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Figure 1: A seven-frame comparison of the scene between the RGB frames and the event-based focal stack. The top layer depicts the scene
itself, while the bottom layer represents the event focal stack from the event-based camera during a focal sweep. Each frame is a slice of

summed events during a 10 millisecond time window.

Abstract

Lens-based imaging presents several challenges for all-in-focus
imaging, such as ensuring that all parts of the scene are in focus.
While frame-based methods have been proposed for all-in-focus
imaging, they often result in low temporal resolution due to frame
rate limitations. Event focal stacks have offered promise in the field,
but current works are limited to static scene reconstruction. We
propose a novel all-in-focus imaging method for dynamic scenes
using an event-based focal stack. In this paper, we discuss our pre-
liminary experiments for dynamic scene reconstruction. We found
promising initial results for grayscale reconstruction of dynamic
scenes with our proposed divide-and-conquer method.
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1 Introduction

Lens-based imaging relies on curved glass to bend light to create
sharp images. However, the main limitation of this method is that
only parts of the scene at a particular distance from the sensor
are fully in focus. The remainder of the scene suffers from focus
deblur, making sharp images of scenes with large depth disparities
impossible with most conventional sensors. This is desirable in
some cases for artistic reasons, but is often undesirable when full
information of the scene is important. All-in-focus imaging removes
this depth-dependent blurring to retain full scene information at
every distance.

Previous all-in-focus (AIF) imaging methods have relied on the
target scene remaining static throughout the exposure, limiting
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their applications. Dynamic all-in-focus imaging presents the unique
challenge of having different scenes between images in the focal
stack. Because of this, it cannot be assumed that the same pixels in
different stack images correspond to the same scene point, so the
weighted sum approach is no longer feasible. This also introduces
the concern that some scene points may never be in focus, as they
become occluded by a dynamic object.

Other approaches have attempted to tackle the dynamic all-in-
focus problem through a frame-based camera, but these methods
also have significant drawbacks. First, frame-based approaches of-
ten lead to a lower temporal resolution due to the frame rate limits
of the camera. In dynamic scenes, this can lead to motion blur and
misalignment between frames. Second, capturing frames in succes-
sion results in a lower exposure time, which can hurt performance
in darker conditions and signal-to-noise ratio. In addition, frame-
based images are often prone to camera shake, which exacerbates
the misalignment in the focal stack and blurs the final image.

In recent years, event-based cameras have presented several
benefits to address these shortcomings. Event-based cameras not
only capture high-speed motion and achieve real-time data collec-
tion, but they also overcome depth-of-field limitations to construct
all-in-focus images.

The goal of this project is to use an event-based focal stack to
perform dynamic all-in-focus imaging. The asynchronous detec-
tion and high temporal precision of an event-based vision sensor,
also known as a dynamic vision sensor (DVS), allow it to quickly
capture information from focal sweep while also providing rich
motion information for tracking. We propose a divide-and-conquer
approach to dynamic scene reconstruction. In our method, we re-
construct static intensity images from event camera data based
on existing static scene all-in-focus methods. But we extend these



previous works to dynamic scenes by manually tracking objects
across frames.
To summarize, our contributions are as follows:

e We propose a novel method to extend existing static scene
reconstruction approaches to dynamic scenes (i.e., a scene
with a static background and a moving foreground object)

e We collected our own event focal stack (EFS) for the dynamic
scene reconstruction from manual and continuous focus
adjustment

e We assess different methods of measuring focus from an
event focal stack

e We propose and attempt to implement a method for object
detection during a focal sweep

2 Related Work

We provide an overview of existing approaches for reconstructing
an all-in-focus (AIF) image from an image focal stack using frame-
based camera. Then, we discuss prior works and limitations of
depth-from-defocus using coded apertures, which has been exten-
sively studied over the past several decades. Finally, we describe a
more recent approach of reconstructing all-in-focus image from an
event focal stack, and how our work builds on this line of research
to reconstruct an all-in-focus dynamic scene.

2.1 All-in-Focus from Image Focal Stack

Image focal stack methods capture multiple images at different
focus distances, either by capturing multiple images sequentially
[14] [3] or using light fields [9]. The former requires the scene to
remain static, while the latter sacrifices spatial resolution.

