
An Approximate Scheme to Mine Frequent

Patterns over Data Streams

Shanchan Wu
Department of Computer Science,

University of Maryland, College Park, MD 20742, USA
wsc@cs.umd.edu

Abstract. In this paper, we propose a scheme to mine frequent patterns from data
streams. Our scheme can guarantee to run mining algorithm in the limited memory
capacity when the data becomes large enough, and to keep the running time at the
regular range when the time evolves. We emphasize the most recent data but do not
discard all of the historical data. We propose efficient sampling and merging schemes
to process incoming data streams quickly. We implement the schemes and mining
frequent patterns algorithm. The analysis and experiments show that our algorithms
are efficient.

1. Introduction
 Frequent pattern mining in datasets has been studied extensively in data mining,

with many algorithms proposed and implemented, For example Apriori[1],
FP-growth[2], CLOSET[3], and CHARM[4]. Frequent pattern mining and its
associated methods have been popularly used in association rule mining, sequential
pattern mining, structured pattern mining, associative classification, frequent
pattern-based clustering, and so on.

Recent emerging application, such as network traffic analysis, web click stream
mining, power consumption measurement, sensor network data analysis, and dynamic
tracing of stock fluctuation, call for study of a new kind of data, called stream data,
where data takes the form of continuous, potentially infinite data streams, as opposed
to finite, statically stored data set. However, it is challenging to mine frequent patterns
in data streams because of the large and continuous data. Mining frequent patterns in
data stream is a challenging job, much more difficult than mining frequent patterns in
datasets. There are some reasons: (1) the data stream is potentially infinite, so we
can’t simply abandon some data just like dealing with datasets; (2) As the memory
capacity of computers is finite, we can’t keep all of the historical data stream; (3) We
sometimes need timely answer and the response time should be small. These reasons
make finding frequent patterns in data steam a hard job. Though some work has been
done in this area, it is far less than sufficient.

 There are some recent studies on mining data streams. Giannella et al. [5] have
developed a frequent itemsets mining algorithm over data stream. They have proposed
the use of tilted windows to calculate the frequent patterns for the most recent
transactions based on the fact that users are more interested in the most recent

transactions. They use an incremental algorithm to maintain the FP-stream which is a
tree data structure to represent the frequent itemsets. They conducted a number of
experiments to prove the algorithm efficiency.

Manku and Motwani [6] have proposed and implemented an approximate
frequency counts in data streams. The implemented algorithm uses all the previous
historical data to calculate the frequent patterns incrementally.

P.A. Laur et al. [7] have proposed a statistical technique which biases the
estimation of the support of sequential patterns or the recall, as chosen by the user,
and limits the degradation of the other criterion. They replaced the conventional
minimal support requirement for finding frequent sequential patterns by a statistical
support.

Gaber, M, M. et al [8] reviewed the theoretical foundations of data stream analysis,
and have critically reviewed mining data stream systems and techniques. They
outlined and discussed research problems in streaming mining field of study.

Most of these previous work on mining frequent or sequential patterns over data
streams focuses on how to technically deal with large historical data, but do not
guarantee that they can run their algorithm in the limited memory capacity when the
data becomes large enough, or do not keep the running time at the regular range when
the time evolves. In this project, we will propose a method to mine frequent patterns
with about the same cost time when the time evolves and the historical data gets large.
We refer the ideas in [5] and [7]. Similar to [5] we focus more on most recent data,
and like [7] we use some sample idea, but not the same technique. [5] uses tilted
windows to focus most recent data. [7] uses statistical technique to change the
minimal support.

We suppose to keep the data which we will mine on about the same size and on
the other hand we try to avoid wasting too much time on sampling to keep the data
around the same size. This will guarantee that we are able to run the mining algorithm
with the limited memory capacity. And if keeping the data around the same size costs
small time, then the total cost time mostly depends on the mining algorithm. One
simple idea is that every time we use the most recent data, but it will lose the rest
historical data. Another idea is that every time we sample the whole historical data,
but this will cost a lot of time.

Suppose we want to keep the data with size S, from which we will find frequent
patterns. Apparently we have the equation:

S = S/2 + S/4 + S/8 + S/16 + … + S/2n … + …
The idea is that we use the S/2 most recent items in the historical data without

sampling, and sample half for the next S/2 items, and sample 1/4 for the next to the
next S/2 items, again an again till the most original items. We will extend this
equation to more generality, where the fading factor can be some value other than 1/2.
We will discuss it more detail in section 3.

