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Abstract. In this paper, we propose a scheme to mine frequent patterns from data 
streams. Our scheme can guarantee to run mining algorithm in the limited memory 
capacity when the data becomes large enough, and to keep the running time at the 
regular range when the time evolves. We emphasize the most recent data but do not 
discard all of the historical data. We propose efficient sampling and merging schemes 
to process incoming data streams quickly. We implement the schemes and mining 
frequent patterns algorithm. The analysis and experiments show that our algorithms 
are efficient. 
 

1. Introduction 
 Frequent pattern mining in datasets has been studied extensively in data mining, 

with many algorithms proposed and implemented, For example Apriori[1], 
FP-growth[2], CLOSET[3], and CHARM[4]. Frequent pattern mining and its 
associated methods have been popularly used in association rule mining, sequential 
pattern mining, structured pattern mining, associative classification, frequent 
pattern-based clustering, and so on. 

Recent emerging application, such as network traffic analysis, web click stream 
mining, power consumption measurement, sensor network data analysis, and dynamic 
tracing of stock fluctuation, call for study of a new kind of data, called stream data, 
where data takes the form of continuous, potentially infinite data streams, as opposed 
to finite, statically stored data set. However, it is challenging to mine frequent patterns 
in data streams because of the large and continuous data. Mining frequent patterns in 
data stream is a challenging job, much more difficult than mining frequent patterns in 
datasets. There are some reasons: (1) the data stream is potentially infinite, so we 
can’t simply abandon some data just like dealing with datasets; (2) As the memory 
capacity of computers is finite, we can’t keep all of the historical data stream; (3) We 
sometimes need timely answer and the response time should be small. These reasons 
make finding frequent patterns in data steam a hard job. Though some work has been 
done in this area, it is far less than sufficient. 

 There are some recent studies on mining data streams. Giannella et al. [5] have 
developed a frequent itemsets mining algorithm over data stream. They have proposed 
the use of tilted windows to calculate the frequent patterns for the most recent 
transactions based on the fact that users are more interested in the most recent 



transactions. They use an incremental algorithm to maintain the FP-stream which is a 
tree data structure to represent the frequent itemsets. They conducted a number of 
experiments to prove the algorithm efficiency. 

Manku and Motwani [6] have proposed and implemented an approximate 
frequency counts in data streams. The implemented algorithm uses all the previous 
historical data to calculate the frequent patterns incrementally. 

P.A. Laur et al. [7] have proposed a statistical technique which biases the 
estimation of the support of sequential patterns or the recall, as chosen by the user, 
and limits the degradation of the other criterion. They replaced the conventional 
minimal support requirement for finding frequent sequential patterns by a statistical 
support.  

Gaber, M, M. et al [8] reviewed the theoretical foundations of data stream analysis, 
and have critically reviewed mining data stream systems and techniques. They 
outlined and discussed research problems in streaming mining field of study. 

Most of these previous work on mining frequent or sequential patterns over data 
streams focuses on how to technically deal with large historical data, but do not 
guarantee that they can run their algorithm in the limited memory capacity when the 
data becomes large enough, or do not keep the running time at the regular range when 
the time evolves. In this project, we will propose a method to mine frequent patterns 
with about the same cost time when the time evolves and the historical data gets large. 
We refer the ideas in [5] and [7]. Similar to [5] we focus more on most recent data, 
and like [7] we use some sample idea, but not the same technique. [5] uses tilted 
windows to focus most recent data. [7] uses statistical technique to change the 
minimal support.  

We suppose to keep the data which we will mine on about the same size and on 
the other hand we try to avoid wasting too much time on sampling to keep the data 
around the same size. This will guarantee that we are able to run the mining algorithm 
with the limited memory capacity. And if keeping the data around the same size costs 
small time, then the total cost time mostly depends on the mining algorithm. One 
simple idea is that every time we use the most recent data, but it will lose the rest 
historical data. Another idea is that every time we sample the whole historical data, 
but this will cost a lot of time. 

