Scholarly Paper:
An Alternative Method for Computing the
Semidiscrete Matrix Decomposition

Brianne L. Roth
Directed by Dianne P. O’Leary

May 2, 2006

1 Introduction

Digital images can require large amounts of storage to save them within a camera
or on a computer. Also, the time to transmit these images, such as over email
or when downloading from websites on the internet, can be quite lengthy. By
compressing an image, it is able to be stored in a smaller amount of space
than the uncompressed version. Obviously, more compressed images can be
stored in a fixed amount of space and transmission times are reduced. With
the increasing use of digital images, the ability to compress such data continues
to be important. As such, methods of image compression are actively being
developed and improved.

If we consider an image as a two-dimensional matrix of pixel values (e.g. gray
levels), then we can perform a truncated singular value decomposition (SVD)
on the matrix to achieve an approximation to the image using less storage than
the original. Some other popular compression schemes use a discrete cosine
transform (DCT) or discrete wavelet transform (DWT). The SVD chooses basis
vectors to fit the problem, while the DCT and DWT constrain the basis vectors
to a predetermined set. Similar to the SVD is the semidiscrete decompostion
(SDD). The SDD also chooses basis vectors to fit the problem but limits the
values that their entries can take.

O’Leary and Peleg [1983] first presented the SDD approximation for appli-
cation to image compression. Kolda and O’Leary [2000] later expanded it to a
weighted SDD approximation and developed software, SDDPACK, that imple-
ments their algorithm. They also applied the SDD to latent semantic indexing
[1996]. McConnell and Skillicorn [2001] further explored the SDD and gave
another application in data mining to find outlier clusters in data sets.

The SDD writes a matrix as a product of three matrix factors, X DY . The
elements of the matrices X and Y are members of the set S = {-1,0,1}, and
D is a diagonal matrix with positive real-valued elements.

A k-term SDD has the form

d 0 0 y?
0 Cl2 0 y2T k
Ay = [21 22 zy | : = zdixz’yiT-
. i=1
0 0 . dk, y,{
« -— _ -~) N ~
Xk Dy, YT

Each z; is an m-vector with entries from the set S, each y; is an n-vector with
entries from the set S, and each d; is a positive scalar.

While an exact decomposition of an m X n matrix A can be achieved using
at most mn terms, we can also construct a k-term approximation. Since this
requires storage for just k floating point numbers and k(m + n) entries from S,
we achieve excellent compression compared to storage of the dense matrix A if
k is small enough.

In Section 2 we review Kolda and O’Leary’s algorithm for computing the
SDD approximation. Section 3 presents an alternative method using preselected
values for the elements of D. We discuss some implementation details in Section
4. Numerical results are given in Section 5.

2 Current Algorithm

Given a matrix A and a matrix of weights W, both of size m x n, the weighted
SDD attempts to find an A, of the form given above that approximates A by
minimizing ||A — A ||}, where the weighted norm

m n
1Ay =D > afjwi.

i=1 j=1

It will be useful to recall the elementwise product of matrices (Ao B);; = a;;bij,
as the weighted norm can be written as

m n

Ay = D" D (Ao Ao W)y

i=1 j=1

2.1 Computing the SDD Approximation

The algorithm for generating the k-term SDD presented by Kolda and O’Leary
[2000] computes approximations Ay, As, ..., Ay by using an alternating algorithm
to find one new (d, z,y) triple at a time. Then, each A; = A;_; + dxy”.

Begin with Ag =0 and let Ry = A — Aj_1 be the residual matrix. Then at
each iteration, the (d,z,y) triple must solve

min Fy(d, z,y) subject to x € S™,y € S™,d > 0, (1)

d,z,y

where

It can be shown that this is equivalent to solving

max Fj(z,y) subjectto z € S™,y € S",d > 0, (2)
.y

where)
~ .Z'T Rk oW Yy
Fk(may)E [(T)] .
(oz)T W (yoy)
Note that d has been eliminated. After finding x and y that satisfy (2), d is set
to the optimum value as

zT(Ro W)y

T = oy TW (yoy)

To find z and y, an alternating algorithm is employed. If a y is chosen and
fixed, the problem reduces to
. (wTs)2
F = e 3
m:?‘X k(zay) m;]‘x (.CL'O.CL')TU’ ()
where s = (R o W)y and v = W (yoy). Now, (3) is solved for z. Similarly, by
fixing x, we can solve for y. The algorithm continues, alternating between solv-
ing for z and for y, until convergence. The corresponding d value is computed
and the approximation to A is improved to Ay = Ay_; + dxy”. Note that this
method finds a local rather than a global solution to (1).