Huang et al. (2022) compared the performance between focal
stack and lightfield cameras. The study focused on depth estimating
using two methods: creating the focal stack from publicly available
lightfield datasets and experimental capture. But neither of the
methods used are applicable to dynamic scenes. Similarly, Suwa-
janakorn et al. (2015) explored the possibility of depth from defocus
using mobile phones and handheld cameras. The study had limited
scope into dynamic scenes as it focused on three scenarios: static
scenes, scenes with 0.25-inch camera motion and scenes with one-
inch camera motion. These findings offer limited applications to
dynamic all-in-focus imaging. Another limitation of image-based
focal stack methods is that they are often prone to camera shake.
This can lead to misalignment within the focal stack and blurring
in the final all-in-focus image.

Wang et al. (2012) [16] proposed a deep-learning pipeline for
autofocus and all-in-focus imaging with applications for dynamic
scenes. While the approach outperformed traditional static scene
reconstruction methods, it had limitations for dynamic scene recon-
struction due to low temporal resolution stemming from a frame-
based camera.

2.2 Depth from Defocus and Coded Apertures

Coded apertures can create an image focal stack from a single im-
age with full spatial resolution [5]. Using the defocus cues from
the coded aperture, refocusing an image is just a spatially vary-
ing deconvolution problem. However, the defocus kernel can be
difficult to estimate, making the refocused images and resulting

all-in-focus images inaccurate. Previous approaches, including that
of Levin et al. (2007) [6], required an exact calibration for the blur
filter across the depth values. This poses challenges for extreme
defocus values as blur can’t be accurately inverted. Other coded
aperture approaches, such as Zhou et al. (2009) [18], used a pair of
apertures to construct the all-in-focus image. While the approach
led to stronger results in the presence of weak textures, it had
significant blurring along occlusion boundaries.

End-to-end learning methods have shown great success [4] [11],
but create artifacts when deblurring high-frequency components.
Many of these methods also require the fabrication of coded aper-
tures or wavefront coding optimized for the task.

For example, Lee et al. (2021) proposed a defocus deblurring
framework that predicts per-pixel deblurring filters. But the ap-
proach struggles with large blurs and blurs in irregular shapes due
to a lack of training data. More recent work, including Ruan et al.
(2022), had similar shortcomings in deblurring irregular shapes.

2.3 All-in-Focus from Event Focal Stack

Recently, neuromorphic vision systems have been used to create
focal stacks for all-in-focus imaging [8] [15].

Lou et al. (2023) used an event focal stack (EFS) for all-in-focus
imaging. The paper employs the golden-section search to select
the refocusing timestamps and reconstruct the corresponding re-
focused images to create the focal stack. Using the timestamps’s
neighboring events, they merge the focal stack with proper weights
and construct the final all-in-focus image. After finding the times-
tamps, the approach uses EvRefocusNet and EvMergeNet to retrieve
the image. However, the event focal stack was captured manually,
which was not fast enough to record scenes with object motion, so
the method is not viable for dynamic scenes. Bao et al. (2023) [1]
presented an alternative timestamp finding algorithm that is faster
and more accurate than the golden search used by Lou et a

Teng et al. (2024) attempted a similar approach by using a neuro-
morphic camera for hybrid all-in-focus imaging. But the approach
can only capture gray-scale changes in intensity and is still not
viable for dynamic scenes.

Multiple studies [10] [2] also allude to the use of a liquid lens to
speed up the manual focal sweep and allow for potential applica-
tions to dynamic scenes. But currently, liquid lenses are limited in
their applications and are not viable for day-to-day imaging tasks.
For example, Ralph et al. (2024) used a liquid lens for space image,
which resulted in a higher focus.

2.4 Event-Based Image Reconstruction

Event-based cameras have also been used for more general recon-
struction techniques in both static and dynamic scenes [12] [17].
Scheerlinck et al. (2020) proposed an efficient neural network archi-
tecture for video reconstruction, which had similar performance
to larger models. Other methods, including Zhang et al. (2020),
achieved similar results with a convolution neural network method.
But neither of the works focused on the all-in-focus imaging prob-
lem.



Figure 2: All-in-focus (AIF) static reconstruction using event focal
stack and guided by an RGB image [8]. Left: all-in-focus image.
Right: weights used to merge RGB focal stack to create the all-in-
focus image.

Figure 3: Our static reconstructions from event focal stack, accu-
mulating events using different sized time windows. Left: narrow
window. Right: wide window. Current results are still in grayscale.

