
An Application of Jeeves for Honeypot Sanitization

Ashton Webster

Abstract

Being able to quickly create realistic honeypots is
very useful for obtaining accurate information about
attacker behavior. However, creating realistic honey-
pots requires sanitization of the original system from
which the honeypot is derived. To achieve this the
use of the Jeeves, a language based on faceted val-
ues, is extended to rapidly replace secret values with
believable and non-interfering sanitized values. By
making several changes to the source code of Jelf,
a web server implemented in Jeeves, we are able to
quickly and easily create sanitized honeypots. Our
experiments show that the sanitized and unsanitized
versions of Jelf only differ in response times by less
than 1%.

1 Introduction

Secure Information Flow is an area of growing focus
for researchers. Being able to reason about private
information and the policies surrounding it is a com-
plicated and important issue. Several programming
language approaches have been taken to handle this
issue, including Jif [1], Jeeves [2], and HiStar [3]. In
addition to being able to secure this private data, se-
curity researchers are interested in finding ways to
quickly sanitize this private information for use in
honeypots. Here we define sanitization as the process
by which private information from the execution of a
process is removed or replaced so that the program
state no longer discloses any private information to
the user1. This is useful for honeypots, which are

1Notice that our definition of sanitization varies from the
more common input sanitization, which primarily seeks to pre-
vent the use of user input as part of program execution, espe-
cially via SQL Injection or remote code injection. It also dif-
fers from sanitization in the context of anonymizing data for
research purposes.

machines masquerading as legitimate servers for the
purpose of attack detection and analysis. Specifically,
sanitization provides a way of creating a safe and po-
tentially believable environment for an attacker to be
routed to in the case of an attack.

In this paper, we focus on the python implementa-
tion of the Jeeves programming language. By mod-
ifying the language, we are able to sanitize secure
values in a way that is difficult to detect by the at-
tacker. We also show that these modifications have
only a very small impact on performance of the sys-
tem. The rest of the paper is laid out as follows:
First, summary and commentary for three papers in-
troducing the components of the Jeeves language are
provided. Next, the problem of sanitization is more
formally stated and experiments are proposed. Then,
the implementation details are described and the ex-
periments are conducted. Finally, future work is pro-
posed and final conclusions are summarized.

2 Related Work

Initially, Jeeves was introduced [2] as a language with
symbolic variables that were restricted to either a
“high” or “low” level based on constraints in the en-
vironment. Anecdotally, the authors presented this
work at the conference immediately after a work in-
troducing faceted values [4], and the authors from
both papers introduced an extended version of Jeeves
making use of faceted values. The main benefit of the
faceted values over symbolic values is the ability to
more quickly prune impossible values based on a lim-
ited set of possible values Finally, Yang, Hance, and
Austin introduce a Database Framework extension to
Jeeves called Jaqueline, requiring additional seman-
tic rules [5]. This section gives a short overview of the
contributions of each of these works, along with a fi-
nal section summarizing previous work in honeypots

1

and sanitization.

2.1 Jeeves with Symbolic values

In [2], Yang proposes Jeeves. The basic structure
of the paper is to first introduce the Jeeves lan-
guage syntax, then introduce a “constraint functional
language” λJ . Finally, the correspondence between
Jeeves and λJ is proven, Jeeves is implemented as
a Scala library, and several applications are demon-
strated, along with comparisons of the the original
and modified policy lines-of-code required.

The authors first explain how λJ works. The rules
are fairly similar to lambda calculus, but there is
additional state maintained. There are three main
“pieces” of state: G, Σ, ∆.

• G is the current path condition, which includes
information about which branch we are currently
on within the program

• Σ is known as the “constraints” (sometimes
“hard-constraints”), which define the constraints
required for the secret faceted value to be dis-
played for a faceted value.

• ∆ is known as the “default assumptions” (some-
times “soft-constraints”), which define the se-
cret value. Basically this simplifies the computa-
tions for underconstrained satisfaction problems
by specifying which symbolic value to use in the
case of ambiguity. This is essentially required for
the type of SMT solver that the authors of this
paper use to determine the value.