3 New Method

McConnell and Skillicorn [2001] showed that the SDD algorithm of Kolda and
O’Leary computes values of d that are averages of peaks in the data, and this
can lead to blurring of edges in images. The new idea is as follows: Instead of
computing the optimal value of d from z and y as above, we preselect a value of
d and then compute the corresponding z and y vectors. With a careful choice
of d, we can preserve sharp edges in the image.

3.1 Computing SDD Approximation

As in the original algorithm, at each iteration we want to find a triple (d,z,y)
to solve
‘rinin Fy(d, z,y) subjecttox € S™,y € S",d > 0, 4)
,'T’y
where

We first rewrite F}, as
Fy(d,z,y) = ||Rillfy — 2dz” (R o W)y + d*(w o) W (y o). (5)

Given a choice of d, all values are known except the vectors x and y. We
can again use an alternating algorithm to find an approximate solution to the
problem. Assuming y is fixed, we write

Fi(z,y) = |Bellfy +27s + (z02)"v (6)

where s = —2d(Ri o W)y and v = d?W (yoy). Since Ry is constant with respect
to x, the minimum of F} occurs at the same x as the minimum of

Fo=2Ts+ (xox)Tv = (z151 + |z1|v1) + (Tas2 + |Z2|v2) + .. + (T S + | T |V)-

(7)
Now, each z; occurs in exactly one binomial term. For each, we set x; to the
value that minimizes that term. Hence, we can determine the optimum z for a
given y in m steps. As above, we can then alternate between computing z and
y until convergence. The full algorithm is given in Figure 1.

4 Implementation Detalils

We provide Matlab software that is a modification of the SDDPACK developed
by Kolda and O’Leary and available at http : //www.cs.umd.edu/users/oleary/
SDDPACK/index.html. Here we discuss decisions made in implementing the new
SDD algorithm.

4.1 Choosing Values for D

We first explored using the mode or median of the values in the current Ry
as the choices for d at each iteration. We take the median to be the middle
element after sorting the absolute values of all nonzero entries in Ry, and we
let the mode be the most common value among the nonzeros. We give results
using both in the next section.

For the mode, we also explored using a binning technique because regions
in images tend to be made up of pixel values that are close together but not
necessarily equal. For example, a blue sky may consist of a few values rather
than just one, yet we should consider the sky’s values as belonging to the same
set. To perform this clustering, we use the Matlab kmeans function to separate
the absolute value of the nonzero entries of R into bins. We then choose a
representative of the bin with the most entries as the mode. This method of
choosing d performs slower in comparison to the other two because the kmeans
clustering is an iterative algorithm that can be slow to converge. Also, the
d values resulting from the clustering were not markedly different from those
chosen by using the mode. For these reasons, we do not include results for this
method.

1. Let Ry denote the residual, and initialize R; « A.
Let pg = ||Rg||%, be the square of the norm of the residual, and initialize

p1 < ||Ral[3y -

Let Ay denote the k-term approximation, and initialize Ag < 0.
Choose kmax, the maximum number of terms in the approximation.
Choose pmin, the desired accuracy of the approximation.

Choose lmax, the maximum allowable inner iterations.

Choose amin, the minimum relative improvement, and set a > 2amin -

2. For k=1,2,...,kmax, while px, > pmin, do

(a) Choose d as the mode or median of Ry.
(b) Choose y so that (R; o W)y # 0..

(c) Forl=1,2,...,lmax,while & > @min, do
i. Set s« —2d(Rg o W)y, v < d?W (y o y).
T

Solve ming z* s+ (zoz)" v.

ii. Set s —2d(Ry o W)l z, v« &>WT (z 0 z).
Solve miny y* s+ (yo y)Tv.

iii. 8 —2daT (Ry o W)y + d*(z 0 z)TW(yoy).
BB

iv. If I > 1: a + ——
B

v. B« B.
End [-loop.
(d) z < z, yp <y, dg, < d.
(e) Ap « Ap_1 + dpzry -
(f) Rpy1 ¢ Rp —dpapyf.

