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Abstract
Clustering is an important problem and has numerous applications. In this paper we con-

sider an important clustering problem, called the k-center problem. We are given a discrete
point set S and a constant integer k, and the goal is to compute a set of k center points to
minimize the maximum distance from any point of S to its closest center. We consider both
the discrete formulation, in which center points are restricted to be selected from S, and the
absolute formulation, in which the centers may be chosen from any point in space. We consider
two generalizations of this problem, inspired by issues that arise in real applications. First, we
consider a robust version of the problem, in which the user provides a parameter 0 < t ≤ 1, and
the algorithm is required to cluster only a fraction t of the points, thus allowing some fraction
of outlying points to be ignored. Second, we consider the problem in a kinetic context, where
points are assumed to be in motion. We present a kinetic data structure (in the KDS frame-
work) that maintains a (3 + ε)-approximation for the robust discrete k-center problem, and a
(4 + ε)-approximation for the robust absolute k-center problem. We also improve on a previous
8-approximation for the non-robust kinetic k-center problem for arbitrary k and show that our
data structure supports a (4 + ε)-approximation.

1 Introduction

The calculation of clustering properties of points is a frequently studied problem in operations
research and computer science. Many problem variations have been considered including k-center,
k-means, and facility location problems [8, 14,16,17].

The (non-robust) k-center problem is defined as follows: Given a set of n points, find k center
points that minimize the maximum distance from any point to its closest center. The version of
this problem where each of the k centers must be one of the original n points is known as the
discrete k-center problem. The version where the centers may be any point in space is known as the
absolute k-center problem [16]. We consider the geometric version of this problem, where distance
is the Euclidean metric.

Kariv and Hakimi [16] proved that the discrete and absolute versions of the k-center problem
are NP-hard. Feder and Greene show that the problem in a geometric context cannot be approx-
imated to within a factor of 1.822 (assuming P = NP) [8]. It is also known that the problem of
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finding a (2−ε)-approximation for the k-center problem is NP-complete when the k-center problem
is considered in a graph theoretic context [15].

Since the k-center problem is NP-hard, considering approximation algorithms is appropriate.
An algorithm provides a c-approximation to the k-center problem if the radius associated with
the k chosen centers is no more than c times the optimal radius. Feder and Greene [8] gave a
2-approximation for the geometric k-center problem and Hochbaum and Shmoys [14] and Gonza-
lez [10] gave 2-approximation algorithms for the graph theoretic version of the k-center problem.
Since there is a known lower bound of (2− ε) for the graph version of the k-center problem, these
approximation algorithms give the best approximation bound possible.

In many applications of clustering, it is desirable to ignore some number of distant points called
outliers. The study of statistical estimators that are insensitive to outliers is the domain of robust
statistics [18]. Robust statistics have been extensively studied in mathematics, operations research,
and computer science. The flexibility to ignore outliers is important when considering experimental
data which may contain measurement errors or isolated and unusual data points. It is also often a
necessity when considering business-related problems where cost is an important factor. Charikar
et al. [7] explored the robust facility location problem, which determines the locations of stores
while minimizing the distance from customers to the stores and the total cost of opening facilities.
When considering cost it is desirable to have a model which will not require a new facility for very
isolated customers.

In this paper we focus on the robust version of the k-center problem. The robust k-center
problem modifies the k-center problem to allow flexibility in the number of points that satisfy the
distance criteria. In our formulation we are given a set of n points in Euclidean space, a constant
k, and a threshold parameter t, where 0 < t ≤ 1. The objective is to compute the smallest radius
r such that there exist k disks of radius r that cover at least dtne points. For t = 1 this problem
is the same as the non-robust formulation.

Since the robust k-center problem is a generalization of the non-robust version, the 1.822 approx-
imation lower bound [8] (assuming P 6= NP) for geometric contexts holds for the robust k-center
problem as well. Charikar et al. [7] showed that in the graph-theoretic context for the case of
the robust k-center problem with forbidden centers (in which some locations cannot be chosen as
centers), this lower bound increases to 3− ε. They also gave a 3-approximation algorithm for the
robust k-center problem.

Objects in motion (e.g., airplanes or cell-phone users) present unique data structure challenges.
Many frameworks have been studied for handling kinetic data [4, 13, 19, 20]. These generally rely
on a priori information about point motion (e.g., a “flight plan” in the form of an algebraic ex-
pression). We focus on the handling of kinetic data through the model of kinetic data structures
(KDSs) proposed by Basch, Guibas, and Hershberger [5]. KDSs have become the standard for
kinetic data and offer the flexibility of allowing flight plans to change.