Rules then take the general form

G ` 〈Σ,∆, e〉 → 〈Σ′,∆′, e′〉

where e is an expression. In general, the mkLabel and
mkSensitive functions in the Jeeves Python/Scala
implementation adds a default assumption to ∆ that
the high security/secret value will be the default (this
was a design decision by the authors and does not
affect the non-interference property; the public value
could also be used as the default). This has certain
effects on when faceted values depend on themselves

as the guard, creating circular dependencies. The
authors decide these will default to the high value.
Here is an example in the python interface:

crea t e l a b e l
x = JeevesLib . mkLabel ()
r e s t r i c t v a r i a b l e to r e qu i r e
con t ex t == True f o r h igh va lue
JeevesLib . r e s t r i c t (x ,

lambda x : x == True)
Create f a c e t e d va lue wi th
low = False and high = True ,
guarded by x
f acetedValue = JeevesLib . mkSens i t ive (x ,

True , Fa l se)
context = facetedValue
c i r c u l a r dependency : face tedVa lue
depends on con t ex t
print (JeevesLib . c o n c r e t i z e (context ,

facetedValue))
Output : True

The restrict function adds constraints to Σ speci-
fying what the context must be in order for the secure
value to be displayed. Σ and ∆ are ultimately passed
to an SMT solver which either produces an error (if
no satisfying conditions exist) or provides a satisfy-
ing value which guides which value (high or low) is
produced.

2.2 Jeeves with Faceted values

In [6], the Jeeves language was modified to use
Faceted values. In the paper, the authors explain:
“The system may ... prune facets based on path
assumptions: if evaluation is occurring under the
assumption that guard k is true, then subsequent
evaluation can assume guard k”. An example which
demonstrates this property is given in listing 1 in
Python. The JeevesLib.jif(cond, then, else)

function takes a condition, then case (in case of
true), and else case (in case of false) to construct an
if statement. myif represents a nested if statement.
In the mythen case, the condition (or in this case,
faceted value fv) is assumed to be true. Similarly,
the faceted value must be false in the myelse

case. Therefore, Jeeves is able to prune the incon-
sistent cases and simplify the faceted value from

2

Listing 1: Pruning of Facets

JeevesLib . i n i t ()
x = JeevesLib . mkLabel ()
JeevesLib . r e s t r i c t (x , lambda q : q == True)
fv = JeevesLib . mkSens i t ive (x , True , Fa l se)

def mythen () :
return JeevesLib . j i f (fv , lambda : 1 , lambda : 2)

def myelse () :
return JeevesLib . j i f (fv , lambda : 3 , lambda : 4)

myif = JeevesLib . j i f (fv , mythen , myelse)
print (myif)
#Output : < v0 ? cons t :1 : cons t :4 >

ID
Jeeves
ID

Jeeves
Vars

User Email

1 1 (profile==bob) bob [redacted]
2 1 !(profile==bob) bob bob@g.com

Table 1: Example of a row for a user in Jeeves
database.

<v0 ? <v0 ? const:1 : const:2> : <v0

? const:3 : const:4>> to <v0 ? const:1 :

const:4> based on these assumptions. Pruning like
this makes faceted values more performant than
symbolic variables.

2.3 Jeeves Database

Finally, Yang et al. add database functionality to the
Jeeves language. This is achieved by again extend-
ing the original λJ core language to include union,
intersection, selection, projection, and cross product
operators. Additionally, a Faceted Object Relational
Model (FORM) is implemented in order to popu-
late faceted rows in the database and marshal them
back to faceted values on queries. In our example
project, a row with a faceted value for the email, with
low value “[redacted]” and high value “bob@g.com”
would be represented as in figure 1.

As part of this paper, the authors provide an open

source code repository on GitHub2. This repository
includes a python implementation of Jeeves, along
with a web framework named “Jelf”, which uses
Jeeves for its FORM. Jelf is an extension of the
python Django web framework and is used as the
basis for the experiments in this paper. While the
authors refer to the Jeeves database framework as
“Jacqueline” in the paper