Suppose we want to keep the data with size S, from which we will find frequent 
patterns. Apparently we have the equation: 

S = S/2 + S/4 + S/8 + S/16 + … + S/2n … + … 
The idea is that we use the S/2 most recent items in the historical data without 

sampling, and sample half for the next S/2 items, and sample 1/4 for the next to the 
next S/2 items, again an again till the most original items. We will extend this 
equation to more generality, where the fading factor can be some value other than 1/2. 
We will discuss it more detail in section 3. 

We will design an efficient mechanism to quickly sample data in this way, and 
combine this algorithm to the mining algorithm. FP-growth [2] is an efficient 
algorithm to mine frequent patterns. We use the FP-growth to mine frequent patterns. 
Mining frequent patterns will be discussed in section 5. How the properties of data 



stream will affect our algorithm will be discussed in section 6. In that section make 
some hypotheses which will be tested in section 8.   

We propose two methods in section 4 to implement the sampling and merging 
mechanism. One is to maintain the sampled historical data in hard disk, the other is to 
store the sampled historical data in a compact FP-tree and keep it in main memory. 
We will combine the sampling algorithm and mining algorithm. When new data 
streams come, we update the data and if necessary run the sampling algorithm. In this 
way the mining results reflects the most recent data and also historical data with less 
priority. We will talk about the mechanism when and how we run sample algorithm 
later. We do some experiments and analyze the performance. 
 

2. Problem Definition 

 Let 1 2 3{ , , , }mI a a a a= be a set of items, and a transaction database 

1 1{ , , , }nDB T T T= , where ( [1 ])iT i n∈ is a transaction which contains a set of items 

in I . The support (or occurrence frequency) of a pattern A, where A is a set of items, 
is the number of transactions containing A in DB. A pattern is frequent if A’s support 

is no less than a predefined minimum support threshold ξ . Suppose 
| |DB
ξθ = , then 

a pattern is frequent if ( ) | |support A DBθ≥ ⋅ . (0,1)θ ∈  is a user specified minimum 

support. The problem of mining frequent patterns is to mine all patterns whose 

support is greater than, or equal to | |DBθ⋅ . Each of them is called a frequent pattern. 

In the case of data stream we have a partial storage of DB. Let us now assume that 

we are provided with a data stream. Let 0 1, , , , ,nDS B B B=  be an infinite 

sequence of batches, where each batch is associated with a timestamp t, i.e. tB , and n 

is the identifier of the “Latest” batch nB . Each batch iB  consists of a set of 

customer data transactions; that is 1 2[ , , , ]i kB T T T= . The length (L) of the data 

stream is defined as 0 1| | | | | |nL B B B= + + + , where | |iB  stands for the cardinality 

of the set iB . Therefore, the problem of mining frequent patterns is to find frequent 

patterns A , verifying 
0

( )
L

t
t

support T Lθ
=

≥ ×∑  

As the data stream is potentially infinite, it is possible that some patterns which 



might be frequent at some time but might not be frequent patterns again when time 
evolves, and it is also possible that some patterns which might not be frequent at some 
time but might be frequent patterns some time later. In the case the data stream update 
quickly, the mining frequent patterns algorithm which cost a lot of time are not 
practical because the algorithms do not get the most recent frequent patterns. During 
the long time execution of the algorithm, the data stream has been updated greatly. To 
limit the running time, one straightforward thinking is that we do not apply the mining 
algorithm to the whole historical data but rather to some sample data, and what we get 
is not the truly frequent patterns, but the estimations of the frequent patterns. Some 
new problems come up: 

1. The sampling procedure should not cost lots of time when applied to 
potentially infinite data streams. If it costs lots of time, then it is useless. 

2. How can the frequent patterns from the sampling data be a good estimation 
of the truly frequent patterns?  

It is generally impossible to make a fully accurate prediction when some information 
is missing from the original data. And we can notice the different importance of the 
historical data with different time. For example, a shopping transaction stream could 
start long time ago, but some old items may have lost their attraction and fashion or 
seasonal products may change from time to time. In this paper we address how to 
make efficient sampling with balancing the importance of current data and without 
loss the historical information to mine frequent patterns from data stream. 
 