Sometimes, in addition to locations of points in motion, it is also desirable to answer questions
about the structure of these points. Problems formerly framed on static data sets are now being
considered in a kinetic context. Standard problems which have been tackled include finding the
convex hull [5], Voronoi diagram [2], and minimum spanning tree on geometric graphs [6].

Kinetic data structures track specific properties of moving points. This is done through a set
of boolean conditions, called certificates, and a corresponding set of update rules. Certificates are
boolean conditions that guarantee geometric relations necessary to a particular problem’s solution,
and the rules specify how to respond when a certificate fails. Certificate failures are predicted and
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queued based on information about the points’ planned paths of motion, assumed to be in the form
of algebraic expressions.

There are four criteria under which the computational cost of a KDS is evaluated: responsive-
ness, efficiency, compactness, and locality [11]. Responsiveness measures the complexity of the cost
to repair the solution after a certificate fails. Efficiency measures the number of certificate failures
as compared to the number of required changes to the solution as the points move. Compactness
measures the size of the certificate set. Locality measures the number of certificates in which each
point participates. Guibas provides a more detailed overview of kinetic data structures in [11].

The kinetic k-center problem is a generalization of the static version, so the 1.822 approxima-
tion lower bound [8] (assuming P 6= NP) for the geometric version which we consider holds for this
problem as well. No other lower bounds are known for the kinetic problem. Gao, Guibas, and
Nguyen [9] give an 8-approximation algorithm for the discrete k-center problem.

1.1 Contributions

In this paper we consider, for the first time, a combination of these three important paradigms —
clustering, robust statistics, and kinetic data structures — and present an approximation algorithm
and corresponding efficient kinetic data structure to solve the kinetic robust k-center problem. We
assume throughout that k is a constant. The static k-center, kinetic k-center, and robust k-center
problems are all special cases of our problem and as such our approximation algorithm solves these
cases as well.

We obtain a (3 + ε)-approximation for the static, kinetic, and robust forms of the discrete
k-center problem and a (4 + ε)-approximation for the absolute version of the k-center problems.
Note that the first bound improves upon the 8-approximation for the kinetic discrete k-center prob-
lem as given by Gao, Guibas, and Nguyen [9] and generalizes it to the robust setting. However,
our result assumes that k is constant while theirs holds for arbitrary k. We improve their result
for the non-robust kinetic problem for arbitrary k by showing that our data structure achieves a
(4 + ε)-approximation while maintaining the responsiveness of their KDS (see Section D).

To our knowledge, our kinetic robust algorithm is the first approximation algorithm for the
kinetic absolute k-center problem (even ignoring robustness), and the first to tackle any kinetic,
robust problem. We give an example to show that our (3+ε)-approximation for the robust, discrete
k-center problem is tight.

The KDS used by our algorithm is efficient. We achieve bounds of O(log α/(εd)) for locality and
O(n/(εd)) for compactness (where α is an upper bound on the ratio between the largest and smallest
inter-point distances of the point set under motion) so we do not create too many certificates.
Our responsiveness bound is O((log α log n)/(εd)), so the data structure is able to update quickly.
Our efficiency bound of O(n2 log α) is reasonable since the combinatorial structure of the spanner
requires Ω(n2) updates [9], so any approach based on a spanner requires Ω(n2) updates.

2 Weak Hierarchical Spanner

Our approach is to extend a spanner construction for kinetic data structures developed by Gao et
al. [9] which they call a deformable spanner. We first describe their spanner and results.

The deformable spanner is defined assuming a point set S in Rd. The aspect ratio, denoted α, is
defined as the ratio between the maximum distance between two points and the minimum distance
between two points. Since our point set is not static, the aspect ratio is actually a function of time,
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α(τ). When considering the aspect ratio in the context of time complexity, we actually consider
the maximum α(τ) over all τ . For shorthand, we will refer to both meanings as α and rely on
context to distinguish between them.

Using the terminology of Gao et al. [9] the spanner is constructed based on a hierarchy of discrete
centers. To avoid confusion with the use of the term “center,” henceforth we will use the term node
for points in the spanner hierarchy and use the term center when referring to disk centers in the
solution to the k-center problem. The following properties hold for the hierarchy for 0 ≤ i ≤ dlog αe:
• S0 is the entire point set S.
• Each point in Si−1 is within distance 2i of some node in Si, the ith level of the hierarchy.
• Nodes in Si are chosen from Si−1.
• If x is a node in Si then x is also in levels 0 through i− 1.

Any set of nodes for which these properties hold is valid.
A node is said to cover a point in the level below if that point is within distance 2i of the node.