2.4 Honeypots

Creating realistic honeypots can be a powerful tool
for analyzing the behavior of attackers. Hirata et
al. use a method of live-cloning a live, legitimate
server to create an identical honeypot version using
file synchronization techniques [7]. However, Hirata’s
method does not consider “sanitization”, that is, the
removal sensitive files during cloning. This method is
elaborated on in [8], where the authors rapidly live-
clone legitimate servers to be used for honeypots, but
the authors also perform basic sanitization, such as
disallowing certain block reads via modification to
the virtualization software and manually removing
web server directories and passwd files. Techniques
like this, which create honeypots “on the fly” are even
more useful when used in conjunction with Software
Defined Networking (SDN) techniques. For exam-

2https://github.com/jeanqasaur/jeeves

3

ple, Huang et al. uses the Snort [9] Intrusion Detec-
tion System (IDS) to automatically route traffic to
dynamically created honeypots [10]. In this paper,
we leave the network reconfiguration and live-cloning
methods out-of-scope, but we assume it is possible to
quickly redirect traffic from an attacker to a honeypot
clone. Instead, we focus on the sanitization compo-
nent, which we implement using Jeeves and Jelf.

3 Problem Statement

This paper seeks to answer two questions: (1) how
can Jeeves/Jelf be used for honeypot sanitization?
And, (2) what is the performance implication of us-
ing Jelf for honeypot sanitization relative to a plain
web framework and relative to Jelf without the hon-
eypot sanitization enabled? In order to answer the
first of these questions, an implementation of honey-
pot sanitization built on top of the Jelf framework
is provided. This implementation is described in the
subsequent sections. For the second question, an ex-
periment is conducted using the Apache Benchmark
(used via its unix tool, ab) to evaluate the response
times of the web server under a variety of conditions.

As a specific example, a password management site
is implemented. This is similar to LastPass, where
users can add sites with usernames and passwords,
and access them with a master password. As context
for the sanitization portion of this, we consider the
possibility that an attacker is able to obtain a users
master password. If the network administrator for
this password management site is notified by the user
that their password has been compromised, the ad-
ministrator can route traffic using the old password to
a sanitized honeypot. Another possibility is that the
network administrator or an automated tool detects
a horizontal brute force attack on user passwords.
This type of attack is characterized by an attacker
trying many user names in sequence, each with com-
mon passwords. These triggers are just examples and
are left out of scope for this project. However, it is
assumed that there is some ability to detect attackers
masquerading as legitimate users and route them to
honeypots. Research on creating these triggers and
routing to honeypots is currently being conducted as

part of a separate project, and is left as a ”black box”
here due to time constraints. Therefore, we consider
an attacker model with the ability to masquerade as
another legitimate user and execute requests on their
behalf. We do not consider an attacker with access to
the memory of the web server, and leave this problem
as future work.

In addition to sanitizing the values, there are cer-
tain properties which are desirable for the sanitized
values. We enumerate these here:

1. Noninterference: the sanitized values displayed
should be completely independent of the high
faceted values they hide. Generally, this is
achieved via the introduction of randomness in
the value selected to represent the sanitized
value.

2. Believability: sanitized values should not alert
the attacker to the fact that they are in a honey-
pot environment. This has several components.
First, sanitized values should “make sense” in
the context of the type of the field they are re-
placing. For example, sanitizing an email with
the string exwj2jv3p5 is not believable because
this is not a valid email address. Additionally,
the attacker should not observe different values
by simply refreshing the same page; the values
on each page should be consistent across multiple
viewings. Finally, the system should only sani-
tize the high faceted value; the low faceted value
should not be replaced as the attacker may have
noticed the public value already on a legitimate
personal account and realize the difference.

These desirable properties ensure that the attacker
is not able to learn anything about the high security
values. It also attempts to preserve the illusion that
the attacker is interacting with the real system, which
is important for accurately recording the behavior of
the attacker. If the attacker becomes aware he or she
is interacting with a honeypot, their behavior may
change and negatively impact the quality of the re-
sults obtained by the honeypot. Ultimately, all of
these properties are present in the implementation
provided by this paper.

