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1. Introduction 

 

Structure from motion (SfM) is the 

problem of computing the 3D scene and camera 

parameters from a video or collection of images. 

SfM can be further classified as calibrated and 

un-calibrated. In calibrated SfM, the internal 

camera parameters are known. This is a much 

easier problem than the un-calibrated case, 

where these parameters are unknown. Solving 

for the internal camera parameters are known as 

the camera self/auto calibration problem.  

 

However, there are sequences/videos that their 

internal parameters cannot be uniquely 

determined. (i.e. that is, there are many different 

settings of internal parameters that give rise to 

the same video.) In the following sections, we 

are going to discuss and prove that three cases of 

motions, (1) pure translation, (2) single rotation, 

and (3) single rotation about X/Y/Z-axis and 

translation, are CMS, and the necessary and 

sufficient conditions of a sequence not being a 

CMS. 

 

2. Critical Motion Sequence 

 

For the proof, we assume we are given m 

cameras and n points. Camera parameters are 

represented as                         , 

3-D points as                      , and 

image of i-th point in j-th camera as        .  

  

2.1. Motions which are CMS  

(1) Pure translation  

For the pure translation, we assume the image 

formation equations as 
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Let                        . .We can adjust 

s to have different parameter configurations but 

still result in the same        . Hence, we 

show pure translation is CMS. 

  

(2) In-plane rotation and single rotation about 

X or Y-axis 

 

Consider the in-plane rotation case, given the 

rotation matrix and equations as 

 

 

 

 

 

 

 

We can have the same conclusion as in pure 

translation case by letting                . 

 

Next, let’s consider other single rotations. For 

the case of rotation along X-axis, given the 
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rotation matrix and the corresponding projection 

 

 

 

 

 

 

 

 

Similarly, we can let                     

that will give the same        . In addition, it 

is also true for the case of rotation about Y-axis. 

Thus, all of three single rotations are CMS. 

 

However, rotation about X or Y-axis is less 

critical as compared to that of in-plane rotation 

and translation case in the sense that such 

sequences are not critical if we know the aspect 

ratio between fx and fy. 

 

(3) Single rotation about X/Y/Z-axis and 

translation 

 

In this case, the projection equations can be 

written as 
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Let                                  , 

we will have infinite ambiguous solutions of 

internal parameters simply by adjusting s as in 

previous cases. In fact, translation plays no role 

in reducing calibration ambiguities (proof later). 

 

2.2. Which motions are not CMS? 

 

We analyze the most general case and so we use 

the full model for the internal calibration given 

by the matrix K. To facilitate the derivation, here 

we assume the image formation equation in 

homogenous coordinate as 

�̃�𝑖
𝑗
= 𝐊[𝐑𝑗   𝐭𝑗]�̃�𝑖 ,  

𝑤ℎ𝑒𝑟𝑒 �̃�𝑖
𝑗
= [

𝐮𝑖
𝑗

𝐯𝐢
𝑗

1

] , �̃�𝑖 = [
𝐗𝑖
1
] 

Then, 

 

 

Our approach is to find if there exists more than 

one set of parameters that gave rise to the same 

video. We know a sequence is CMS if there is 

another solution, that is,  

    

 

Then, assume K = I,  

 

 

 

 

 

 

We found that it is CMS if and only if A
-1

R
j
A is 

a rotation matrix. We take K=I, R
j
 and t

j
 as the 

ground-truth parameters and then investigate if 

there exists other sets of parameters which give 

rise to the same video. We propose trying K=A 

as a guess. With this guess we obtain new R
j
’, t

j
’ 

and Xi’. To be a valid set of parameters, the only 

constraint that this new set should satisfy is that 

R
j
’ be a rotation matrix. Hence rotation is the 

only parameter that determines whether or not a 

sequence is a CMS. Translation does not play 

any role. Finally, a sequence is a CMS if and 
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only if R
j
’ is a rotation matrix. 

 

If we assume A
-1

R
j
A to be a rotation matrix, then 

by a variable substitution X=AA
T
, we get 

R
j
XR

jT
=X where X is a symmetric matrix. A 

sequence is a CMS if and only if there exists a 

symmetric matrix X, which is not the identity 

matrix, such that it satisfies the equation 

R
j
XR

jT
=X for all R

j
s (note that R

j
 is the rotation 

matrix corresponding to the j-th camera). For a 

particular j, the solution of the equation is given 

in terms of the eigen-vectors of R
j
. Since the 

desired X should satisfy the equation for all the 

cameras, it must be in the intersection of all the 

X
j
s (the individual solution for each j). Therefore, 

if X=I is the only solution then the sequence is 

not a CMS and otherwise it is.  

