also include a more com-
prehensive model of the processes by which
delays are generated, and attempt to align re-
sponses from users watching online streams.
For a more complex model, a Gibbs sampling

approach may be more appropriate.
Finally, extensions of this model could

be used to investigate interactions between
users’ issue priorities, the candidate speak-
ing, and what the candidate is saying, using
manual encoding of topics and framing [3],
textual context, or a combination of the two.
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