(&) Prt1 < pr — B

End k-loop.

Figure 1: Computing a Weighted SDD with chosen d values.

4.2 Starting Vectors

As with Kolda and O’Leary’s original alternating algorithm, our revision is
highly dependent on the starting y vector. In addition to the four starting
y vector choices from SDDPACK, we have included one specific to the choice
of d. We initialize y; to one if the i** column of R}, contains this value of d.
Conversely, we set y; to —1 if the i*" column of R}, contains —d. All unassigned
y; are zero. We call this initialization SET.

4.3 Convergence

The x and y vectors do not always converge with a particular d and starting
y vector. For instances where they do not converge given d as the mode, we
restart the algorithm with a new choice of d as the next most common value in
the data set. If all values have been exhausted, we perform the old method for
one iteration. If the initial d value was chosen as the median, our first restart
uses the mode. We then continue as above, choosing the next most common
value.

5 Results

We present experiments performed on two images, one with sharp edges of
part of a circuit board and one with less well-defined edges of bacteria under a
microscope. By design, we expect our algorithm to perform better on the circuit
image. The images are given below.

Figure 2: Circuit Image Figure 3: Bacteria Image

We recall the four initialization strategies for the vector y as presented by
Kolda and O’Leary:

THR: Cycle through the unit vectors (starting where it left off at the previous

iteration) until ||Re;||3 > ||Rk||%/n, and set y = e;. (Threshold)
CYC:
ONE:
PER:

Initialize y = e;, where i = ((k — 1) mod n) + 1. (Cycling)
Initialize y to the all ones vector. (Ones)

Initialize y to a vector such that elements 1,101, 201,... are one and the
remaining elements are zero. (Periodic ones)

They showed that THR performs best overall with CYC a close second. Our
method was very slow to converge with THR so we have not included it here,
but give results for the other initializations. Our new initialization technique,
SET, as described above, which sets the y;’s to 1 based on the d value, is also
included.

For each image, we perform 25, 50, and 100 term approximations using
each of CYC, ONE, PER, and SET to initialize y and each of the two ways of
choosing d. We also perform 25, 50, and 100 term approximations with Kolda
and O’Leary’s method using THR, ONE, and PER to initialize y. (CYC did not
converge for the bacteria image so we do not include it for either image here.)

Tables 1 and 2 show the total number of restarts for each using mode and
median for choice of d on both images. The algorithm did not ever have to run
the old SDD method. We see that using the mode resulted in far fewer restarts
than the median. As expected, the circuit image, with its sharp edges, also
had somewhat fewer restarts than the bacteria. Overall, CYC and PER also
performed fewer restarts than ONE and SET, although ONE and SET did well
with d as the mode.

Table 1: Comparison of number of restarts for Bacteria.

Median

Mode

k-Terms CYC ONE PER SET k-Terms CYC ONE PER SET
25 2 14 0 32 25 2 0 0 0
50 2 64 0 82 50 2 0 0 0
100 2 160 64 180 100 2 0 0 0

Table 2: Comparison of number of restarts for Circuit.
Median Mode

k-Terms CYC ONE PER SET |[kTeems CYC ONE PER SET
25 0 0 0 42 25 0 0 0 2
50 0 12 0 72 50 0 0 0 2
100 0 108 0 168 100 0 0 0 2

Relative residual norms for tests with both the old and new method are

given in Tables 3, 4, and 5. Although the old method performs better in all
cases, the residual norms using median are comparable (i.e. within the same
order of magnitude). Using mode for the choice of d had a far larger residual in
the 25- and 50-term approximations than the other methods for both images.
The mode was comparable to the other methods in the 100-term approximation
for the circuit image, but was still worse in the 100-term bacteria image by

an order of magnitude. Overall, using the median as the d value yields better
results than using the mode.

Table 3: Comparison of relative residual norms for mode.