 

2.3. Necessary and Sufficient Condition of a 

sequence not being a CMS 

 

The eigen-vectors corresponding to two rotations 

with independent rotation axes are different. 

This implies that the intersection of X
j
s is the 

identity matrix and this implies that this is not a 

CMS. If the rotations R
j
s share a common axis 

of rotation, then they also share the 

eigen-vectors and so there exist a symmetric 

matrix X, other than identity, which satisfy the 

equations R
jT

XR
j
=X for all j. And hence this is a 

CMS.  

 

According to the above analysis, we can 

conclude the necessary and sufficient condition 

for a sequence not being a CMS is least two 

independent rotation axes [3], and one axis of 

rotation is a CMS. The same necessary and 

sufficient condition holds for the planar scene. 

For example, Checker-board pattern is a planar 

scene and calibration is successful if there are 

enough rotations. 

 

2.4. How to detect CMS and to mitigate the 

problem? 

 

As one approach, we propose to run a SfM 

algorithm such as EKF to obtain a solution. We 

can then analyze this solution to see if it is one 

of the CMSs. If so we can conclude that the 

original motion is also CMS. This is based on 

the fact that if a motion is a CMS, then SfM 

algorithms like EKF will provide one of the 

solutions from amongst the many possible. Once 

we detect that the motion is a CMS, we know 

which parameters we can trust and which we 

cannot.  

 

To mitigate the problem, there are two ways that 

firstly, we can add initial motion with rotation 

along 2 different axes when capturing the video. 

In addition, we can also include the GPS 

information which can fix the camera translation 

and increase the chance of resolving the 

ambiguity. 

 

3. CMS Verification 

 

For proof of concept, we use the auto-calibrator 

implementation proposed in [1]. The reason why 

to use online parameter estimation algorithm, 

EKF, is that video is a sequential data, so we can 

use the previous state to estimate the next one. 

Moreover, EKF can handle certain extent of 



 

Figure 1. The concept of sum of Gaussian Framework is to run a set of filters simultaneously, and each 

filter is assumed to be normally distributed. The combination weight for each filter can be decided 

based on the difference (i.e. it is re-projection error in our case.) between measurement and the estimate, 

h(xk). The final state estimate is the weighted average of the state estimates of each filter. In addition, 

the weighted aggregation of predicted estimate for the feature points can also be used to define the 

search region in the following video frame which is useful for tracking. 

 

non-linearity.  

 

In the next section, we briefly review EKF and 

then describe how Javier’s EKF calibrator works 

and how to incorporate GPS information. 

 

3.1. Extended Kalman Filter 

 

In the formulation of Kalman filter, a dynamical 

system can be modeled using state and 

measurement equations. (i.e. Both equations 

include noise which is normally distributed.) 

 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘) + 𝑤𝑘 

𝑧𝑘     = ℎ𝑘(𝑥𝑘) + 𝑣𝑘 

 

where fk (∙), ℎ𝑘(∙) are the state transition and 

measurement functions respectively, and 

𝑤𝑘~𝑁(0,  𝑄𝑘), and 𝑣𝑘~𝑁(0, 𝑅𝑘), and xk is the 

state vector, and zk is the measurement from the 

video. 

 

The exteneded Kalman filter (EKF) is the 

nonlinear version of Kalman filter, where fk (∙), 

ℎ𝑘(∙ ) are assumed nonlinear. However, EKF 

does linearize these two functions about the 

current estimate, �̂�𝑘|𝑘 , using first-order Taylor 

expansion. Then, we can still follow standard 

Kalman filter paradigm to compute the new 

estimates.  

 

The state and measurement equation for EKF are 



 

𝑥𝑘+1 = 𝐹𝑘𝑥𝑘 + 𝑢𝑘 + (𝑓(�̂�𝑘|𝑘) − 𝐹𝑘�̂�𝑘|𝑘−1)) 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 + (ℎ𝑘(�̂�𝑘|𝑘−1) − 𝐻𝑘�̂�𝑘|𝑘−1)) 

where 𝐹𝑘 =
𝜕𝑓

𝜕𝑥
|
�̂�𝑘|𝑘

 and              . 

Besides, last terms for both equations are known 

values. 

 

.3.2. Javier’s  Auto-calibrator 

 

The system framework and explanations of the 

auto-calibrator are shown in Figure 1. More 

details about the implementation can be found in 

[1][2] for interested readers. 

 

The state vector in Javier’s work consists of two 

parts. One is camera parameter, including 

internal and external parameters, and the other is 

3D coordinate of each feature point. (For this 

work, it assumes fx = fy). 