The node which covers a point is that point’s parent (if there are multiple such nodes, one is chosen
arbitrarily). The point covered is called the child of that node. Similarly, the parent of a point’s
parent is its ancestor and so on recursively. A point in the complementary relationship is called a
descendant. Some properties about the deformable spanner as proven in [9] are given below:

• Si ⊆ Si−1

• For any two points p, q ∈ Si, ‖pq‖ ≥ 2i.
• There is an edge from each point to its parent.
• The hierarchy has a height of at most dlog2 αe.
• Any point in S0 is of a distance at most 2i+1 away from its ancestor in level Si.

The deformable spanner maintains four types of certificates; parent-child certificates, edge cer-
tificates, separation certificates, and potential neighbor certificates (to keep track of cousins). The
KDS for this spanner is appropriately efficient, local, compact, and responsive (see Section 4.3).

Our weak hierarchical spanner is a variant of the deformable spanner. We combine the Gao et
al. [9] hierarchy of discrete centers with the neighbor relationships used in their spanner. We then
create s(ε) copies of this structure with varying distances certified (see Section 4). This structure
is a weak spanner in the sense that it has a constant stretch factor. For the rest of the paper we
call this structure the “spanner.”

For most of this paper, we consider the processing of only one of these spanners. The manipula-
tion of each of these spanners is determined by the spanner’s base distance. In the description given
above, this distance is 2i, however this distance varies slightly for each spanner we create. Instead,
each spanner has a base distance of 2ib where b = (1+ p

s ) and 0 ≤ p < s(ε) is the counter identifying
the current spanner. For ease of reading, we assume for most of the paper that p = 0 and so b = 1.

3 Robust K-Center Algorithm

Gao et al. [9] gave an 8-approximation for the non-robust discrete version of the k-center prob-
lem (for arbitrary k) on their deformable spanner. In Section D we improve this to a (4 + ε)-
approximation for arbitrary k. We now give a (3+ ε)-approximation for the robust discrete version
of this problem and a (4 + ε)-approximation for the robust absolute version, both for constant k.
Recall that the non-robust version can be expressed as the robust version in which the required
threshold fraction of covered points is t = 1, so these algorithms also hold for the non-robust case.

3



3.1 Intuitive Explanation

For the sake of intuition regarding some of the more complex technical elements of our algorithm
we first present the algorithm by Charikar et al. [7] for the static robust k-center problem, which
is the basis for our algorithm, and explain why it can not be directly applied to this problem.
Henceforth we refer to it as the expanded greedy algorithm.

This algorithm creates two types of disks centered at a point v in the input set S. The disks Gv

have radius r and the disks Ev have radius 3r where r is a pre-determined input to this algorithm
which is designed to be repeatedly called in a parametric search so that all potential values for r are
included. In a slight abuse of notation we sometimes let Gv and Ev represent the geometric disk
and sometimes the points contained within the disk. It is clear from context which interpretation
is being used. These disks are referred to, respectively, as greedy disks and expanded disks due to
their role in the expanded greedy algorithm (see Figure 1).

The proof of correctness for the expanded greedy algorithm uses a charging argument where
each point covered by an optimal disk is charged to the expanded disk that covers it or to a non-
overlapping greedy disk. The proof relies on two main points. First, that for any Gv each optimal
disk is either disjoint from Gv or completely covered by Ev due to the expansion factor. Second,
that it is possible to choose a greedy disk that covers some optimal disk.

When initially considering adapting the expanded greedy algorithm to the kinetic problem on
the spanner described in Section 2, we considered using this algorithm as a per-level subroutine.
This initial algorithm starts at the highest level of the spanner and works down. For each level i,
it runs the expanded greedy algorithm with radius 2i. It returns the set of centers associated with
the lowest level which succeeds in covering dtne points. There are, however, some shortcomings to
this approach due to assumptions that are not true in our context.
All important radii will be considered. The proof of the expanded greedy algorithm, and
of our algorithm which follows, relies on the possibility for the algorithm to pick a node and cover
all points within the optimal radius of that node. However, in this initial algorithm, if the optimal
radius is slightly larger than 2i then our algorithm would be forced to choose the centers at level
i + 1 in order to cover as many points as the optimal algorithm. This produces a result that is
roughly twice that of the optimal radius.

We solve this problem by creating multiple spanners with certification distances that vary, thus
partitioning the interval between 2i and 2i+1 (see Section 4). The algorithm is then applied to all
levels of all spanners, and the set of centers with the smallest radius is chosen. The number of

Figure 1: An overview of the expanded greedy algorithm [7].