3. Mining Data Stream with Limited Memory 
 Suppose the original mining algorithm can mine the data set with the size D, 
consuming the time and memory space under our tolerance. Then our target is to limit 
the data size not greater than and near to D, on which we run the mining algorithm. 
We introduce a fading factor λ , where 0 1λ< < . For the most recent M transactions, 
we use the original transactions; for the next older M transactions, we sample Mλ ; 
and so on. Then we have: 

2 (1 )
1

n
i n MD M M M M M λλ λ λ λ

λ
−

= + + + + + =
−

 

If the data stream is infinite, i.e. n →+∞ , then (1 ) (1 )
1 n

DM Dλ λ
λ

−
= → −

−
 

We apply (1 )M Dλ= −  as a window size in which we do the same dense 

sampling. Let 0 1, , , , ,nDS B B B=  be a data stream, where each batch iB  

consists of a set of customer data transactions. Suppose we begin running processing 
data stream as the data stream starts. The processing of the data stream is as follow: 

 

Input:    Data stream 0 1, , , ,nDS B B B= ; 



       fading factor λ ; window size M  

Initialize:  tD φ= , 1tD φ=  

     1 0tS =  

ProcessDataStream (DS) 
{ 

  waiting next new coming batch iB  and suppose 1 2[ , , , ]i kB T T T=  

  for each transaction jT  in iB  

{ 

 1 1 1t tS S= + ; 1 1t t jD D T= ∪  

 if( 1tS M= ) then{  

1( , , )t t tD MergeAndSample D D λ= ; 1 0tS = ; 1tD φ=  

} 
} 
ProcessDataStream (DS) 

} 
 

In the ProcessDataStream(DS), for every new transaction, we add it to the 1tD , 

and increase 1tS , the size of 1tD . If 1tS  is less than window size M , we do nothing 

and turn to next transaction. Else, We merge and sample 1tD  and tD , and then set 

the result to tD . 

We have two ways to implement 1( , , )t tMergeAndSample D D λ . We can first 

merge 1tD  to tD  and then do sampling, or we can first sample 1tD  and tD  

separately and then merge them. We will talk more about this in next section. 

Every time we run mining algorithm, we use both 1tD  and tD  as data source. So 

our results will reflect both the most recent data and the historical data. 
 

4. Sampling and Merging 
 In this section, we talk about the scheme of sampling and merging. We have two 
choices. One is that we keep the sampled historical data and the most recent data in 



the disk, the other is that we keep the sampled historical data in the main memory 
using a compact tree structure.  
 When we use disk to store both parts of data, the merging operation is just 
combine to parts of data sets together. After merging, we do sampling operation on the 
merged file. The sampling operation is as following: 
 
Algorithm (Disk-Sample: Sampling transaction file with possibility λ ) 
Input: transaction file Tran_file, and sampling density λ  
Output: The sampled Tran_file 
Method: Call Disk-Sample (FP-tree) 
Procedure Disk-Sample(Tran_file, λ ) 
{ 
 create an empty file tmp_file; 

move the file pointer forward, get sufficient lines of data until get a complete  

transaction t. For every such transaction t select t with a random possibility λ . 

If t is selected, then push t into a buffer. When the buffer is almost full, flush the 
buffer data into tmp_file. After finishing scanning Tran_file, flush the buffer again, 
remove Tran_file and rename tmp_file to Tran_file.     
return Tran_file. 

} 
  
 The advantage of storing the data in the disk is that it can store much more data 
than in memory and the operation is simple. The disadvantage is that it costs more 
time because of the IO operations.     

We can use FP-tree [2] to store the sampled historical data. Our goal is to mine 
the frequent patterns from the sampled historical data and the most recent data. If we 
store all of the sampled historical data in the memory, this goal can be met. However, 
this will require too much space. So we only maintain those items in the historical 
transactions whose frequency is greater than some error threshold ε , and discard the 
other items. As a result, we no longer have exact frequency over the sampled 
historical data plus most recent data, rather than an approximate frequency. for any 

itemset I, 1
ˆ ( ) ( )I I t I tf f D f D= + , where ( )I tf D  is the frequency of the sampled 

historical data and 1( )I tf D  is the frequency of the most recent data. The 

approximation is less than the actual frequency as described by the following 
inequality, 