We will design an efficient mechanism to quickly sample data in this way, and
combine this algorithm to the mining algorithm. FP-growth [2] is an efficient
algorithm to mine frequent patterns. We use the FP-growth to mine frequent patterns.
Mining frequent patterns will be discussed in section 5. How the properties of data

stream will affect our algorithm will be discussed in section 6. In that section make
some hypotheses which will be tested in section 8.

We propose two methods in section 4 to implement the sampling and merging
mechanism. One is to maintain the sampled historical data in hard disk, the other is to
store the sampled historical data in a compact FP-tree and keep it in main memory.
We will combine the sampling algorithm and mining algorithm. When new data
streams come, we update the data and if necessary run the sampling algorithm. In this
way the mining results reflects the most recent data and also historical data with less
priority. We will talk about the mechanism when and how we run sample algorithm
later. We do some experiments and analyze the performance.

2. Problem Definition

 Let 1 2 3{ , , , }mI a a a a= be a set of items, and a transaction database

1 1{ , , , }nDB T T T= , where ([1])iT i n∈ is a transaction which contains a set of items

in I . The support (or occurrence frequency) of a pattern A, where A is a set of items,
is the number of transactions containing A in DB. A pattern is frequent if A’s support

is no less than a predefined minimum support threshold ξ . Suppose
| |DB
ξθ = , then

a pattern is frequent if () | |support A DBθ≥ ⋅ . (0,1)θ ∈ is a user specified minimum

support. The problem of mining frequent patterns is to mine all patterns whose

support is greater than, or equal to | |DBθ⋅ . Each of them is called a frequent pattern.

In the case of data stream we have a partial storage of DB. Let us now assume that

we are provided with a data stream. Let 0 1, , , , ,nDS B B B= be an infinite

sequence of batches, where each batch is associated with a timestamp t, i.e. tB , and n

is the identifier of the “Latest” batch nB . Each batch iB consists of a set of

customer data transactions; that is 1 2[, , ,]i kB T T T= . The length (L) of the data

stream is defined as 0 1| | | | | |nL B B B= + + + , where | |iB stands for the cardinality

of the set iB . Therefore, the problem of mining frequent patterns is to find frequent

patterns A , verifying
0

()
L

t
t

support T Lθ
=

≥ ×∑

As the data stream is potentially infinite, it is possible that some patterns which

might be frequent at some time but might not be frequent patterns again when time
evolves, and it is also possible that some patterns which might not be frequent at some
time but might be frequent patterns some time later. In the case the data stream update
quickly, the mining frequent patterns algorithm which cost a lot of time are not
practical because the algorithms do not get the most recent frequent patterns. During
the long time execution of the algorithm, the data stream has been updated greatly. To
limit the running time, one straightforward thinking is that we do not apply the mining
algorithm to the whole historical data but rather to some sample data, and what we get
is not the truly frequent patterns, but the estimations of the frequent patterns. Some
new problems come up:

1. The sampling procedure should not cost lots of time when applied to
potentially infinite data streams. If it costs lots of time, then it is useless.

2. How can the frequent patterns from the sampling data be a good estimation
of the truly frequent patterns?

It is generally impossible to make a fully accurate prediction when some information
is missing from the original data. And we can notice the different importance of the
historical data with different time. For example, a shopping transaction stream could
start long time ago, but some old items may have lost their attraction and fashion or
seasonal products may change from time to time. In this paper we address how to
make efficient sampling with balancing the importance of current data and without
loss the historical information to mine frequent patterns from data stream.

3. Mining Data Stream with Limited Memory
 Suppose the original mining algorithm can mine the data set with the size D,
consuming the time and memory space under our tolerance. Then our target is to limit
the data size not greater than and near to D, on which we run the mining algorithm.
We introduce a fading factor λ , where 0 1λ< < . For the most recent M transactions,
we use the original transactions; for the next older M transactions, we sample Mλ ;
and so on. Then we have:

2 (1)
1

n
i n MD M M M M M λλ λ λ λ

λ
−

= + + + + + =
−

If the data stream is infinite, i.e. n →+∞ , then (1) (1)
1 n

DM Dλ λ
λ

−
= → −

−

We apply (1)M Dλ= − as a window size in which we do the same dense

sampling. Let 0 1, , , , ,nDS B B B= be a data stream, where each batch iB

consists of a set of customer data transactions. Suppose we begin running processing
data stream as the data stream starts. The processing of the data stream is as follow:

Input: Data stream 0 1, , , ,nDS B B B= ;

 fading factor λ ; window size M

Initialize: tD φ= , 1tD φ=

 1 0tS =

ProcessDataStream (DS)
{

 waiting next new coming batch iB and suppose 1 2[, , ,]i kB T T T=

 for each transaction jT in iB

{

 1 1 1t tS S= + ; 1 1t t jD D T= ∪

 if(1tS M=) then{

1(, ,)t t tD MergeAndSample D D λ= ; 1 0tS = ; 1tD φ=

}
}
ProcessDataStream (DS)

}

In the ProcessDataStream(DS), for every new transaction, we add it to the 1tD ,

and increase 1tS , the size of 1tD . If 1tS is less than window size M , we do nothing

and turn to next transaction. Else, We merge and sample 1tD and tD , and then set

the result to tD .

We have two ways to implement 1(, ,)t tMergeAndSample D D λ . We can first

merge 1tD to tD and then do sampling, or we can first sample 1tD and tD

separately and then merge them. We will talk more about this in next section.

Every time we run mining algorithm, we use both 1tD and tD as data source. So

our results will reflect both the most recent data and the historical data.

4. Sampling and Merging
 In this section, we talk about the scheme of sampling and merging. We have two
choices. One is that we keep the sampled historical data and the most recent data in

the disk, the other is that we keep the sampled historical data in the main memory
using a compact tree structure.
 When we use disk to store both parts of data, the merging operation is just
combine to parts of data sets together. After merging, we do sampling operation on the
merged file. The sampling operation is as following:

Algorithm (Disk-Sample: Sampling transaction file with possibility λ)
Input: transaction file Tran_file, and sampling density λ
Output: The sampled Tran_file
Method: Call Disk-Sample (FP-tree)
Procedure Disk-Sample(Tran_file, λ)
{
 create an empty file tmp_file;

move the file pointer forward, get sufficient lines of data until get a complete

transaction t. For every such transaction t select t with a random possibility λ .

If t is selected, then push t into a buffer. When the buffer is almost full, flush the
buffer data into tmp_file. After finishing scanning Tran_file, flush the buffer again,
remove Tran_file and rename tmp_file to Tran_file.
return Tran_file.

}

 The advantage of storing the data in the disk is that it can store much more data
than in memory and the operation is simple. The disadvantage is that it costs more
time because of the IO operations.

We can use FP-tree [2] to store the sampled historical data. Our goal is to mine
the frequent patterns from the sampled historical data and the most recent data. If we
store all of the sampled historical data in the memory, this goal can be met. However,
this will require too much space. So we only maintain those items in the historical
transactions whose frequency is greater than some error threshold ε , and discard the
other items. As a result, we no longer have exact frequency over the sampled
historical data plus most recent data, rather than an approximate frequency. for any

itemset I, 1
ˆ () ()I I t I tf f D f D= + , where ()I tf D is the frequency of the sampled

historical data and 1()I tf D is the frequency of the most recent data. The

approximation is less than the actual frequency as described by the following
inequality,

ˆ
I I If D f fε λ− ⋅ ≤ ≤

Thus if we deliver all itemsets whose approximate frequency is larger than ()Dδ ελ− ,

we will not miss any frequency itemsets in the sampled historical data and the most
recent data. We use an example to describe the idea and propose the algorithm during

the discussion of the example.
Example. Let D=10, 0.5λ = , then M=5. Suppose error threshold 0.3ε = , then only
those items having frequency at least 2 in the sampled historical data set are stored in
the frequency tree. At sometime the sampled data is as following table:

Table1. Historical Sampled Transaction Datasets
Transaction ID Items (Ordered) items with frequency >= 2
1 f,a,c,d,g,k,i,m f,c,a,m,k
2 a,b,c,f,m f,c,a,b,m
3 b,f,h,j,k f,b,k
4 b,c,o,s,p c,b
5 a,f,c,e,l,m,n f,c,a,m

Then FP-tree with respect to Table 1 is as Figure 1.

f:4

c:3

a:3

m:2

k:1

root

b:1

c:1

b:1

b:1

m:1

k:1

f

c

a

b

m

k

 Header table
 Item node-links

Figure 1. FP-Tree constructed from Table 1

 After sometime, when new transactions come and the number of the new

transactions hits M, then we should do the merge and sampling operation. Suppose
some time later the accumulated new transactions are as Table 2. The number of new
transactions has hit M where M is equal to 5.