Given radius r, point set S, t, k, and n:
Cr ← ∅ (Cr is the set of k centers being created for radius r)
V ← S (V is the set of candidate centers, S is the complete point set)
for each v ∈ V

construct Gv and Ev

compute counts |Gv| and |Ev| of points in S within r and 3r of v
for j = 1 to k and V 6= ∅

let vj be the v ∈ V where |Gv| counts the most uncovered points
Cr ← Cr ∪ {vj}
mark all points in Ev as covered

if at least dtne points are covered return Cr otherwise return “failure”
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spanners we create depends on ε, and there are enough so that we can make the approximation
error due to this issue arbitrarily small.
All points in S are candidate centers. The initial algorithm only chooses nodes in level i as
possible centers, so points are excluded from consideration. If some of these excluded centers are in
the optimal solution, then the algorithm could miss a solution at radius 2i and increase the radius.

Our solution to this problem is to consider all nodes in a level far enough below i so that the
candidate centers will be sufficiently dense when we are processing nodes in level i. Since the
optimal solution may still not be one of these points, we expand the radius we consider to cover all
the descendants of the points in this lower level. We are now able to cover all of the points covered
by an optimal solution since the optimal center is a descendant of some center in this lower level.
The number of levels to descend so that the points will be sufficiently dense is chosen based on ε
so that the approximation error due to this issue can be made arbitrarily small.
|Gv| and |Ev| are known exactly. For static points it is reasonable to keep information ac-
curately identifying the number of points within the greedy and expanded radii of each node.
However, maintaining these counts under motion would require keeping certificates between each
point in S and any geometrically covering centers. This would increase the compactness and locality
complexity described in Section 4.3.

To reduce compactness and locality complexity, we only keep the information maintained by
the deformable spanner and any information that can be derived from that. The spanner allows
us to compute points in a fuzzy disk in which all points within some inner distance are guaranteed
to be counted and no points outside of some distance are counted. Note that this means we may
cover more points than we count. Since we want to cover at least dtne points, this is not a problem.

We maintain these fuzzy disks without the addition of new certificates to our data structure by
using the neighbor and parent-child relationships to count all descendants of nodes as specified in
Section 3.3. Some of these descendants may be outside of the inner radius which we maintain, so
we add enough to the final radius so that it covers all these descendants.

3.2 Preconditions

In our algorithm, we assume that we have access to the following information. In other words, we
assume for now that the points are static and rely on the description of the kinetic data structure
in Section 4 for proof that these values are maintained correctly.

Throughout the algorithm we use a “greedy” radius, gi(ε, p) = 2i(1 + p
s )(1 + 2−l+1) and an

“expanded” radius, ei(ε, p) = 3 · 2i(1 + p
s )(1 + 2−l+1). From ε we derive additional parameters

s(ε) (abbreviated as s) and l(s, ε) (abbreviated as l) where s represents the number of spanners we
maintain, and l represents the number of levels of the spanner which we will descend at each step
of the algorithm in order to find candidate centers. Choices for s and l are justified in the proof to
Theorem 3.2. Since ε is constant throughout the algorithm and p is kept in the general form, we
abbreviate the radii as gi and ei. We also use slightly smaller radii g−i = 2i(1 + p

s )(1 + 2−l) and
e−i = 3 · 2i(1 + p

s )(1 + 2−l).

For all points we maintain:
• The parent/child and neighbor relationships between points in the spanner.

• The hierarchical description of the spanner, including the levels that each point exists in.
For each level i in the spanner hierarchy we maintain:
• A count of the number of points that are descendants of each node in level i.
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Gv

G−v

v

Figure 2: For v ∈ Si−l−1 the range sketch-
ing query returns the nodes in Si−l−1 within
G−

v . These are circled. All points shown are
in D(µ(G−

v )) and are counted for the priority
queue.

Given node v and level i− l − 1:
sum← 0
µ(G−

v )← result of Lemma 3.3 part (i)
applied to v

for each u ∈ µ(G−
v )

if ||uv|| > g−i
µ(G−

v )← µ(G−
v ) \ u

else
sum← sum + |D(u)|

return (µ(G−
v ), sum)

Figure 3: The range sketching and counting
subroutine for the µ(G−

v ) query. To answer the
µ(E−

v ) query, all references to µ(G−
v ) change to

µ(E−
v ), g−i to e−i , and Lemma 3.3 part (ii) is

used.

• A count indicating the number of points within distance gi of each node in Si−l−1. This
count must include all points within distance g−i of the node and may not include any
points farther than gi away.

• A count indicating the number of points within distance ei of each node in Si−l−1. This
count must include all points within distance e−i of the node and may not include any
points farther than ei away.

• A priority queue associated with level i that has the nodes in Si−l−1 as keys and the counts
of points within distance gi as described above as values.