4

4 Jelf Overview

Creating faceted values using Jelf is fairly simple.
Each model simply inherits from the JeevesModel

class instead of the standard Django Model. The
fields are specified as usual, but with two addi-
tions. First, there is a jeeves get private * func-
tion. This function name is misleading3 as it actu-
ally presents the “public” or low-security value for
a field. For example, for the user profile, the email

field should be private to the user, so there should be
a jeeves get private email function which returns
whatever the public should see when not authorized
to see another user’s email (e.g. “redacted”). Sec-
ondly, there is a jeeves restrict * function. This
allows the developer to specify the policy of who can
see the “high” values for this model. This function
accepts two parameters: the object being restricted
and the context. One simple example of this function
used for the implementation of the password manager
is to simply assert user object == context, which
will only allow the user to view his or her own email.
The underlying semantics that allow this interface to
work properly along with the database are more com-
plex. The JeevesModel.py file provides a subclass of
the Django Model. Essentially, this class is respon-
sible for marshaling faceted values to database rows
and vice versa. This is where the majoriy of the mod-
ifications were performed in order to allow for data
sanitization.

5 Method

In order to add sanitization to the Jelf framework,
the first step was adding state to the Jeeves library to
indicate whether the honeypot sanitization mode was
enabled or disabled. This was straightforward; a field
is honeypot was added to the JeevesState class,

which is global to the Jeeves library. For simplicity,
a URL route was registered which simply toggled the
honeypot sanitization (/honeypot). It is also possible
to set this during startup of the web server.

3In fact, there is a github issue to fix its nam-
ing: https://github.com/jeanqasaur/jeeves/blob/master/

jeevesdb/DOC.md

Finding the best spot in the Jeeves library to im-
plement sanitization was a challenge. As a straw-
man approach, consider adding sanitization at the
last moment, when the faceted value is being con-
cretized. It is difficult to achieve all of the desirable
properties at this stage. Specifically, picking a value
which is both believable and non-interfering is chal-
lenging. An early attempt with this method involved
randomly picking from a set for each type to sanitize.
However, this is not believable, as refreshing the page
results in different results. Hashing the high value to
obtain a pseudo-random, consistent value as an index
into an array of possible sanitization values violates
the non-interference policy, because the attacker will
be able to discern when two secret values are the same
because the hashes will be the same.

A useful observation is that the “Jeeves ID” field,
stored with each value in the database, is generated
uniformly at random and is in no way related to the
high level faceted value. This is helpful for achieving
believability because this value does not change on
the page refresh. For our second attempt, we consid-
ered sanitization at the get() and all() functions
in the JeevesModel.py file, which get a single record
or get all records after filtering, respectively. A hash
of the Jeeves ID field was used as an index into an
array of possible sanitized values. This satisfied all
of the desirable properties of sanitized values and ap-
peared to work well. Unfortunately, the solution im-
plemented in the all() function did not scale well
with larger sets of results, and even sets of size 8 or
higher essentially froze the server. This is likely due
to the way that the faceted values were organized for
lists of faceted values. Basically, the organization of
this structure was such that each value was a binary,
nested “tree” of faceted values with N levels for N
rows, where each level was a branch on the condition
for the given faceted value. This leads to exponential
run time in order to traverse the faceted value trees,
and was too slow.

Our third attempt was finally successful. The san-
itization of values for this attempt happened in the
jiter() function, which directly queried the under-
lying database for values. The source code added
is provided in listing 2. Basically, this if state-
ment sanitizes a faceted value corresponding to a

5

(a)

(b)

Figure 1: Comparison of (a) unsanitized and (b) san-
itized web pages.

model that is loaded from the database if (a) all
the conditions are met (indicating the high value
would be displayed) and (b) the web server is in
the is honeypot state. Function names of the form
jeeves get honeypot {fieldname} are added to the
model, where {field name} is replaced by a field
name of the model. This function accepts a parame-
ter for the Jeeves ID, which is then hashed and used
as an index into an array of possible values for each
field. An example of a model with one of these func-
tions is provided in listing 3. This method does not
have the issue with slow run time because it sanitizes
values before they are collected into the previously
mentioned tree structure.

The result of these modifications are shown in fig-
ures 1a and 1b. A set of potential sanitized values for

each field can be specified and selected from. Even
the same values secret values may receive different
sanitized values in this manner.

6 Experiments

In order to evaluate the performance implications of
this modification, we compare our modified Jelf im-
plementation with the unmodified Jelf. Furthermore,
a vanilla Django version of the password manager
was implemented for comparison. We also compare
the response times with 1, 10, 100, and 1000 rows
of password data to consider the impact of number
of number of rows on performance. The results are
shown in table 2. All experiments were conducted on
a 2011 MacBook Pro with 6GB RAM and a 2.8 GHz
Intel Core i7 processor using the ab utility.