ˆ
I I If D f fε λ− ⋅ ≤ ≤  

Thus if we deliver all itemsets whose approximate frequency is larger than ( )Dδ ελ− , 

we will not miss any frequency itemsets in the sampled historical data and the most 
recent data. We use an example to describe the idea and propose the algorithm during 



the discussion of the example. 
Example. Let D=10, 0.5λ = , then M=5. Suppose error threshold 0.3ε = , then only 
those items having frequency at least 2 in the sampled historical data set are stored in 
the frequency tree. At sometime the sampled data is as following table: 
 
Table1. Historical Sampled Transaction Datasets 
Transaction ID Items  (Ordered) items with frequency >= 2 
1 f,a,c,d,g,k,i,m f,c,a,m,k 
2 a,b,c,f,m f,c,a,b,m 
3 b,f,h,j,k f,b,k 
4 b,c,o,s,p c,b 
5 a,f,c,e,l,m,n f,c,a,m 

 
Then FP-tree with respect to Table 1 is as Figure 1. 
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Figure 1. FP-Tree constructed from Table 1 

 
 After sometime, when new transactions come and the number of the new 

transactions hits M, then we should do the merge and sampling operation. Suppose 
some time later the accumulated new transactions are as Table 2. The number of new 
transactions has hit M where M is equal to 5. 

Table2. New Transaction Data Sets. 
Transaction ID Items  
6 f,a,c,d,g,k,i,m 
7 a,b,c,f,j 
8 b,f,h,j,k 
9 b,f,c,j,s,p 
10 a,f,c,e,l,m,n 

As the historical data is stored FP-tree, the efficient operation is to first sample 



FP-tree and new transaction data sets. Then merge them together. Sampling new 
transaction data sets is simple. We give every transaction the possibility of λ  to be 
selected, in this example 0.5λ = . Now we give the algorithm of sampling FP-tree. 
 
Algorithm (FP-Sample: Sampling FP-tree with possibility λ ) 
Input: FP-tree, and sampling density λ  
Output: The new sampled FP-tree 
Method: Call FP-Sample(FP-tree) 
Procedure FP-Sample(Tree, λ ) 
{ 
 for every node in the header table do{ 
  Traverse its node-list. For every node V in the node-list,  
  

1V children of V
1s support(V)  support(V )

∈

= − ∑   if( 0s > ) then{ 

   s1=
1

(random with possibility  to return 1 and 1-  to return 0)
s

i

λ λ
=
∑  , 

   1s s s∆ = − , 
   traverse node V back to root, deduct the support of every node by s∆ ,  
   if the support of any node during the traversing becomes to 0, then 

remove the node from the tree. 
} 

} 
return Tree 

} 
 

Using FP-Sampling Algorithm, FP-tree is changed as showing in figure 2 ( this is 
one possibility and there are some other possibilities of the new FP-tree). 
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Figure 2. FP-tree after Sampling the FP-tree in figure 1. 



 
Now we sample the recent data in table 2, we have table 3 (there are also some 

other possibilities). 
 

Table3. New Transaction Data Sets After Being Sampled. 
Transaction ID Item set 
7 a,b,c,f,j 
9 b,f,c,j,s,p 

 
Merging the dataset in Figure 2 and Table 3 only needs to scan the FP-tree and table3 
twice. During the first scan, calculate the frequency of every item and discard those 
items whose frequency is less than 2. During the second scan, build up the new 
FP-tree and destroy the old FP-tree. The new FP-tree in figure 3 actually based on 
table 4, thought we do not actually maintain such a table. 
 

Table4. Virtual Transaction Datasets About Figure 3 
Transaction ID Items  (Ordered) items with frequency >= 2 
1 f, c, a, m, k f, c, a, k 
3 f, b, k f, b, k 
4 c, b c, b 
7 a, b, c, f, j f, c, b, a, j 
9 b, f, c, j, s, p f, c, b, j 

f:4

c:3

b:2

a:1

j:1

root

b:1

c:1

b:1

j:1

k:1

f

c

b

a

k

j

   Header table
 Item   node-links

a:1

k:1

 

Figure 3. FP-tree After Merging FP-tree in Figure 2 and Data Sets in Table3. 
 

5. Mining Frequent Patterns 
We run the mining algorithms on the sampled data and most recent data.  

 To find frequent patterns over data streams, we examine the same problem in a 



transaction database. To justify whether a single item ia  is frequent in a transaction 

database DB, one just need to scan the database once to count the number of 

transactions that ia  appears. One can count every single item ia  in one scan of DB. 