3.3 The Discrete Problem

Our algorithm picks a set of k centers from the given n input points for a (3 + ε)-approximation of
the optimal solution to the kinetic, robust k-center problem. It takes as input the set of n points
S, ε, k, t, and α. Appropriate choices for s and l are justified in the proof to Theorem 3.2 and α
is an upper bound on the aspect ratio which is assumed to be provided as part of the input.
Algorithm Overview. The algorithm iterates over all s spanners and for each level, starting
from the highest and moving to S0, calculates the k best centers for that level using the per-level
subroutine described later in this section. If the k centers found for a given level i don’t cover dtne
points, the k centers found for i + 1 are stored as representative for that spanner. The k centers
with minimum radius ei out of those s sets is output as the solution.
Range Sketching. In order to maintain the counts described as necessary preconditions, we need
to answer a range sketch query. A range sketch query is given a node v in Si−l−1 and returns a
set of nodes µ(G−

v ) ⊆ Si−l−1 such that for u ∈ µ(G−
v ), D(u) ⊆ Gv and G−

v ∩ S ⊆ D(µ(G−
v )) where

D(X) is the set of descendants of a node or set of nodes X, Gv is the disk of radius gi centered
at node v, and G−

v is the disk of radius g−i centered at node v. These nodes correspond roughly to
the nodes of the partition tree used for approximate range searching by Arya and Mount [3]. See
Figure 2 for an example range sketching query.

We answer the range sketching query by (1) identifying all nodes that could be in µ(G−
v ) and

(2) examining these nodes individually. To determine which nodes could be in µ(G−
v ) we develop

the following lemmas whose proofs have been moved to Section A due to space considerations.
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Given node v and level i− l − 1:
U ← overlap range sketch(v, i− l − 1)
µ(E−

v )← range sketch(v, i− l − 1)
for each u ∈ U

(µ(G−
u ), |Gu|)← range sketch(u, i− l − 1)

for each w ∈ µ(E−
v )

if w ∈ µ(E−
v ) ∩ µ(G−

u )
|Gu| ← |Gu| − |D(w)|

Figure 4: Subroutine to update greedy disk
counts.

Given node v and level i− l − 1:
U ← result of Lemma 3.3 part (iii)

applied to v
for each u ∈ U

if ||uv|| > 2i+2(1 + 1/2l+1)
U ← U \ u

return U

Figure 5: The overlap range sketch subroutine.

Lemma 3.1. For some node v in level i all points within distance 2i+1 are descendants of v or are
descendants of one of v’s neighbors.

Lemmas 3.2 and 3.3 extend Lemma 3.1 in order to maintain information about points within
specific distances of a node. We define N (h)(v) to be the set of nodes (at the same level as v)
containing all f -fold neighbors of v for 0 ≤ f ≤ h where h ≥ 1 is some integer.

Lemma 3.2. For some node v in level i, all points within distance h · 2i+2 − 2i+1 of v are in the
set N (h)(v).

Lemma 3.3. For some node v in Si−l−1: (i) All points within distance g−i are in N (2l−1+3/2)(v). (ii)
All points within distance e−i are in N (3·2l−1+7/2)(v). (iii) All points within distance 2i+2(1+2−l+1)
are in N (2l+1+9/2)(v).

Based on Lemma 3.3, the range sketching subroutine is defined in Figure 3. The count of the
fuzzy disk Gv is approximated by |D(µ(G−

v ))| and determined by summing the counts indicating
the number of descendants of a node. The range sketching subroutine also returns this sum.

The range sketching subroutine is used when the count of uncovered points within a disk changes.
The update greedy disk counts subroutine (Figure 4) is used when an expanded disk is added to
the list of centers. It does a range sketching query (Figure 5) for all nodes which could belong to
a greedy disk that overlaps the changed expanded disk.
Main Subroutine and Analysis. We now have the tools needed to introduce the main subrou-
tine for the algorithm. The per-level subroutine (presented in Figure 6) calculates the candidate
list of k centers for a given spanner p and level i. It is called from the algorithm overview presented
earlier.

We consider the static version of this algorithm in order to create a kinetic version; we focus
on one stage of the algorithm. In the static context this algorithm requires preprocessing to create
the priority queue and do range sketching to determine initial counts for Gv and Ev in all levels
of all spanners. We comment that this can be done in time O(n log n log α/(εd)) since there are n
points, priority queue insertions take time log n, centers are calculated for log α levels, and O(1/εd)
neighbors are considered for range sketching as shown by the following lemma whose proof (which
is based on a standard packing argument) has been moved to Section A.

Lemma 3.4. There are O(1/εd) nodes in Si−l−1 within Ev where v ∈ Si−l−1 and Ev has radius ei.

