
Applying Boosting Techniques

to the training of RBMs and VAEs

Lillian Huang, Jamie Matthews, Jessica Thompson

April 15, 2019

Abstract

Boosting algorithms have shown much success in the realm of supervised learning. As a

natural next step, various papers have presented boosting-style algorithms for the unsupervised

problem of density estimation [8] [9] [2]. However, they only learn simple models. In this paper,

we apply the techniques used in [2] to the training of more complicated generative models,

including restricted Boltzmann machines (RBMs) and variational autoencoders (VAEs).

1 Introduction

Boosting is an important component of machine learning. Commonly used for supervised learn-

ing, it has the power to take several weak learners and combine them into a strong learner. Boosting,

specifically in regards to the original algorithm, AdaBoost [3], has seen much success in the realm

of supervised learning; however, it has also shown promise when applied to unsupervised learning.

Specifically, there are several papers that explore boosting in density estimation, and more recently,

generative models.

1.1 Density Estimation

Some of the first uses of unsupervised boosting were for the problem of density estimation [8] [9].

The goal of this is to estimate the underlying probability density function of a given set of observed

data. A commonly applied empirical principle with respect to density estimation is the idea of

maximum entropy. The principle states that for all distributions that may encode the sample data,

the distribution that has the maximal information entropy (closest to uniform) would be the best

choice. Thus, the target distribution is estimated by the choice with maximum entropy that still

satisfies all the given constraints. Often these constraints are represented by real-valued functions,

called features, where each feature’s theoretical expectation must match the empirical average.

1

1.2 Maximum Entropy Algorithm

As we’ve mentioned, it is a commonly held belief that, heuristically, the distribution with the

highest entropy is the best distribution to describe a set of data. The goal of the algorithm presented

in [2] is to find such a distribution. The authors show that the dual of this optimization problem

is the problem of finding the Gibbs distribution which maximizes the log-likelihood, meaning it

minimizes the log-loss. We have:

where H(p) is the information entropy of an arbitrary probability distribution, and the fj ’s are

the features of the data. π̃[fi] is the expectation of a specific feature, with respect to the training

data, and Lπ(λ) is the log-loss of the Gibbs distribution described by λ, again with respect to the

training data.

The novelty of this paper is how the algorithm specifically learns this distribution. Rather

than simply computing the Gibbs distribution which best fits the training data, which can be done

analytically, it uses a boosting-style approach. It can be shown that the exact distribution tends

to overfit the data. On the other hand, the numberically-found distribution tends to generalize

better.

In each step of the algorithm for each coordinate of the training data, the best δ is found. When

this δ is added to the corresponding coordinate of λ, a variable that characterizes the Gibbs distri-

bution, this minimizes the log-loss. The authors describe a sequential algorithm which updates the

coordinate with the lowest minimum, and a parallel algorithm which updates all of the coordinates

individually at each iteration.

The authors show that the above δ, which minimizes a specific, constructed function related to

2

the log-loss, can be found analytically. Specifically, suppose δ is added to λj to give λ′J = λj + δ.

Then, it can be shown that,

Lβπ̃(λ′)− Lβπ̃(λ) ≤ −δπ̃[fj] + ln(1 + (eδ − 1)qλ[fj] + βj(|λj + δ| − |λj |)

where qλ[fj] is the expectation of fj with respect to the current Gibbs distribution model with

parameter λ, and β is a hyper-parameter. Then, the best δ for λj must be

ln

(
(π̃[fj]± βj)(1− qλ[fj])

(1− π̃[fj]± βj)qλ[fj]

)
where the ± operation enforces that the value inside the log stays positive.

The authors then prove that the log-loss of the sequence of λ’s, and thus, the log loss of the

Gibbs distribution model produced at each iteration, decreases each step. Specifically, if all the

βj ’s are strictly positive, then,

lim
t→∞

Lβπ̃(λt) = min
λ
Lβπ̃(λ)

where λt is the λ produced by iteration t of the algorithm.