Table2. New Transaction Data Sets.
Transaction ID Items
6 f,a,c,d,g,k,i,m
7 a,b,c,f,j
8 b,f,h,j,k
9 b,f,c,j,s,p
10 a,f,c,e,l,m,n

As the historical data is stored FP-tree, the efficient operation is to first sample

FP-tree and new transaction data sets. Then merge them together. Sampling new
transaction data sets is simple. We give every transaction the possibility of λ to be
selected, in this example 0.5λ = . Now we give the algorithm of sampling FP-tree.

Algorithm (FP-Sample: Sampling FP-tree with possibility λ)
Input: FP-tree, and sampling density λ
Output: The new sampled FP-tree
Method: Call FP-Sample(FP-tree)
Procedure FP-Sample(Tree, λ)
{
 for every node in the header table do{
 Traverse its node-list. For every node V in the node-list,

1V children of V
1s support(V) support(V)

∈

= − ∑ if(0s >) then{

 s1=
1

(random with possibility to return 1 and 1- to return 0)
s

i

λ λ
=
∑ ,

 1s s s∆ = − ,
 traverse node V back to root, deduct the support of every node by s∆ ,
 if the support of any node during the traversing becomes to 0, then

remove the node from the tree.
}

}
return Tree

}

Using FP-Sampling Algorithm, FP-tree is changed as showing in figure 2 (this is
one possibility and there are some other possibilities of the new FP-tree).

f:2

c:1

a:1

m:1

k:1

root

b:1

c:1

b:1

k:1

f

c

a

b

m

k

 Header table
 Item node-links

Figure 2. FP-tree after Sampling the FP-tree in figure 1.

Now we sample the recent data in table 2, we have table 3 (there are also some

other possibilities).

Table3. New Transaction Data Sets After Being Sampled.
Transaction ID Item set
7 a,b,c,f,j
9 b,f,c,j,s,p

Merging the dataset in Figure 2 and Table 3 only needs to scan the FP-tree and table3
twice. During the first scan, calculate the frequency of every item and discard those
items whose frequency is less than 2. During the second scan, build up the new
FP-tree and destroy the old FP-tree. The new FP-tree in figure 3 actually based on
table 4, thought we do not actually maintain such a table.

Table4. Virtual Transaction Datasets About Figure 3
Transaction ID Items (Ordered) items with frequency >= 2
1 f, c, a, m, k f, c, a, k
3 f, b, k f, b, k
4 c, b c, b
7 a, b, c, f, j f, c, b, a, j
9 b, f, c, j, s, p f, c, b, j

f:4

c:3

b:2

a:1

j:1

root

b:1

c:1

b:1

j:1

k:1

f

c

b

a

k

j

 Header table
 Item node-links

a:1

k:1

Figure 3. FP-tree After Merging FP-tree in Figure 2 and Data Sets in Table3.

5. Mining Frequent Patterns
We run the mining algorithms on the sampled data and most recent data.

 To find frequent patterns over data streams, we examine the same problem in a

transaction database. To justify whether a single item ia is frequent in a transaction

database DB, one just need to scan the database once to count the number of

transactions that ia appears. One can count every single item ia in one scan of DB.

However, it is too costly to count every possible combination of single items. An
efficient alternative proposed in the Apriori algorithm [1] is to count only those
itemsets whose every proper subset is frequent. That is, at the k-th scan of DB, derive
its frequent itemset of length k, and then derive the set of length (k+1) candidate
itemset (i.e., whose every length k subset is frequent) for the next generation.
 Han J. at al in [2] proposed a method that may avoid candidate
generation-and-test and utilize a compact data structure called frequent-pattern tree, or
FP-tree in short. To ensure the tree structure is compact and informative, only frequent
length-1 items will have nodes in the tree, and the tree nodes are arranged in such a
way that more frequently occurring nodes will have better chance of node sharing
than less frequently occurring ones. Subsequent frequent-pattern mining will only
need to work on the FP-tree instead of the whole data set.

We use the FP-growth [2] algorithm to mine frequent patterns from the sampled
historical data and the most recent data. Next section we will talk about the properties
of transaction data stream. We will discuss the importance of the properties and
make some hypotheses which will be tested in section 7.