2.5 Liquid Lenses

Liquid lenses offer several benefits for event-based all-in-focus
methods due to rapid focal adjustment, which can help dynamic
focus applications. But recent liquid lens research has focused on
more ambitious applications, such as space imaging [10], while
other works have focused on static, 3D scenes with biomedical
imaging applications [2].

3 Methods

We propose a divide-and-conquer method for reconstructing an all-
in-focus dynamic scene. First, we perform static reconstruction of
each frame of dynamic scene (i.e., ball rolling across the floor in front
of a static brick wall and water bottle). Then, we manually track the
moving object (i.e., ball) across the frames to recover its motion. Our
goal is to combine the high-quality per-frame static reconstructions
with tracking to reconstruct an all-in-focus dynamic scene. Note
that our current results are grayscale and require manual tracking
of objects. We discuss our next steps and plan to extend our current
work in Section 5.

3.1 Static Image Reconstruction

Reconstructing motion has been a longstanding challenge in com-
puter vision and computational imaging. Therefore, we process the
dynamic scene by separately optimizing for per-frame (spatial) and
between-frame (temporal) reconstruction qualities, then combining
them to recover the dynamic scene. For static reconstruction, we
are inspired by the results in [8], which can be found in Figure 2.
First, we plotted binary polarity values across all timestamps of
our event focal stack to determine the time frame during which
most events occurred. Similar to [8], we use a patch-based itera-
tive golden-section search to determine the optimal timestamps for
which the scene is most in focus. Then, we accumulate the events in
the selected temporal windows to obtain the reconstructed image.
Our reconstruction of a static scene sweep is shown in Figure 3.

3.2 Measuring Focus

As in [8], the event-based focal sweep encodes texture information
for the continuous focus depths covered by the sweep. In order
to obtain an appropriate focal stack from this data, a series of
timestamps must be selected in such a way that each region of
the scene is in focus at at least one timestamp. We consider two
possible methods of measuring focus from events: event rate and
reconstructed sharpness.

Using the polarity-based event-rate evaluation method designed
for autofocus in [1], focus can be evaluated for the entire scene.
However, for all in focus there will be different optimal focus times-
tamps for different parts of the scene. This could result in the
method prioritizing a particular part of the scene, or averaging
the best focus measures for different regions.

To adapt the method for this use case, we propose calculating
the event-rate for each region of the scene individually to estimate
its focus value. Additionally, adding a dynamic object into the
process has the potential to reduce this method’s viability due to
the additional events from the motion. We will evaluate the focus
measure on both the static objects and dynamic objects in the scene.

A more common method of evaluating focus is to examine the
sharpness of a reconstructed image, as in the previous all-in-focus
paper [8]. This method is more robust and allows the use of vari-
ous well-established focus measures for images. However, it does
require that the DVS and RGB camera have the same field of view,
usually by using a beam splitter. In addition, the slower speed of the
camera’s frame rate can make it more difficult to align the dynamic
object.

Rather than having multiple RGB images from a simultaneous
video of the dynamic scene that may be difficult to align spatially
and temporally, we instead use a single static image with all objects
(which may be a single frame from a video). The dynamic object is
identified in the RGB image and tracked in the event focal stack so
that during image reconstruction, only the events corresponding
to the object are used.

3.3 Object Tracking

Due to the high volume of events that occur during a focal sweep,
performing feature detection and tracking from events alone is
infeasible using traditional methods. Given this, image-based detec-
tion on accumulated frames is necessary for this task. This method



also comes with the added benefit of making it easier to match the
objects found in events to objects identified in the RGB image.

For our testing, we assume the shape of the object is known,
potentially by identifying objects in the RGB scene. Given this
shape, the Hough Transform can be used to identify the object in
an accumulated frame. If tracking through accumulated frames is
unsuccessful, we also implement a hand-tuned tracking box that
can isolate the events for a specific recording. It is a single rectangle
that moves at a particular speed across the frame, assuming the
object moves at a constant velocity.

3.4 AIF Image Construction

For our focal sweep, we fix the lens to be as telephoto as possible
with the aperture fully open, adjusting the focal length to obtain
a continuous sweep of focus distances. A full sweep is not con-
ducted, as the object distances are close enough that a partial sweep
is enough to ensure that every object is in focus at some point.
The RGB image is captured separately and focused at an arbitrary
distance.

