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1. Introduction

Structure from motion (SfM) is the
problem of computing the 3D scene and camera
parameters from a video or collection of images.
SfM can be further classified as calibrated and
un-calibrated. In calibrated SfM, the internal
camera parameters are known. This is a much
easier problem than the un-calibrated case,
where these parameters are unknown. Solving
for the internal camera parameters are known as

the camera self/auto calibration problem.

However, there are sequences/videos that their

internal  parameters cannot be uniquely
determined. (i.e. that is, there are many different
settings of internal parameters that give rise to
the same video.) In the following sections, we
are going to discuss and prove that three cases of
motions, (1) pure translation, (2) single rotation,
and (3) single rotation about X/Y/Z-axis and
translation, are CMS, and the necessary and
sufficient conditions of a sequence not being a

CMS.
2. Critical Motion Sequence

For the proof, we assume we are given m
cameras and n points. Camera parameters are
represented as f,(txj,tj,tzj),jzil.,Z,...,m ,
3-D points as (X;,Y,Z;),1=12,...,n | and

image of i-th point in j-th cameraas (u/,v/)

2.1. Motions which are CMS
(1) Pure translation
For the pure translation, we assume the image

formation equations as
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Let f'=sf;Z,'=sZ,;t)'=st} We can adjust
s to have different parameter configurations but
still result in the same (uij,vij). Hence, we

show pure translation is CMS.

(2) In-plane rotation and single rotation about

X or Y-axis

Consider the in-plane rotation case, given the
rotation matrix and equations as
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We can have the same conclusion as in pure

translation case by letting f'=sf; Z;'=sZ; .

Next, let’s consider other single rotations. For

the case of rotation along X-axis, given the



rotation matrix and the corresponding projection
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Similarly, we can let f '=sf ; X,'= X, /s

that will give the same (U, V). In addition, it

is also true for the case of rotation about Y-axis.

Thus, all of three single rotations are CMS.

However, rotation about X or Y-axis is less
critical as compared to that of in-plane rotation
and translation case in the sense that such
sequences are not critical if we know the aspect

ratio between f, and f,.

(3) Single rotation about X/Y/Z-axis and

translation

In this case, the projection equations can be

written as
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Let f '=sf,; t!'=t//s; X,'=X,/s,
we will have infinite ambiguous solutions of
internal parameters simply by adjusting s as in
previous cases. In fact, translation plays no role

in reducing calibration ambiguities (proof later).

2.2. Which motions are not CMS?

We analyze the most general case and so we use
the full model for the internal calibration given
by the matrix K. To facilitate the derivation, here
we assume the image formation equation in
homogenous coordinate as

g/ = K[R VX,
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Then,
X) =KRIX, +Kt!

Our approach is to find if there exists more than
one set of parameters that gave rise to the same
video. We know a sequence is CMS if there is

another solution, that is,
X =K[R" t]X,
Then, assume K =1,

X! =RIX; +1/
=AATRIAATX, + AAT'

s
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We found that it is CMS if and only if A*RIA is
a rotation matrix. We take K=I, R and t as the
ground-truth parameters and then investigate if
there exists other sets of parameters which give
rise to the same video. We propose trying K=A
as a guess. With this guess we obtain new R’, t”
and X;’. To be a valid set of parameters, the only
constraint that this new set should satisfy is that
R'” be a rotation matrix. Hence rotation is the
only parameter that determines whether or not a
sequence is a CMS. Translation does not play

any role. Finally, a sequence is a CMS if and



only if RI” is a rotation matrix.

If we assume A™RIA to be a rotation matrix, then
by a variable substitution X=AA', we get
RIXRT=X where X is a symmetric matrix. A
sequence is a CMS if and only if there exists a
symmetric matrix X, which is not the identity
matrix, such that it satisfies the equation
RIXRIT=X for all Rs (note that R! is the rotation
matrix corresponding to the j-th camera). For a
particular j, the solution of the equation is given
in terms of the eigen-vectors of R\. Since the
desired X should satisfy the equation for all the
cameras, it must be in the intersection of all the
XJs (the individual solution for each j). Therefore,
if X=I is the only solution then the sequence is

not a CMS and otherwise it is.

2.3. Necessary and Sufficient Condition of a

sequence not being a CMS

The eigen-vectors corresponding to two rotations
with independent rotation axes are different.
This implies that the intersection of XIs is the
identity matrix and this implies that this is not a
CMS. If the rotations Rls share a common axis
of rotation, then they also share the
eigen-vectors and so there exist a symmetric
matrix X, other than identity, which satisfy the
equations R'TXR/=X for all j. And hence this is a

CMS.