6. Properties of Transaction Data Stream
What will the properties of the data stream affect our sampling and merging

algorithm? And how?
There are some properties of the data stream and data set which are very important

and inevitably affect the time cost in data mining procedure. Apparently the size of
the data size will greatly affect the cost time and this has been experimented by many
data mining algorithms. We have tested the effect of the historical data size to our
sampling and merging algorithm. And we showed that the sampling and merging
algorithm based on FP-tree has a very good performance with different historical data
size. Now we need to consider other properties of the data which will affect the
performance of the algorithm, the most important of which are the number of distinct
items and the average length of transactions. In some literature, these properties are
omitted. For example, in [5] in the experiment they only used the transactions data
with short average length, which is 3. Actually, short length transactions will cost
much less time to construct and maintain the structure they used in their algorithm.
When the length changes longer, it will increase the cost time. How these properties
affect the algorithm is depended on the nature of the algorithm. An ideal algorithm
should be robust with changing of these properties. Actually it is hard to reach such
ideal situation, but we still seek to reduce their effect as much as possible. The
performance of the sampling and merging algorithm based on disk, from the nature of
the algorithm, will not be affected by these properties or very little. But as they have

worse performance than the algorithm based on FP-tree which is constructed in
memory, and intuitively the FP-tree based algorithm will be affected by these
properties, we need to test how these properties affect the performance.

Hypothesis 1. When the number of distinct items increases, the cost time will
increase less sharply than linear function.

Hypothesis 2. When the average length of transactions increases, the cost time
will increase less sharply than linear function.

We will do experiments to test the above two hypotheses. For Hypothesis 1, we
change the number of distinct items and keep other properties unchanged, and test the
different time cost; For Hypothesis 2, we change the average length of transactions
and keep other properties unchanged, and test the different time cost.

If the hypotheses are falsified, in other words, the cost time increases more
sharply than the linear function, we need to modify our algorithm. Especially when it
increases exponentially, we need to reconstruct the data structure and redesign the
algorithm. In reality, usually there are long transactions and large number of distinct
items. We need to consider such situation and cannot just think of the situation where
there are only short transactions and small number of distinct items. For example, in
the supermarket, there are lots of items of goods, thousands of or even ten thousands
of.

7. Performance Study and Experiments
Our experiment was written in C++, using Microsoft Visual C++2005. See

Appendix to get a snapshot of the demo.
The data stream was generated by the IBM synthetic market-basket data generator,

available at “http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/
datasets/syndata.html”. The stream was broken into batches of transactions and fed
into the program through standard input.
. We implement the FP-tree mining algorithm. The demo has Multithreads, GUI
thread for Setting parameters and running mining operations; cmd thread for inputting
and processing data stream and for standard output.
 We do the experiments to test the performance. When the number of the most
recent transactions does not hit the window size M, no sample and merge operations
take place, and one batch of transaction with 56k file size costs average of 1.4 second
to process. The time cost for processing the data stream become larger when the
window size hit M and sample and merge operations take place. We compare two
types of sample and merge operations, one is disk based, the other is based FP-tree.
We generate the test data with average transaction length of 10. We use the same most
recent data and different size of historical data to compare the performance.

Most recent data: Trans num, 1k; file size 275k.
Error threshold 0.0005ε = . Number of distinct items: 100.

Table5. Properties of Test Data

Historical data data1 data2 data3 data4 data5 data6 data7 data8
Trans num 1k 2k 5k 10k 15k 20k 25k 30k
File size 275k 487k 1213k 2774k 4086k 5518k 6837k 8173k
Fading factor λ 0.5 0.667 0.8 0.9 0.933 0.95 0.96 0.967

0

10

20

30

40

50

60

1 2 5 10 15 20 25 30

trans number of historical data(k)

T
i
m
e

c
o
s
t

(
s
e
c
o
n
d
)

disk-merge-sampe FP-sample-merge

Figure 4. Compare the Performance of the Two Types of 1(, ,)t tMergeAndSample D D λ

From Figure4, we found that FP-tree based merge and sample is much more

efficient when the historical data is greater than most recent data. And the time cost is
much less than the time needed for the generating frequent patterns algorithm. For
example it costs 176 seconds to run the FP-growth algorithm to generate frequent
patterns over dataset with 10k transactions when we set minimum support as 0.005,
and 360 seconds for dataset with 30k transactions.
 The Fading factor reflects the important of the historical data.

When D is fixed, the greater fading factor, the more frequent sampling operations
will take place. In the case sampling operations take place frequently, storing the
sampled historical data in main memory in the form of a compact tree with error
threshold will speedup processing data stream. Otherwise we can store both sampled
historical data and most recent data in disk to maintain the original sampled data.