The sanitized and unsanitized Jelf implementa-
tions have response times that are within 1% of one
another. This suggests the modifications do not have
a large impact on performance relative to the origi-
nal Jelf implementation. However, both the sanitized
and unsanitized Jelf implementations suffer from very
slow response times at the 100 and 1000 row level,
with times as slow as 7 seconds for 1000 rows. This
slow performance is consistent with the results ob-
tained in [5] during the tests of the Jeeves database
performance as measured on an example conference
management example implementation, but is likely
too slow for practical use at this time. Furthermore,
both of the Jelf implementations are orders of magni-
tude slower than the vanilla Django implementation.

7 Limitations and Future Work

Unfortunately, there are several limitations with the
proposed method of sanitization that need to be ad-
dressed for practical use. First, if the attacker at-
tempts to create a new saved password within the
sanitized version, the newly created value will also
be sanitized. Obviously this will alert the attacker
that something strange is going on and may signal to
them that the environment has been converted to a
honeypot. To combat this issue, an additional flag

6

Listing 2: Code snippet from JeevesModel.py

I f a l l p o l i c y cond i t i on s are true , then i t w i l l p r e sen t the h igh va lue
so we need to r ep l a c e i t wi th the s a n i t i z e d va lue
i f (a l l (v == True for v in v a l u e l i s t) and JeevesLib . j e e v e sS t a t e . i s honeypo t) :

for each f i e l d f o r the model
for f i e l d in s e l f . model . meta . f i e l d s :

i f a t t t r i b u t e has honeypot f unc t i on
i f hasattr (s e l f . model , ” j e e v e s g e t honeypo t ” + f i e l d . name) :

c a l l the honeypot f unc t i on
honeypot funct ion = \

getattr (s e l f . model , ” j e e v e s g e t honeypo t ” + f i e l d . name)
j e e v e s i d = var name . s p l i t (’ ’) [2]
honeypot value = honeypot funct ion (j e e v e s i d)
ass i gn the s a n i t i z e d va lue to the f a c e t e d va lue h igh o b j e c t
setattr (obj , f i e l d . name , honeypot value)

Listing 3: Code snippet from JeevesModel.py

def pick among (j e e v e s i d , r ep l a c ement s e t) :
return r ep la c ement s e t [hash (j e e v e s i d) % len (r ep l a c ement s e t)]

class Password (Model) :
#. . .

@staticmethod
def j e e v e s g e t honeypo t s i t e pa s swo rd (j e e v e s i d) :

return pick among (j e e v e s i d , [”p@ssw0rd” , ” hunter12 ” , ” i l oveyou ”])
#. . .

7

of
Records
Displayed

Jelf
(Sanitized)

Jelf
(Not Sanitized)

Plain
Django

1 109 (4) 110 (6) 7 (1)
10 155 (12) 152 (5) 8 (2)
100 668 (23) 634 (34) 10 (2)
1000 7368 (264) 7140 (186) 30 (3)

Table 2: Results for web frameworks with different
number of passwords saved. Values are the mean
of 10 runs, and parenthetical values are the standard
deviation of the times of these runs. All values shown
in milliseconds.

may need to be added to signify that certain values
were created by the attacker and should not be san-
itized. Second, it is possible that despite the small
difference between the Jelf Sanitized and Jelf Unsan-
itized values, the attacker could still discern between
the request response times. For example, consider an
attacker who creates a (legitimate) account with 1000
passwords and times requests to access these pass-
words on the unsanitized mode of Jelf. Then, the
attacker executes a brute force attack as described
previously, attempting to log in as other users us-
ing common passwords in a horizontal fashion. Sud-
denly, they are able to log in to an account with 1000
passwords. To determine whether the successfully
guessed a password or were simply redirected via
the previously described trigger, the attacker could
time a series of requests. As seen in table 2, they
can expect times of more than 200ms slower than
previously observed if on the sanitized mode, or ap-
proximately the same as before for the unsanitized
mode, and thus discern their environment. The obvi-
ous solution for this issue is to make the access of the
sanitized and unsanitized values virtually identical.
This would probably require sanitizing the database
(a sanitization-time operation) instead of the val-
ues during access (a request-time operation). The
trade-off is that there may be more delay, especially
for large databases, sanitizing potentially millions of
records during the conversion to the honeypot ver-
sus sanitizing however many records are on the page
during the request. Another idea is to inject random

delays regardless of length to thwart this side chan-
nel attack, but this could have a negative impact on
performance.