Bacteria Circuit
k-Terms CYC ONE PER SET k-Terms CYC ONE PER SET
25 3.952 4.064 2.618 3.988 25 6.273 7.736 5.474 4.507
50 1.976 2.220 1.477 1.996 50 3.274 3.955 3.081 2.351
100 4669 .7076 .4761 .5856 100 1.137 1.336 1.082 .7649

Table 4: Comparison of relative residual norms for median.

Bacteria Circuit
k-Terms CYC ONE PER SET k-Terms CYC ONE PER SET
25 1.038 1.215 1.035 1.471 25 1.593 1.494 1.530 4.836
50 5514 5768 .5513 .6147 50 9509 .7976 .8613 1.132
100 2977 1340 .1978 .1238 100 6303 .3382 .5047 .3385

Table 5: Comparison of relative residual norms for old method.

Bacteria Circuit
k-Terms THR ONE PER k-Terms THR ONE PER
25 9213 .9316 19224 25 1.436 1.450 1.422
50 3576 .3638 .3507 50 6719 .6783 .6683
100 .1064 .1025 .09912 100 .2848 .2832 .2835

Figures 4 and 5 show the 100-term circuit and bacteria approximations with
the smallest residual norms for the old method and the new method using
mode and median as compared to the original images. We see that the visual
differences between the old method and the new method with d chosen as the
median are minimal, while the images with d chosen as the mode are noticeably
worse. Both the old and median also give qualitatively accurate approximations
to the original.

Figures 6-11 show the progression of 25-, 50-, and 100-term approximations
for each method on both images. Our new method performs quite poorly in the
25-term approximation, but improves drastically even with 50 terms.

6 Summary

The performance of our alternative method of computing the SDD approxima-
tion is comparable but not better than Kolda and O’Leary’s method. Using the
median as the choice for d gives a better approximation than using the mode.
Exploring other choices for d has the possibility of improving upon this method.

References

Kolda, T. G. and D. P. O’Leary. 1996. A Semi-Discrete Matrix Decom-
position for Latent Semantic Indexing in Information Retrieval. ACM
Transactions on Information Systems. 16:322-346.

Kolda, T. G. and D. P. O’Leary. 2000. Algorithm 805: Computation and
Uses of the Semidiscrete Matrix Decomposition. ACM Transactions on
Mathematical Software. 26:415-435.

McConnell, S. and D. B. Skillicorn. 2001. Outlier Detection Using SemiDis-
crete Decomposition. External Technical Report. Queens University,
Kingston, Ontario, Canada. ISSN-0836-0227-2001-452.

O’Leary, D. P. and S. Peleg. 1983. Digital image compression by outer
product expansion. IEEE Transactions on Communications. 31:441-444.

(a) Original circuit image. (b) Best circuit with old method.

(c) Best circuit with median. (d) Best circuit with mode.

Figure 4: Comparison of 100-term circuit images with the original.

10

(a) Original bacteria image. (b) Best bacteria with old method.

(c) Best bacteria with median. (d) Best bacteria with mode.

Figure 5: Comparison of 100-term bacteria images with the original.

11

1 1 'mm

.

(a) Original circuit image. (b) 25-term approximation.

3'.
A e TSN a0

B |1 S

z TN e B -
i
| I|] | 1

(c) 50-term approximation. (d) 100-term approximation.

Figure 6: Progression of circuit images using mode to choose d and SET to
initialize y.

12

(c) 50-term approximation. (d) 100-term approximation.

Figure 7: Progression of circuit images using median to choose d and ONE to
initialize y.

13

(c) 50-term approximation. (d) 100-term approximation.

Figure 8: Progression of circuit images using old method and THR to initialize
y.

14

(c) 50-term approximation. (d) 100-term approximation.

Figure 9: Progression of bacteria images using mode to choose d and CYC to
initialize y.

15

(a) Original bacteria image. (b) 25-term approximation.

(c) 50-term approximation. (d) 100-term approximation.

Figure 10: Progression of bacteria images using median to choose d and ONE
to initialize y.

16

(c) 50-term approximation. (d) 100-term approximation.

Figure 11: Progression of bacteria images using old method and THR to initial-
ize y.

17