To test how the cost time changes for FP-Sample-Merger algorithm when the

number of distinct items increases, we do the following experiments. We select most

recent data: Trans num, 1k; Error threshold 0.0005ε = . Fading factor λ =0.5.

Transaction number of historical data, 1k. We use distinct items number 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000. We get Figure 5. This figure shows that when the
distinct items increase, with other properties unchanged, the cost time does not appear
to increase, or in other words, similar.

0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700 800 900 1000

 number of distinct items

R
u
n
n
i
n
g

T
i
m
e
(
s
e
c
o
n
d
)

Figure 5. Different cost time with respect to different number of distinct items

To test how the cost time changes for FP-Sample-Merger algorithm when the

average length of transactions increases, we do the following experiments. We select most

recent data: Trans num, 1k; Error threshold 0.0005ε = . Fading factor λ =0.5.

Transaction number of historical data, 1k. We use average length of transactions 5, 6, 7, 8,
9, 10, 11, 12, 13, 14. We get Figure 6. This figure shows that when the average length of
transactions increase, with other properties unchanged, the cost time increase linearly.
The major cause should be that when the average length of transactions increase, the
data for every transaction to be processed increase too, and the FP-tree becomes
deeper.

0

0.5

1

1.5

2

2.5

3

5 6 7 8 9 10 11 12 13 14

Average Length of Transactions

R
u
n
n
i
n
g

T
i
m
e
(
s
e
c
o
n
d
)

 Figure 6. Different cost time with respect to different average length of transactions.

Figure 5 meets our hypothesis in section 6 very well. When the number of distinct

items increases, the cost time will increase less sharply than linear function. Figure 6
does not meet our hypothesis in section 6 perfectly. The hypothesis says when the

average length of transactions increases, the cost time will increase less sharply than
linear function. Here although the increase of cost time is not greater than linear
function of average length of transactions, it is not less than linear function. We will
try to find some methods to improve the algorithm to meet the standard of hypothesis
2 in section 6 in the future. One major time cost in the algorithm would be through IO
to process most recent data. If we can improve this part significantly, the result will be
much better.

8. Conclusions
In this paper we propose an approximate scheme to mine frequent patterns over

Data Streams. We keep the data which we will mine on about the same size and on the
other hand we try to avoid wasting too much time on sampling to keep the data
around the same size. In this way we guarantee to run mining algorithm in the limited
memory capacity when the data steam becomes large enough, and to keep the running
time at the regular range when the time evolves. We propose two methods to do the
merging and sampling operation. The one based on the compact tree structure is very
efficient according to our experiments.

References

[1] Agrawal,R., and Srikant,r. 1994. Fast algoritm for mining association rules. In
Proc. 1994 Int. Conf. Very Large Data Bases (VLDB'94), 487-499
[2] Han, J.; Pei, J.; and Yin, Y. 2000. Mining frequent patterns without candidate
generation. In Porc. 2000 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD'00), 1-12
[3]Pei, J. han, J. and Mao, R. 2000. CLOSET: An efficient algorithm for mining
frequent closed itemsets. In proc. 2000 ACM-SIGMOD Int. Workshop Data Mining
and Knowledge Discovery (DMKD'00), 11-20.
[4] Zaki, M.J., and Hsiao, C.J. 2002. CHARM: An efficient algorithm for closed
itemset mining. In Proc. 2002 SIAM Int. Conf. Data Mining, 457-473
[5] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu, Mining Frequent Patterns in Data
Streams at Multiple Time Granularities, in H. Kargupta, A. Joshi, K. Sivakumar, and Y.
Yesha (eds.), Next Generation Data Mining, AAAI/MIT, 2003.
[6] G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In
Proceedings of the 28th International Conference on Very Large Data Bases, Hong
Kong, China, August 2002.
[7] Pierre-alain Laur, Richard Nock, Jean-emile Symphor. Mining Sequential Patterns
on Data Streams: a Near-Optimal Statistical Approach. 2nd int. Workshop on
Knowledge Discovery from Data streams (at ECML/PKDD 05). pp 29-40.
[8]Gaber, M, M., Zaslavsky, A., and Krishnaswamy, S., Mining Data Streams: A
Review, ACM SIGMOD Record, Vol. 34, No. 1, June 2005, ISSN: 0163-5808.

Appendix
The demo Snapshot.

Figure 5. Snapshot of the demo