According to the above analysis, we can
conclude the necessary and sufficient condition
for a sequence not being a CMS is least two
independent rotation axes [3], and one axis of

rotation is a CMS. The same necessary and

sufficient condition holds for the planar scene.
For example, Checker-board pattern is a planar
scene and calibration is successful if there are

enough rotations.

2.4. How to detect CMS and to mitigate the

problem?

As one approach, we propose to run a SfM
algorithm such as EKF to obtain a solution. We
can then analyze this solution to see if it is one
of the CMSs. If so we can conclude that the
original motion is also CMS. This is based on
the fact that if a motion is a CMS, then SfM
algorithms like EKF will provide one of the
solutions from amongst the many possible. Once
we detect that the motion is a CMS, we know
which parameters we can trust and which we

cannot.

To mitigate the problem, there are two ways that
firstly, we can add initial motion with rotation
along 2 different axes when capturing the video.
In addition, we can also include the GPS
information which can fix the camera translation
and increase the chance of resolving the

ambiguity.

3. CMS Verification

For proof of concept, we use the auto-calibrator
implementation proposed in [1]. The reason why
to use online parameter estimation algorithm,
EKEF, is that video is a sequential data, so we can
use the previous state to estimate the next one.

Moreover, EKF can handle certain extent of
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Figure 1. The concept of sum of Gaussian Framework is to run a set of filters simultaneously, and each

filter is assumed to be normally distributed. The combination weight for each filter can be decided

based on the difference (i.e. it is re-projection error in our case.) between measurement and the estimate,

h(xc). The final state estimate is the weighted average of the state estimates of each filter. In addition,

the weighted aggregation of predicted estimate for the feature points can also be used to define the

search region in the following video frame which is useful for tracking.

non-linearity.

In the next section, we briefly review EKF and
then describe how Javier’s EKF calibrator works

and how to incorporate GPS information.

3.1. Extended Kalman Filter

In the formulation of Kalman filter, a dynamical
system can be modeled using state and
measurement equations. (i.e. Both equations

include noise which is normally distributed.)

X1 = [ () + wy
Zr = he(xg) + vy

where f, (), hi(") are the state transition and
measurement  functions

wi~N(0, Qi ), and v, ~N(0,R;), and X is the

respectively, and

state vector, and z is the measurement from the

video.

The exteneded Kalman filter (EKF) is the
nonlinear version of Kalman filter, where f, (*),
h, () are assumed nonlinear. However, EKF
does linearize these two functions about the
current estimate, £y, using first-order Taylor
expansion. Then, we can still follow standard
Kalman filter paradigm to compute the new

estimates.

The state and measurement equation for EKF are
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Besides, last terms for both equations are known
values.

.3.2. Javier’s Auto-calibrator

The system framework and explanations of the
auto-calibrator are shown in Figure 1. More

details about the implementation can be found in

[1][2] for interested readers.

The state vector in Javier’s work consists of two
parts. One is camera parameter, including
internal and external parameters, and the other is
3D coordinate of each feature point. (For this

work, it assumes f, = f,).

X = (xcam: xmap):

where Xmap = 1, Y2 -":ynf)! Vi =
(X;, Vi, Z;), the coordinate of ith feature point.

For Xcam, the internal parameters include (1) focal
length, (2) principal point, and (3) two distortion

parameters.

Xcam = (xint: xext)

Xint = (f' Cx' Cy' K1, KZ)

The external parameters include (1) camera
position, (2) camera orientation (represented in
quaternion), (3) movement velocity, and (4)

angular velocity.

xext = (rcam: QCamt Ucam: wcam)

In this work, it assumes a single camera is used
and is without changing focal length, so the
internal parameters will be the same for the
whole video sequence. Thus, we can simply set
the corresponding part of Fy for the internal
parameters, Xy, as identity matrix for the part of
internal parameter and noise in state equation to

zero (i.e. or close to zero).

For external part, Xe, We have to compute the
Jacobian matrix based on the constant velocity

model as shown in the following matrix.
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Similarly, the 3D coordinate of feature points
will also be the same during the entire video and
we set F, for them as identity matrix,

For Hy, we compute the Hy using pin-hole

camera model.

u; f 0 Cx Xi
[v.]z 0 f C,|[RI-RE|Y;

L
0 0 1 Z;

where R € R33 and t € R31

3.3. Experimental results

We test five sequences, (1) MITRE sequence
with single rotation along Y-axis, (2)(3) office
scene | and office scene Il both with at least two
independent axis rotations, (4) office scene Ill
with pure translation, and (5) checker board with
pure in-plane rotation. All videos are in the

resolution 320x240. The experimental results



and explanation can be found in Table I.