Theorem 3.1. After preprocessing, our algorithm takes time O((sk log α log n)/εd), which is
O((log α log n)/εd).
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Given k, ε, t, n, S, p, and level i:
Cp,i ← ∅ (Cp,i is the set of k centers being created for spanner p and level i)
V ← Si−l−1 (V is the set of candidate centers, Si−l−1 is set of nodes in level i− l − 1)
for each v ∈ V

(µ(G−
v ), |Gv|)← range sketch(v, i− l − 1); Gv = D(µ(G−

v ))
(µ(E−

v ), |Ev|)← range sketch(v, i− l − 1); Ev = D(µ(E−
v ))

for j = 1 to k and V 6= ∅ let vj be the v ∈ V with the largest |Gv|
Cp,i ← Cp,i ∪ {vj}
update greedy disk(vj , i− l − 1)

if at least dtne points are covered return (Cp,i, ei)

Figure 6: The per-level subroutine for spanner p and level i of the kinetic robust k-center algorithm

Proof. The per-level subroutine takes time O((k log n)/εd) since it repeats for k iterations and must
update the counts for O(1/εd) nodes (those within disk Ej by Lemma 3.4) in a priority queue holding
at most n points. This subroutine is repeated O(log α) (the number of levels in the spanner, which
may vary over time) times for each of s spanners, so the total time required is O((sk log α log n)/εd).
Since s is a function of ε and k is a constant, our algorithm takes time O((log α log n)/(εd)).

Theorem 3.2. Let ropt be the optimal radius for k-centers chosen from S and rapx be the radius
found by our algorithm, then rapx ≤ (3 + ε)ropt.

Proof. Call the k optimal points v1, v2, ..., vk. Let ropt be expressed as 2i +x for some integer i and
0 ≤ x < 2i. Let the disk of radius 2i + x centered at vj be denoted by Oj .

We first show that it is possible for us to cover as many points as are covered by the optimal
solution. The optimal centers vj are only guaranteed to exist in level S0, so we may not have a
chance to choose vj as our center. However, each vj ∈ S0 has an ancestor in level Si−l−1 that
is within 2i−l of vj . Call this ancestor uj ; uj will be considered by our algorithm and when G−

j

centered at uj is considered, some G−
j (with radius g−i where p

s2i(1+1/2l) ≥ x) will cover all points
covered by Oj . Since uj is in level Si−l−1, it is possible for us to choose k centers which cover as
many points as the optimal solution covers. Note that we described G−

j with smaller radius g−i
— this inner radius is sufficient to cover the optimal points and is the radius within which the
preconditions guarantee that we will cover all points.

Now we show that our algorithm will choose k centers that cover as many points as are
covered by the optimal solution. Specifically, we show that the number of points covered by
E1∪E2∪...∪Ek ≥ O1∪O2∪...∪Ok for our chosen k points and the optimal k points. A similar theo-
rem was proven by Charikar et al. [7] and our proof uses a similar charging argument which charges
a point in the optimal solution either to itself or to some point in the greedy disk that was greedily
chosen instead of that optimal disk. For the full proof of this charging argument, see Section A.

Our algorithm finds k points and radius ei which cover at least as many points as the optimal
solution and optimal radius would. To find the approximation ratio, we express rapx in terms of
ropt = 2i + x. Since 0 ≤ x < 2i, there is some p for which p−1

s 2i ≤ x < p
s2i, so p

s2i ≤ x + 1
s2i, so

rapx = ei ≤ 3(1 + 2−l+1)(2i + x + 1
s2i). Consider the ratio between this and ropt = 2i + x. We will

show that this ratio is less than or equal to 3 + ε.

Let l = −dlog(
ε/6− 1/s

2/s + 2
)e and ε > 0, then

3(1 + 2−l+1)(2i + x + 1
s2i)

2i + x
=

3(1 + ε/6−1/s
1/s+1 )(2i + x + 1

s2i)

2i + x
.
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Allowing this to be as large as possible, we let s→∞ for the first multiplicand and require s ≥ 6+ε
ε

for the second. This gives a bound of
3(1 + ε

6)(2i + x + ε
6+ε2

i)
2i + x

= 3+
ε2i + ε

2x

2i + x
≤ 3+

2iε + xε

2i + x
= 3+ε.

So rapx/(2i+x) ≤ 3+ε and the algorithm gives us a (3+ε)-approximation of the optimal radius.

We present an example point set for which the algorithm’s approximation ratio is tight in
Section B.

3.4 The Absolute Problem

Recall that in the absolute formulation the centers may be any point in space. This algorithm is the
same as for the discrete problem, except gi = 2i+1(1+ p

s )(1+2−l+1) and ei = 2i+2(1+ p
s )(1+2−l+1).