 

𝑥 = (𝑥𝑐𝑎𝑚 ,   𝑥𝑚𝑎𝑝), 

 

where 𝑥𝑚𝑎𝑝 = (𝑦1,  𝑦2,  … , 𝑦𝑛𝑓),  𝑦𝑖 =

(𝑋𝑖 ,  𝑌𝑖 ,  𝑍𝑖), the coordinate of 𝑖th feature point. 

 

For xcam, the internal parameters include (1) focal 

length, (2) principal point, and (3) two distortion 

parameters. 

 

𝑥𝑐𝑎𝑚 = (𝑥𝑖𝑛𝑡 ,  𝑥𝑒𝑥𝑡) 

𝑥𝑖𝑛𝑡 = (𝑓,  𝐶𝑥,  𝐶𝑦 , 𝜅1,  𝜅2) 

 

The external parameters include (1) camera 

position, (2) camera orientation (represented in 

quaternion), (3) movement velocity, and (4) 

angular velocity. 

 

𝑥𝑒𝑥𝑡 = (𝑟𝑐𝑎𝑚 ,  𝑞𝑐𝑎𝑚 ,  𝑣𝑐𝑎𝑚 ,  𝜔𝑐𝑎𝑚) 

 

In this work, it assumes a single camera is used 

and is without changing focal length, so the 

internal parameters will be the same for the 

whole video sequence. Thus, we can simply set 

the corresponding part of Fk for the internal 

parameters, xint, as identity matrix for the part of 

internal parameter and noise in state equation to 

zero (i.e. or close to zero). 

 

For external part, xext, we have to compute the 

Jacobian matrix based on the constant velocity 

model as shown in the following matrix.  

 

[
 
 
 
 
𝑟𝑐𝑎𝑚
𝑘+1

𝑞𝑐𝑎𝑚
𝑘+1

𝑣𝑐𝑎𝑚
𝑘+1

𝜔𝑐𝑎𝑚
𝑘+1]

 
 
 
 

=

[
 
 
 
 
𝑟𝑐𝑎𝑚
𝑘 + 𝑣𝑐𝑎𝑚

𝑘 ×  ∆𝑡

𝑞𝑐𝑎𝑚
𝑘 × 𝑞(𝜔𝑐𝑎𝑚

𝑘 × ∆𝑡)

𝑣𝑐𝑎𝑚
𝑘

𝜔𝑐𝑎𝑚
𝑘 ]

 
 
 
 

 

 

Similarly, the 3D coordinate of feature points 

will also be the same during the entire video and 

we set Fk for them as identity matrix, 

For Hk, we compute the Hk using pin-hole 

camera model.  

 

[
𝑢𝑖
𝑣𝑖
] ≅ [

𝑓 0 𝐶𝑥
0 𝑓 𝐶𝑦
0 0 1

] [𝑅|−𝑅𝑡] [

𝑋𝑖
𝑌𝑖
𝑍𝑖

]  ,   

 𝑤ℎ𝑒𝑟𝑒 𝑅 ∈ 𝑅3×3 𝑎𝑛𝑑 𝑡 ∈ 𝑅3×1  

 

3.3. Experimental results 

 

We test five sequences, (1) MITRE sequence 

with single rotation along Y-axis, (2)(3) office 

scene I and office scene II both with at least two 

independent axis rotations, (4) office scene III 

with pure translation, and (5) checker board with 

pure in-plane rotation. All videos are in the 

resolution 320x240. The experimental results 

𝐻𝑘 =
𝜕 

𝜕𝑥
|
�̂�𝑘|𝑘  

  



and explanation can be found in Table I.  

 

Focal 

Length 

MITRE 

Sequence 

(320×240) 

Javier’s 

Sequence 1 

(320×240) 

Javier’s 

Sequence 2 

(320×240) 

Pure 

Translation 

(320×212) 

In-plane 

Rotation 

(320×212) 

 

     

Ground 

Truth 
0.613148 0.6065625 0.6153125 0.77238 1.028125 

Estimated 

Results 

0.603495 

(105 frames) 

0.61113 

(104 frames) 

0.604219 

(164 frames) 

0.6375 

(521 frames) 

0.680449 

(369 frames) 

Table 1. For the experimental results of the first three sequences, we show comparable results to the 

ground truth in PTAM coordinate [8] (i.e. the conversion is done by dividing the estimate focal length 

in pixels with the max(width, height) ) using ~100 frames because they are non-CMS based on the 

analysis discussed in Section 2. (In Javier’s implementation, because both focal lengths, fx and fy, are 

assumed equal, even though the video only have one rotation motion along single axis, it is not CMS as 

described in Section 2.1.) For the last two CMS sequence (pure translation and in-plane rotation), there 

exists infinite possible solutions satisfied the equations. For these sequences, the estimated results are 

far from the ground truth.  