However, it is too costly to count every possible combination of single items. An 
efficient alternative proposed in the Apriori algorithm [1] is to count only those 
itemsets whose every proper subset is frequent. That is, at the k-th scan of DB, derive 
its frequent itemset of length k, and then derive the set of length (k+1) candidate 
itemset (i.e., whose every length k subset is frequent) for the next generation. 
 Han J. at al in [2] proposed a method that may avoid candidate 
generation-and-test and utilize a compact data structure called frequent-pattern tree, or 
FP-tree in short. To ensure the tree structure is compact and informative, only frequent 
length-1 items will have nodes in the tree, and the tree nodes are arranged in such a 
way that more frequently occurring nodes will have better chance of node sharing 
than less frequently occurring ones. Subsequent frequent-pattern mining will only 
need to work on the FP-tree instead of the whole data set. 

We use the FP-growth [2] algorithm to mine frequent patterns from the sampled 
historical data and the most recent data. Next section we will talk about the properties 
of  transaction data stream. We will discuss the importance of the properties and 
make some hypotheses which will be tested in section 7.  
 

6. Properties of Transaction Data Stream 
What will the properties of the data stream affect our sampling and merging 

algorithm? And how? 
There are some properties of the data stream and data set which are very important 

and inevitably affect the time cost in data mining procedure. Apparently the size of 
the data size will greatly affect the cost time and this has been experimented by many 
data mining algorithms. We have tested the effect of the historical data size to our 
sampling and merging algorithm. And we showed that the sampling and merging 
algorithm based on FP-tree has a very good performance with different historical data 
size. Now we need to consider other properties of the data which will affect the 
performance of the algorithm, the most important of which are the number of distinct 
items and the average length of transactions. In some literature, these properties are 
omitted. For example, in [5] in the experiment they only used the transactions data 
with short average length, which is 3. Actually, short length transactions will cost 
much less time to construct and maintain the structure they used in their algorithm. 
When the length changes longer, it will increase the cost time. How these properties 
affect the algorithm is depended on the nature of the algorithm. An ideal algorithm 
should be robust with changing of these properties. Actually it is hard to reach such 
ideal situation, but we still seek to reduce their effect as much as possible. The 
performance of the sampling and merging algorithm based on disk, from the nature of 
the algorithm, will not be affected by these properties or very little. But as they have 



worse performance than the algorithm based on FP-tree which is constructed in 
memory, and intuitively the FP-tree based algorithm will be affected by these 
properties, we need to test how these properties affect the performance.   

Hypothesis 1. When the number of distinct items increases, the cost time will 
increase less sharply than linear function. 

Hypothesis 2. When the average length of transactions increases, the cost time 
will increase less sharply than linear function. 

We will do experiments to test the above two hypotheses. For Hypothesis 1, we 
change the number of distinct items and keep other properties unchanged, and test the 
different time cost; For Hypothesis 2, we change the average length of transactions 
and keep other properties unchanged, and test the different time cost.  

If the hypotheses are falsified, in other words, the cost time increases more 
sharply than the linear function, we need to modify our algorithm. Especially when it 
increases exponentially, we need to reconstruct the data structure and redesign the 
algorithm. In reality, usually there are long transactions and large number of distinct 
items. We need to consider such situation and cannot just think of the situation where 
there are only short transactions and small number of distinct items. For example, in 
the supermarket, there are lots of items of goods, thousands of or even ten thousands 
of.  

 

7. Performance Study and Experiments 
Our experiment was written in C++, using Microsoft Visual C++2005. See 

Appendix to get a snapshot of the demo.   
The data stream was generated by the IBM synthetic market-basket data generator, 

available at “http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/ 
datasets/syndata.html”. The stream was broken into batches of transactions and fed 
into the program through standard input.   
.   We implement the FP-tree mining algorithm. The demo has Multithreads, GUI 
thread for Setting parameters and running mining operations; cmd thread for inputting 
and processing data stream and for standard output. 
 We do the experiments to test the performance. When the number of the most 
recent transactions does not hit the window size M, no sample and merge operations 
take place, and one batch of transaction with 56k file size costs average of 1.4 second 
to process. The time cost for processing the data stream become larger when the 
window size hit M and sample and merge operations take place. We compare two 
types of sample and merge operations, one is disk based, the other is based FP-tree. 
We generate the test data with average transaction length of 10. We use the same most 
recent data and different size of historical data to compare the performance. 
 