2 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are a special type of Markov random fields. They

are shallow neural networks that contain only two layers—one visible and one hidden. There is

no communication of information within neurons in a given layer. In other words, the model

is a bipartite graph, hence the restriction in their name. Applications of RBMs include feature

learning and dimensionality reduction, collaborative filtering, topic modelling, and more recently,

many-body quantum mechanics. They are also used as components in deep belief networks.

There are several training algorithms for RBMs, each with its own benefits. The most commonly

used algorithm is contrastive divergence, or CD [5]. Like many algorithms, the idea is to minimize

the log-loss of the model with respect to the training data. The probability that the network assigns

the visible layer a specific value, v, is given by

p(v) =
1

Z

∑
h

e−E(v,h)

where the sum is taken over all possible values of the hidden layer, and Z is the partition function,

i.e. a normalization constant. The energy configuration is

E(v, h) = −
∑

i∈ visible

aivi −
∑

j∈ hidden

bjhj −
∑
i,j

vihjwij

3

In essence, the algorithm uses Gibbs sampling to sample first the hidden layer, then the visible

layer. The results describe the current distribution which are compared to the ideal distribution,

using a similar idea to KL divergences. This is then used in a gradient ascent-like step to compute

the weight updates, similar to error back-propagation in a neural network.

More specifically, a random training data point is first fed into the visible layer where each

neuron’s data is multiplied by various weights and added to a bias; these values are then passed

into an activation function which results in the hidden neuron values. The outer product of the

visible layer input, v, and the hidden layer output, h, is then computed. This value is called the

positive gradient. The values of these hidden neurons are then passed backwards, where they are

multiplied by the same weights as in the forward pass and added to a different bias. The output of

this step is a reconstruction, v′, of the original input. The first step is repeat with v′ as input, to

get another sample from the hidden layer, ′h. Again, the outer product of these values are taken.

This value is called the negative gradients. The weights and biases are updated as follows:

∆W = ε(vhT + v′h′T) ∆a = ε(v − v′) ∆b = ε(h− h′)

where ε is a hyper-parameter similar to a step size.

2.1 Boosting Approach for RBM Training

To train an RBM model, the contrastive divergence algorithm seeks to maximize the log-

likelihood for each training data point, v. The log-likelihood with a regularization term is given

by

ln p(v) = ln
∑
h

e−E(v,h) − lnZ +
∑
k

βk|θk|

where θ represents the weights and biases of the model.

In a similar fashion as the Max Entropy boosting algorithm, we could find δ’s which, when added

to a specific parameter, maximizes the increase in this function. One hurdle to this calculation,

however, is the sum over all possible hidden variable values. One way to potentially mitigate this

is to compute the value of the corresponding hidden variables using the weights and the biases for

each training data point.

Specifically, suppose δ is added to wij to give w′ij = wij + δ. Then, it can be shown that

Lβπ̃(wij + δ)− Lβπ̃(wij) ≤ −δπ̃[vi] + ln(1 + (eδ − 1)qθ[vihj] + βij(|wij + δ| − |wij |)

= F (ij, δ)

4

Then, the best δ for wij must be

ln

(
(π̃[vi]± βij)(1− qθ[vihj])
(1− π̃[vi]± βij)qθ[vihj]

)
A similar approach could be used to boost the biases for the visible and hidden layers.