 

4. Extension: Javier’s EKF with GPS  

 

To perform coordinate transformation (i.e. given 

a point in the A coordinate system, we want to 

get its corresponding coordinate in B), we need 

to know rotation, translation, and the scale 

between these two coordinate systems. 

  

Figure 2. Coordinate transformation requires 

three parameters for alignment, translation, 

rotation, and scale. 

 

 



 

Figure 3. it shows the layout of new Hk. The blue shaded area is the Jacobian matrix of image 

projection equation with respect to x = (xcam, xmap). For the block in-between two blue areas, because 

GPS measurement does not appear in image projection equation, its Jacobian is zero. For the GPS part, 

given the transformation equation, hgps (i.e. it transforms the camera location in EKF coordinate to GPS 

coordinate), we take its Jacobian and put into the new Hk. Because the camera position, rcam, gets 

involved in the hgps, its Jacobian is not zero with respect to other state parameters and shown in red. 

 

Therefore, to incorporate the GPS information 

into EKF, we have to put those parameters, 

translation, rotation, and scale into the state 

vector. 

 

𝑥𝑛𝑒𝑤 = (𝑥𝑐𝑎𝑚  ,   𝑥𝑔𝑝𝑠 ,  𝑥𝑚𝑎𝑝), 

 

where 𝑥𝑔𝑝𝑠 = (𝑡𝑔𝑝𝑠 ,   𝑞𝑔𝑝𝑠 ,   𝑠𝑔𝑝𝑠) is the 

translation from EKF to GPS coordinates. 

𝑞𝑔𝑝𝑠 ∈ 𝑅
4 is the quaternion from EKF to GPS 

coordinates. 𝑠𝑔𝑝𝑠 ∈ 𝑅
1 is the scale. 

 

 Because the registration parameters should be 

always the same for the two coordinate systems, 

we can follow the same way that Javier [1] did 

for the internal parameters and set the Fk of GPS 

part, 𝑥𝑔𝑝𝑠, as identity matrix.  

 

For new Hk, we have to compute the Jacobian 

matrix using the new measurement equation 

shown as follows and combine it with the old 

one. 

𝑧𝑔𝑝𝑠 = [

𝑋𝑔𝑝𝑠
𝑌𝑔𝑝𝑠
𝑍𝑔𝑝𝑠

] ∈ 𝑅3 

 

where 𝑛𝑔𝑝𝑠~𝑁(0,  𝐺𝑘). 

 

In Figure 3, it shows the layout of the resulting 

Hk. 

 

To test the effectiveness of GPS 

information, we run the calibrator at different 

starting points at MITRE sequence (the same 

sequence as shown in Table 1) and fix the 

number of observations to 50 frames.      

𝑧𝑔𝑝𝑠 = ℎ𝑔𝑝𝑠(𝑥𝑔𝑝𝑠) = 𝑠𝑔𝑝𝑠 𝑅(𝑞𝑔𝑝𝑠)(𝑟𝑐𝑎𝑚 − 𝑡𝑔𝑝𝑠) + 𝑛𝑔𝑝𝑠, 



MITRE sequence: 

Ground truth focal length 0.613148 

Starting frame With GPS Without GPS 

200
th

 frame 0.583242 0.521362 

300
th

 frame 0.560840 0.543391 

400
th

 frame 0.591406 0.537540 

Table 2. it shows the results of EKF 

auto-calibrator [1] with state vector augmented 

with GPS information.  

 

From Table 2, we can find that with GPS 

information, the calibration results converge 

faster to ground truth. The results also show GPS 

information helps mitigate the ambiguities on 

translation and absolute coordinate parameters.  

 

5. Conclusions 

 

To sum up, we prove the necessary and 

sufficient conditions for a sequence not being a 

CMS that it should have at least two independent 

axes of rotations. The rotations can help resolve 

the ambiguities of the solutions for the camera 

focal length. In addition, CMS can be detected 

through analyzing the reconstructed camera 

trajectory and comparing with the cases 

discussed in the report. Finally, the problem can 

be mitigated with initial rotations when 

capturing the video.  

 

Moreover, we also show how to incorporate GPS 

information into the auto-calibrator proposed in 

[1]. To do that, we need to augment the original 

state vector, xk, with transformation parameters 

from EKF coordinate to GPS coordinate and 

compute new state transition and measurement 

matrices, Fk and Hk.  
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