We double the original radius g′i so that it has the possibility of covering some optimal disk with
radius ropt. Since g′i ≥ ropt, doubling g′i allows gi to span the distance from the optimal center to
some point in S. Increasing ei by the same amount ensures that if Gj covers part of the optimal
disc then Ej expands to encompass it.
Theorem 3.3. Let ropt be the optimal radius for the absolute k-center problem and let rapx be the
radius found by the absolute algorithm, then rapx ≤ (4 + ε)ropt.

Proof. Call the k optimal points v1, v2, ..., vk. Let each of these points be “rounded” to some point
v′j they cover in the input set. The proof proceeds as for the discrete problem where v′j is the opti-
mally chosen center and gi and ei are as given above. These new radii fulfill the same requirements
as the old: Gj centered at uj (the ancestor of v′j) can cover all points in Oj and Ej covers all points
in Oj if Gj intersects Oj . Rounding vj to v′j adds ropt to rapx, so in the absolute case we obtain a
(4 + ε)-approximation.

4 Kinetic Spanner Maintenance and Quality
4.1 Certificates

The Gao, Guibas, and Nguyen [9] deformable spanner maintains four types of certificates. Parent-
child certificates guarantee that a child in level i is within distance 2i+1 of its parent. Edge certifi-
cates guarantee that neighbors in level i are within distance c·2i of each other (where c = 4+ 16

ε ) [9].
Separation certificates guarantee that neighbors in level i are at least 2i away from each other. Po-
tential neighbor certificates guarantee that two points have parents which are connected by an edge
(i.e. are cousins). Potential neighbor certificates are maintained so that parent-child certificates
can be easily maintained [9]. Recall that in our data structure we have multiple spanners with dif-
fering base distances b. For b = 1, the distances that are certified are the same as in the deformable
spanner, otherwise the distances are multiplied by b. For the remainder of this section we describe
the data structure when b = 1.

We add to the update rules for parent-child, edge, and separation certificates, keeping the
previous rules and adding the following for these actions:
Addition of a spanner edge. Increment the counts for Gv and Ev for all neighbors with counts

that are affected according to Lemma 3.3 parts (i) and (ii) and update the priority queue
appropriately.

Deletion of a spanner edge. Decrement the counts for Gv and Ev for all neighbors with counts
that are affected according to Lemma 3.3 parts (i) and (ii) and update the priority queue
appropriately.
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Addition of parent-child certificate. Increment the count for all new ancestor nodes and for
all counts for Gv and Ev for neighbors with counts that are affected according to Lemma 3.3
parts (i) and (ii) and update the priority queue appropriately.

Failure of parent-child certificate. Decrement the count for all new ancestor nodes and for
all counts for Gv and Ev for neighbors with counts that are affected according to Lemma 3.3
parts (i) and (ii) and update the priority queue appropriately.

At each level i, a list of k-centers is maintained as well as a priority queue. The entries in this
priority queue are nodes v in Si−l−1 and the values are the counts of points with Gv. For each of
these updates, any time a count increases, if that node is in the list of k-centers only the counts
and the priority queue are updated, otherwise the solution at that level is recalculated. Any time a
count decreases, if that node is in the list of k-centers then the solution at that level is recalculated,
otherwise only the counts and priority queue are updated. In the cases when recalculating the
solution is necessary, our static algorithm is applied.

4.2 Preconditions

For all points. The preconditions needed for all points are maintained by the certificates and
update conditions given in the original deformable spanner [9].
For each level i in the spanner hierarchy. In order to maintain the precondition counts nec-
essary to the statically explained algorithm from Section 3.2, we maintain a count for each node in
the spanner hierarchy of the number of points which are descendants of that node. These counts are
updated when parent-child certificates are added or fail. This count is necessary to maintain the pre-
conditions but not sufficient, since descendants of a node must not be farther than 2i+1 from a node
in level i [9], but there may be points within 2i+1 that are not descendants of that node. To ensure
that we have counted all points within gi and ei we refer to Section 3.3 and use Lemma 3.3 parts (i)
and (ii) to determine which neighbors to consider. Using this lemma and the count maintained at
the root of each subtree, we maintain the number of points within Gv and Ev for some node v. The
count of points within the fuzzy disk Gv is maintained in a priority queue. When a Gv count changes,
the priority queue is updated accordingly. If this update occurs during the course of the algorithm
because a center was chosen and nodes were marked as covered, these changes are kept track of
until all centers are chosen. The changes are undone in reverse order so that the counts are correct.
The preconditions for each level i are maintained according to the update rules given in Section 4.1.