Once identified, the events corresponding to the dynamic object
are stored separately. This allows the reconstruction of the static
scene to only use events that are caused by the focal sweep. Recon-
struction for this part of the scene is similar to previous methods,
except that events from parts of the scene where the object was
found will be missing. This risks parts of the scene never being in
focus during the sweep, but that risk can be eliminated if multiple
sweeps are done during the object’s motion and the object.

To construct an all-in-focus image from this separated event
focal stack, we divide the problem into constructing an all-in-focus
image of the static background and constructing an all-in-focus
image of the moving object. For the static background, we can
utilize the same pretrained neural networks from Lou et al. [8] to
reconstruct the image. For the dynamic background, the same can
be done for only the part of the RGB image that contains the object,
resulting in an in-focus image of the object. Then, these two images
are merged using a mask of where the object is present.

4 Experiments

4.1 Recording Setup

For the initial trials of the all-in-focus system, the event focal stack
was captured using a manual continuous focus adjustment. Al-
though the adjustments are performed by hand, making the sweep
relatively slow, they are still fast enough to complete a sweep while
the object is still in frame.

We recorded an EFS and RGB image with a textured background
as shown in Figure 4. There is one dynamic object and one static
object in the scene, with the dynamic object being the closest so it
is never occluded. The RGB image was focused such that only the
floor in the foreground was in focus, with both objects remaining
blurry.

The current setup and lens used for the EFS does have some
flaws, particularly with the field of view. The lack of a beam splitter
means that the field of view for the sensors cannot be kept the same.
In addition, adjusting the focal length causes a change in the field
of view during the sweep.

Figure 4: The static scene experimental setup with defocus blur
at different depths in the scene. Left: the ball, water bottle, and
brick wall are in focus while the floor is defocused. Right: parts of
the floor is in focus while the ball, water bottle and brick wall are
defocused.

4.2 Measuring Focus

Full Scene. The event-rate measurement was designed to evaluate
the sharpness of a full scene. We first examined the method’s results
when applied over all events in the sweep. The results in Figure 5
show that there was very little different between the timestamps
from the overall event-rate method and the polarity-based method.
The slice of events shows that the background wall is most in focus
using this evaluation metric.

Static Object. As a preliminary test of viability of focusing differ-
ent regions, the static water bottle is manually isolated in the event
stream. The same event-rate test is run assuming these events rep-
resent the entire scene. As seen in Figure 5c, the event-rate shows
a very different structure due to the ball not being present during
most of the sweep, but eventually entering. Despite the irregular
structure due to the added events, the selected timestamp is later,
when the focus distance is nearer, as expected. The edges of the
bottle are much sharper, with the text of the bottle being more
visible.

Image Sharpness Methods. The image sharpness method requires
the reconstruction of individual patches within an image based on
the EFS. We attempted to use the pre-trained refocusing network
for this task, expecting that for the dynamic parts of the scene
it would perform poorly, but for the static parts it may perform
adequately.

However, with further testing, we found that while the dynamics
in the scene certainly degraded performance, there were other major
factors that limited the methods applicability. To test this, we ran
an experiment with a static focal sweep. The results in Figure 6
show that there are artifacts around the top-left of the image, which
is also where all of the patches were identified. This is because the
resolution of the sensor is much higher than the DVS, and the fields
of view are not aligned. As a result, the events are not properly
mapped to the RGB pixels, and the reconstruction fails.
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(a) Plot of event rate for the entire scene. Comparison
between polarity-based event-rate from [1] and overall
event rate from [13].
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(c) Plot of event rate for the entire scene. Comparison
between polarity-based event-rate from [1] and overall
event rate from [13].

(b) Slice of events around the optimal focus timestamp from the
Polarity ER method. The wall is most in focus for the chosen
timestamp.

(d) Slice of events around the optimal focus timestamp from the
Polarity ER method. The bottle is more in focus, with text more
visible, but not perfectly in focus.

Figure 5: Results of using events-rate method for focus measure. Using it on the overall scene as in 5a and 5b results in the largest feature
(the wall) being most in focus. Only using events from a specific region as in 5¢ and 5d selects the timestamp that is most in focus for the
object in that region. The different in structure between the graphs is likely due to the object’s motion, with the spike in 5a the result of the

object rolling into the region.

4.3 Object Tracking

The original goal of the tracking was to use an accumulated frame
to detect objects in the event stream. OpenCV’s Hough circle trans-
form was our candidate feature detector since we knew the shape
of the object to be a cirlce a priori. However, likely due to the
large volume of events or a package issue, the accumulator in-
terface provided by the sensor’s manufacturer is not usable. The
pre-implemented event-based feature detectors also provided by
the package were not successful.