Most recent data:  Trans num, 1k; file size 275k.  
Error threshold 0.0005ε = . Number of distinct items: 100. 
 
 



 
 
Table5. Properties of Test Data 

Historical data data1 data2 data3 data4 data5 data6 data7 data8 
Trans num 1k 2k 5k 10k 15k 20k 25k 30k 
File size 275k 487k 1213k 2774k 4086k 5518k 6837k 8173k
Fading factor λ  0.5 0.667 0.8 0.9 0.933 0.95 0.96 0.967
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Figure 4. Compare the Performance of the Two Types of 1( , , )t tMergeAndSample D D λ  

 
From Figure4, we found that FP-tree based merge and sample is much more 

efficient when the historical data is greater than most recent data. And the time cost is 
much less than the time needed for the generating frequent patterns algorithm. For 
example it costs 176 seconds to run the FP-growth algorithm to generate frequent 
patterns over dataset with 10k transactions when we set minimum support as 0.005, 
and 360 seconds for dataset with 30k transactions.   
 The Fading factor reflects the important of the historical data. 

When D is fixed, the greater fading factor, the more frequent sampling operations 
will take place. In the case sampling operations take place frequently, storing the 
sampled historical data in main memory in the form of a compact tree with error 
threshold will speedup processing data stream. Otherwise we can store both sampled 
historical data and most recent data in disk to maintain the original sampled data. 

 
To test how the cost time changes for FP-Sample-Merger algorithm when the 

number of distinct items increases, we do the following experiments. We select most 

recent data:  Trans num, 1k; Error threshold 0.0005ε = . Fading factor λ =0.5. 



Transaction number of historical data, 1k. We use distinct items number 100, 200, 300, 
400, 500, 600, 700, 800, 900, 1000. We get Figure 5. This figure shows that when the 
distinct items increase, with other properties unchanged, the cost time does not appear 
to increase, or in other words, similar.    
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Figure 5. Different cost time with respect to different number of distinct items  
 
To test how the cost time changes for FP-Sample-Merger algorithm when the 

average length of transactions increases, we do the following experiments. We select most 

recent data:  Trans num, 1k; Error threshold 0.0005ε = . Fading factor λ =0.5. 

Transaction number of historical data, 1k. We use average length of transactions 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14. We get Figure 6. This figure shows that when the average length of 
transactions increase, with other properties unchanged, the cost time increase linearly. 
The major cause should be that when the average length of transactions increase, the 
data for every transaction to be processed increase too, and the FP-tree becomes 
deeper.     
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 Figure 6. Different cost time with respect to different average length of transactions.  
 
Figure 5 meets our hypothesis in section 6 very well. When the number of distinct 

items increases, the cost time will increase less sharply than linear function. Figure 6 
does not meet our hypothesis in section 6 perfectly. The hypothesis says when the 



average length of transactions increases, the cost time will increase less sharply than 
linear function. Here although the increase of cost time is not greater than linear 
function of average length of transactions, it is not less than linear function. We will 
try to find some methods to improve the algorithm to meet the standard of hypothesis 
2 in section 6 in the future. One major time cost in the algorithm would be through IO 
to process most recent data. If we can improve this part significantly, the result will be 
much better.  
 

8. Conclusions 
In this paper we propose an approximate scheme to mine frequent patterns over 

Data Streams. We keep the data which we will mine on about the same size and on the 
other hand we try to avoid wasting too much time on sampling to keep the data 
around the same size. In this way we guarantee to run mining algorithm in the limited 
memory capacity when the data steam becomes large enough, and to keep the running 
time at the regular range when the time evolves. We propose two methods to do the 
merging and sampling operation. The one based on the compact tree structure is very 
efficient according to our experiments. 
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Appendix 
The demo Snapshot. 
 

 
Figure 5.  Snapshot of the demo 

 
 
 