8 Conclusions

Sanitization is an interesting, yet often overlooked
component of dynamic honeypot creation. In this
work, we consider an extension of the Jeeves lan-
guage and the Jelf web framework which allows for
sanitization via faceted values. We implement a sim-
ple password management service in Jelf and demon-
strate the efficacy of our sanitization method on this
example project. By attempting several different
implementation points for sanitization, it is deter-
mined that sanitization immediately after extraction
from the database during faceted value creation is
the most feasible option. Furthermore, we evaluate
the performance of this request-time sanitization and
find that Jelf with sanitization serves requests only
slightly slower than Jelf without sanitization. Future
work should consider the trade-off of request- and
sanitization-time sanitization, and also look for im-
provements to the overall performance of the Jeeves
language and Jelf framework.

References

[1] A. C. Myers, “JFlow: Practical Mostly-
Static Information Flow Control,” Proceedings
of the 26th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages
- POPL ’99, pp. 228–241, 1999. [Online].
Available: http://portal.acm.org/citation.cfm?
doid=292540.292561

[2] J. Yang, K. Yessenov, and A. Solar-Lezama,
“A language for automatically enforcing pri-
vacy policies,” ACM SIGPLAN Notices, vol. 47,
no. 1, p. 85, 2012.

[3] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières, “Making Information Flow Explicit
in HiStar,” Osdi’06, vol. 54, no. 11, p. 93, 2006.

8

[4] T. H. Austin and C. Flanagan, “Multiple
facets for dynamic information flow,” Pro-
ceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of pro-
gramming languages - POPL ’12, vol. 47,
no. 1, p. 165, 2012. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2103656.2103677

[5] J. Yang, T. Hance, T. H. Austin, A. Solar-
Lezama, C. Flanagan, and S. Chong, “Precise,
dynamic information flow for database-backed
applications,” Proceedings of the 37th ACM
SIGPLAN Conference on Programming Lan-
guage Design and Implementation - PLDI 2016,
pp. 631–647, 2016. [Online]. Available: http://
dl.acm.org/citation.cfm?doid=2908080.2908098

[6] T. H. Austin, J. Yang, C. Flanagan, and
A. Solar-Lezama, “Faceted execution of policy-
agnostic programs,” Proceedings of the Eighth
ACM SIGPLAN workshop on Programming
languages and analysis for security - PLAS
’13, p. 15, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2465106.2465121

[7] A. Hirata, D. Miyamoto, M. Nakayama, and
H. Esaki, “INTERCEPT+: SDN support for
live migration-based honeypots,” Proceedings -
2015 4th International Workshop on Building
Analysis Datasets and Gathering Experience Re-
turns for Security, BADGERS 2015, pp. 16–24,
2017.

[8] S. Biedermann, M. Mink, and S. Katzen-
beisser, “Fast dynamic extracted honeypots
in cloud computing,” Proceedings of the 2012
ACM Workshop on Cloud computing secu-
rity workshop - CCSW ’12, p. 13, 2012.
[Online]. Available: http://dl.acm.org/citation.
cfm?doid=2381913.2381916

[9] M. Roesch, “Snort: Lightweight Intrusion
Detection for Networks.” LISA ’99: 13th Sys-
tems Administration Conference, pp. 229–238,
1999. [Online]. Available: http://static.usenix.
org/publications/library/proceedings/lisa99/
full{\ }papers/roesch/roesch.pdf

[10] N. F. Huang, C. Wang, I. J. Liao, C. W. Lin,
and C. N. Kao, “An OpenFlow-based collabora-
tive intrusion prevention system for cloud net-
working,” Proceedings of 2015 IEEE Interna-
tional Conference on Communication Software
and Networks, ICCSN 2015, pp. 85–92, 2015.

9