3 Variational Autoencoders

One of the more popular latent variable models is a variational autoencoder, or a VAE. VAEs

aim to produce “realistic” fake data by trying to learn a distribution of the latent variables z(i)

such that it maximizes the probability of the input data x(i). It assumes a standard Gaussian prior

for the distribution of z(i) and slowly adjusts a “decoder” function gθ that maps z(i) to x(i) in

order to maximize P (x(i)). We want “decoder” model parameters θ that maximize the likelihood

of observing x(i), so in math terms we are looking for:

argmaxθ

m∏
i=1

P (x(i); θ) = argmaxθ

m∑
i=1

logP (x(i); θ)

Unfortunately, we cannot solve for this in closed form, so we use a trick: we find the maximum

of the variational lower bound instead. Using Bayes’ Rule, we know that

m∑
i=1

logP (x(i); θ) =
P (z|x(i))P (x(i))

P (z)

With some algebra, this ultimately gives us

logP (x(i)) ≥ Ez∼Qi [logP (x(i)|z)]−KL(Qi(z)||P (z))

where KL represents the KL divergence between the two distributions and Q is the prior we give

to the latent variables z(i), which we choose to be a Gaussian for convenience. The right side of

the equation above gives us the so-called variational lower bound, also known as the ELBO bound,

and we can maximize this value instead of P (x(i)). It’s possible to find a closed-form solution for

the ELBO, and thus we get

logP (x(i)) ≥ max
θ,φ

m∑
i=1

Ez∼Q
[
− ‖x(i) − gθ(z)‖2 − ‖z − fφ(x(i))‖2 − ‖z‖2

]

5

where fφ is the “encoder” function that maps x(i) values to latent space, and φ represents the

parameters of this function. Using the variational lower bound, it possible to do gradient descent

to optimize the network.

A full illustration of the VAE structure and loss functions are shown in the figure below. Note

that the version on the right utilizes a “reparameterization” trick that allows the loss to be fully

propagated back through the entire network. In the formulation described above, it is necessary to

sample latent vectors from Q(z|x), which is not differentiable and thus difficult to train. Instead,

one can sample some small ε ∼ N(0, I) and construct z = µ(X) + ε ∗ Σ(X)1/2, where µ,Σ were

learned from Q to find parameters for an accurate Gaussian for the latent space. In this way,

we make the VAE easier to train, and this trick also reduces the variance of gradient estimates.

However, this only works if we haves a continuous latent distribution.

3.1 Discrete-Variable VAEs

VAEs with discrete latent distributions can be important for a number of real-life applications.

However, as we’ve discussed above, it is not possible to do the traditional reparameterization trick

with discrete-variable VAEs. Instead, [6] reparameterizes such models by using the Gumbel-Max

perturbation model. When dealing with discrete-variable VAEs, the model distribution pθ(x|z)
follows the Gibbs distribution. The Gibbs distribution law is shown in [6] to be equivalent to

Gumbel-Max perturbation models, and thus we can write the latent distribution in an alternative

representation. Originally, we want

−Ez∼qφ log pθ(x|z) =
k∑
z=1

eφ(x,z)∑
ẑ e

φ(x,ẑ)
θ(x, z)

6

Instead, the paper shows that

∑
ẑ

eφ(x,ẑ) = Pγ∼g[z
φ+γ = z]

where zφ+γ ≡ argmaxẑ=1,...,k{φ(x, ẑ) + γ(ẑ)}, and where we can approximate

Pγ∼g[z
φ+γ = z] ≈ eφ(x,z)+γ(z)∑

ẑeφ(x,ẑ)+γ(ẑ)

This so-called “Gumbel-Softmax model” is smooth and thus a VAE with this reparameterized

objective is easier to train. Ultimately, they show that they can directly optimize such a network

with the following theorem:

Theorem 1. Assume φν(x, z) is a smooth function of ν, where ν denotes the encoder parameters.