In lieu of implementing the accumulation, we opted to begin
using manual tracking of the dynamic object. This simply consisted
of initializing a tracking box to the location of the ball and moving

it at a constant velocity that followed the ball. This tracking is
recording-specific, as the ball does not always enter the frame at
the same time or follow the exact same path, but does allow for
some preliminary separated data.

4.4 Static Image Reconstruction

Our static reconstruction results can be found in Figure 3. We find
that using polarity data to determine the optimal time window
for accumulating events is a crucial step for good reconstructions:
the more precise and narrow our time window is, the better the
reconstruction. Integrating events over a large time window not
only captures the motion of the focal sweep, leading to a blurry



Figure 6: The image reconstruction obtained from Lou et al’s
image sharpness method meant to determine when the given path
is most in focus [8]. Due to the field of view and resolutions being
mismatched, there is artifacting from the objects concentrated in
the top-left corner of the reconstructed image.

image, but also the inherent noise that is detected by an event
camera sensor.

Note that, since an event-based system only detects intensity
changes, our reconstruction is grayscale and an RGB image would
be needed to recover the full color space of the scene.

4.5 AIF Image Reconstruction

Due to the errors with field of view when evaluating image sharp-
ness, the original proposed pipeline is not feasible. That method
requires the use of a neural network to generate an image focal
stack, but the resulting focal stack would inevitably have artifacts
similar to the patches in Figure 6.

5 Discussion

In this paper, we proposed a novel method for all-in-focus imaging
for dynamic scenes using an event-based focal stack. We employed
a divide-and-conquer method for the reconstruction as we used
existing static reconstruction methods and combined them with
manual tracking for dynamic scenes Our preliminary results and
experiments are promising for furthering the use of event focal
stacks for dynamic scene reconstruction.

5.1 Limitations

The current work has multiple limitations that can be addressed.
The first is the slow speed of the focal sweep, which both increases
the distance traveled by the object during the sweep and puts a limit
on how fast the dynamic object can be moving. We also observed
that the mismatched field of view between the camera and the DVS

made measuring focus through reconstruction infeasible. Ensuring
they have the same field of view with a beam splitter would be
ideal, but simply cropping the RGB image to have approximately
the same field of view as the DVS would potentially help achieve
better reconstructions.

A more fundamental limitation is that the object must remain
at virtually the same depth throughout the focal sweep to ensure
it is in focus at at least one timestamp. The method also does not
accommodate camera motion, for a similar reason, as the new scene
the camera will encounter during the motion may never be in focus
during the sweep.

5.2 Future Work

Our full proposed method has yet to be fully implemented and
tested. Modifications to the AIF pipeline to separately reconstruct
the dynamic and static elements of the scene still need to be com-
pleted, and issues caused by the field of view need to be resolved.

Currently, our divide-and-conquer approach reconstructs each
frame in the event focal stack as a static scene, and manually tracks
the moving object across all frames. Adding automatic object track-
ing would require a fast implementation of event accumulation for
traditional object-detection methods to be used. Implementing and
evaluating this tracking method would be crucial to making the
proposed method viable.

However, our goal is to reconstruct an all-in-focus dynamic
scene, where we can clearly recover the continuous motion of
the moving object as if it were recorded from a regular image-
based camera. To improve the quality of motion reconstruction, we
hope to experiment with more complex hardware setup, such as
using a beam splitter [8] to simultaneously capture event-based
and frame-based images, as well as using a liquid lens [7] to enable
fast focusing capability. By leveraging more advanced hardware,
we hope to enhance the current method to increase its flexibility
(e.g., handling high dynamic range motion) and enable it to operate
effectively under extreme conditions (e.g., low-light settings).

While deep learning approaches impose additional requirements
such as training data collection, we believe that the results in [8]
demonstrate neural networks as a promising solution for encoding
continuous and richer information that can make our framework
more flexible. Collecting data with many different objects with
different backgrounds to act as training data for a similar network
may be the best path forward for the refocusing aspect. Adding a
mechanized or liquid lens could greatly improve the efficiency of
collecting this data. This would also remove the need for explicit
tracking, which could remove a point of failure of the method.
Comparing a full deep learning approach to our current proposed
pipeline (once completed) would be also be a great avenue for future
exploration.
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