Focal MITRE Javier’s Javier’s Pure In-plane
oca
Lenath Sequence Sequence 1 Sequence 2 Translation Rotation
engt
(320x240) (320%240) (320%240) (320%212) (320%212)
¥ - N . ' ‘
- . w
Ground
0.613148 0.6065625 0.6153125 0.77238 1.028125
Truth
Estimated 0.603495 0.61113 0.604219 0.6375 0.680449
Results (105 frames) (104 frames) (164 frames) (521 frames) (369 frames)

Table 1. For the experimental results of the first three sequences, we show comparable results to the

ground truth in PTAM coordinate [8] (i.e. the conversion is done by dividing the estimate focal length

in pixels with the max(width, height) ) using ~100 frames because they are non-CMS based on the

analysis discussed in Section 2. (In Javier’s implementation, because both focal lengths, f, and f,, are

assumed equal, even though the video only have one rotation motion along single axis, it is not CMS as

described in Section 2.1.) For the last two CMS sequence (pure translation and in-plane rotation), there

exists infinite possible solutions satisfied the equations. For these sequences, the estimated results are

far from the ground truth.

4, Extension: Javier’s EKF with GPS

To perform coordinate transformation (i.e. given
a point in the A coordinate system, we want to
get its corresponding coordinate in B), we need

to know rotation, translation, and the scale

between these two coordinate systems.

EKF conrdinate

£9PS qIPs, sOPS

GPS coordinate

Figure 2. Coordinate transformation requires

three parameters for alignment, translation,

rotation, and scale.
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Figure 3. it shows the layout of new H,. The blue shaded area is the Jacobian matrix of image

projection equation with respect t0 X = (Xcam, Xmap). FOr the block in-between two blue areas, because

GPS measurement does not appear in image projection equation, its Jacobian is zero. For the GPS part,

given the transformation equation, hyg (i.e. it transforms the camera location in EKF coordinate to GPS

coordinate), we take its Jacobian and put into the new H,. Because the camera position, rem, gets

involved in the hyg, its Jacobian is not zero with respect to other state parameters and shown in red.

Therefore, to incorporate the GPS information
into EKF, we have to put those parameters,
translation, rotation, and scale into the state

vector.

Xnew = (xcam » Xgps xmap)r

where  xg,s = (tgpss Agps: Sgps) 1S the
translation from EKF to GPS coordinates.

qgps € R* is the quaternion from EKF to GPS

coordinates. sg,s € R" is the scale.

Because the registration parameters should be
always the same for the two coordinate systems,
we can follow the same way that Javier [1] did
for the internal parameters and set the Fy of GPS

part, x4y, as identity matrix.

For new Hy, we have to compute the Jacobian
matrix using the new measurement equation

shown as follows and combine it with the old

one.
Xgps
— 3
Zgps = | 'gps €R
Zgps
Zgps = hgp5(xgp5) = Sgps R (qus) (rcam - tgzDS) + Ngps,)

where ng,s~N (0, Gy).

In Figure 3, it shows the layout of the resulting
Hy.

To test the effectiveness of GPS
information, we run the calibrator at different
starting points at MITRE sequence (the same
sequence as shown in Table 1) and fix the

number of observations to 50 frames.



MITRE sequence:
Ground truth focal length 0.613148

Starting frame With GPS Without GPS
200" frame 0.583242 0.521362
300" frame 0.560840 0.543391
400" frame 0.591406 0.537540
Table 2. it shows the results of EKF

auto-calibrator [1] with state vector augmented

with GPS information.

From Table 2, we can find that with GPS
information, the calibration results converge
faster to ground truth. The results also show GPS
information helps mitigate the ambiguities on

translation and absolute coordinate parameters.

5. Conclusions

To sum up, we prove the necessary and
sufficient conditions for a sequence not being a
CMS that it should have at least two independent
axes of rotations. The rotations can help resolve
the ambiguities of the solutions for the camera
focal length. In addition, CMS can be detected
through analyzing the reconstructed camera
trajectory and comparing with the cases
discussed in the report. Finally, the problem can
rotations when

be mitigated with initial

capturing the video.

Moreover, we also show how to incorporate GPS
information into the auto-calibrator proposed in
[1]. To do that, we need to augment the original
state vector, x,, with transformation parameters
from EKF coordinate to GPS coordinate and
compute new state transition and measurement

matrices, Fand H,.
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