Then

∇νEγ [θ(x, zφν+γ) = lim
ε→0

1

ε

(
Eγ [∇νφν(x, zεθ+φν+γ)−∇νφν(x, zφν+γ)]

)

3.2 Boosting Approach to VAE training

Although they are not trained by trying to directly maximize likelihood, VAEs have a likeli-

hood that we can attempt to modify in order to apply the Maximum Entropy boosting algorithm

in training. Since the Maximum Entropy boosting algorithm finds the Gibbs distribution that min-

imizes the log loss, we wish to modify the VAEs current likelihood such that it becomes a problem

of finding the Gibbs distribution that minimizes the log loss (or maximizes the likelihood). In doing

so, we will be able to use the same boosting algorithm to train VAEs. Recall that the likelihood

we want to maximize in a VAE is:

Ez∼Qi [logP (x(i)|z)]−KL(Qi(z)||P (z))

Although Q is typically a neural network that produces a multivariate Gaussian, the previous

section showed that in discrete VAEs, Q can produce a Gibbs distribution. The first term in our

likelihood ensures that the output distribution given the z’s from Q resemble the input distribution.

The second term usually serves to ensure that Q produces a distribution that is not too different

from a multivariate Gaussian; however, since we are working with discrete VAEs, we would want

Q to produce a distribution that is not too different from a Gibbs distribution. If we were to apply

7

the Maximum Entropy boosting algorithm, this KL divergence term will no longer be necessary.

The boosting algorithm will force Q to be a Gibbs distribution by nature, thus we do not need to

worry about this divergence term. The likelihood that we are now trying to maximize would be:

Ez∼Qi [logP (x(i)|z)]

Our problem is now to find a Q such that we are likely to produce our original distribution

given our latent variables. This is similar to the problem set in the Maximum Entropy paper, as

both aim to find a Gibbs distribution that will maximize a likelihood. However, this likelihood

is also dependent on P (x|z), the posterior, which we do not know. Thus, in order to compute

our likelihood, we need to have an estimate for our posterior. We know from the previous section

that discrete VAEs can be optimized, thus this problem is potentially solvable. However, we are

unsure how to combine methods such as variational inference and the Maximum Entropy boosting

algorithm, to achieve such an optimization.

4 Conclusion

In this paper, we applied the techniques used in [2] to the training of RBMs. Specifically, we

constructed a boosting-style algorithm, in which the weights and biases of the model are iteratively

adjusted. Furthermore, we analytically re-derive this value, δ, in the context of this problem. Future

work would include constructing and proving a convergence theorem for the algorithm, similar to

the one presented in the original paper. Moreover, our algorithm could be run for some training

example; the results of which, could be compared to accuracy and efficiency of the contrastive

divergence algorithm.

We also explored the possibility of applying the maximum entropy boosting techniques could be

applied to the training of VAEs. We discussed benefits and problems associated with introducing

Gibbs distributions in different ways into the standar VAE model. However, more work needs to

be done into constructing an algorithm to train these modified models. Again, if an algorithm was

derived, then it could be tested and compared to standard algorithms.

References

[1] C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

[2] M. Dudik, S. J. Phillips, and R. E. Schapire. Performance guarantees for regularized maximum

entropy density estimation. In International Conference on Computational Learning Theory,

8

pages 472–486. Springer, 2004.

[3] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting. Journal-Japanese Society

For Artificial Intelligence, 14(771-780):1612, 1999.

[4] A. Grover and S. Ermon. Boosted generative models. In ICLR 2017 conference submission,

2016.

[5] G. E. Hinton. A practical guide to training restricted boltzmann machines. In Neural networks:

Tricks of the trade, pages 599–619. Springer, 2012.

[6] G. Lorberbom, A. Gane, T. Jaakkola, and T. Hazan. Direct optimization through arg max for

discrete variational auto-encoder. arXiv preprint arXiv:1806.02867, 2018.

[7] S. J. Phillips, M. Dud́ık, and R. E. Schapire. A maximum entropy approach to species distribu-

tion modeling. In Proceedings of the twenty-first international conference on Machine learning,

page 83. ACM, 2004.

[8] S. Rosset and E. Segal. Boosting density estimation. In Advances in Neural Information

Processing Systems, pages 657–664, 2003.

[9] M. Welling, R. S. Zemel, and G. E. Hinton. Self supervised boosting. In Advances in neural

information processing systems, pages 681–688, 2003.

9