4.3 Quality

In order to assure the quality of the spanner, we must reason about following actions. Recall that
n is the total number of points, d the dimension, and α the user given upper bound on the aspect
ratio. Compactness and locality conditions ensure that maintaining certificates for the kinetic data
structure is not too costly by bounding the number of certificates. Compactness bounds the to-
tal number of certificates and locality bounds the number of certificates in which each point can
participate. The efficiency condition ensures that maintaining the kinetic data structure is not
too expensive by bounding the number of certificate failures that can occur. This is compared to
the number of required changes to the combinatorial structure of the spanner to determine if the
number of certificate failures is reasonable. These bounds are, respectively, O( n

εd ), O(log α/(εd)),
and O(n2 log α) and match those given by Gao et al. [9]. For further explanation see Section C.

The responsiveness condition ensures that maintaining the kinetic data structure is not too
expensive by bounding the amount of time taken to repair failed certificates. Our spanner satis-
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fies responsiveness with O((log α log n)/(εd)) time per certificate update. This time is due to the
possibility that a failure or addition of a certificate could require the algorithm to be re-run. See
Section C for proof of this assertion.
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A Lemma and Theorem Proofs From Section 3.3

Proof of Lemma 3.1. Consider v and the neighbors of v, denoted N(v). By the construction of the
spanner and the maintenance of the edge certificates and separation certificates, all points in N(v)
are less than distance c ·2i and greater than distance 2i away from v where Gao et al. [9] show that
c = 4+16/ε ensures a (1+ ε)-spanner. All nodes that are less than distance 2i+2 + 16

ε 2i away from
v are in N(v), so the closest a non-neighboring point could be to v is 2i+2 away. Since the farthest
a descendant can be from its ancestor in level i is 2i+1 away, such a non-neighboring point can’t
have descendants within 2i+1 of v. So all points within distance 2i+1 of v are descendants of v or
are descendants of some node in N(v).

Proof of Lemma 3.2. By Lemma 3.1 each composition forces a distance of 2i+2 to the nearest non-
neighbor node, or a total distance of h · 2i+2. Due to the descendants of the nearest non-neighbor
node, all points within h · 2i+2 − 2i+1 are in N (h)(v).

Proof of Lemma 3.3. Each distance can be rewritten in the following way:

(i) g−i = 2i(1 + 2−l+1) = (2l−1 + 3/2)2(i−l−1)+2 − 2(i−l−1)+1

(ii) e−i = 3 · 2i(1 + 2−l+1) = (3 · 2l−1 + 7/2)2(i−l−1)+2 − 2(i−l−1)+1

(iii) 2i+2(1 + 2−l+1) = (2l+1 + 9/2)2(i−l−1)+2 − 2(i−l−1)+1

The proof follows from Lemma 3.2.

Proof of Lemma 3.4. We say that a point set is δ-sparse if every pair of points from the set is
separated by a distance of at least δ. Given a circle of radius r in the plane, it follows from a
standard packing argument that any δ-sparse set that lies entirely within this circle has cardinality
O(1 + (r/δ)2). Since, by the hierarchy construction, nodes in Si−l−1 are of distance at least 2i−l−1
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away from each other, Si−l−1 is 2i−l−1-sparse. So the number of nodes in Si−l−1 within Ev is
O(1 + (2i(1 + 2−l+1)/2i−l−1)d) which is O(1/εd)

Charging Argument for the Proof of Theorem 3.2. Here we show that our algorithm will choose k
centers that cover as many points as are covered by the optimal solution. Specifically, we show that
the number of points covered by E1∪E2∪ ...∪Ek ≥ O1∪O2∪ ...∪Ok for our chosen k points and the
optimal k points. A similar theorem was proven by Charikar et al. [7] and our proof uses a similar
charging argument. Let the size of a disk D be defined as the number of points which it covers
and denoted |D|. Let the size of a collection of disks {D1, D2, ..., Dn} be defined as the number
of points which the union of those disks covers and denoted |D1, D2, ..., Dn|. We show that it is
possible to order the optimum disks Oj such that for each j, |O1, O2, ..., Oj | ≤ |E1, E2, ..., Ej |. We
prove this by induction on j and use a charging argument that assigns each point in {O1, O2, ..., Oj}
to some point in {E1, E2, ..., Ej}.

For j = 1, we know by greediness that |E1| ≥ |O1|. Assuming by induction that
|O1, O2, ..., Oj−1| ≤ |E1, E2, ..., Ej−1|, we consider Gj .

• If Gj intersects any of the remaining optimal disks, let Oj be that disk. If we expand dis-
tances gi to ei we cover all of Oj (which has radius 2i + x) for some p. Since rapx will equal
the smallest radius such that the threshold is still covered, it is possible to obtain a solution
which covers all points covered by the optimal solution, so we consider the p such that all
points in Oj are covered by Ej . We charge each point in Oj to itself.

• If Gj does not intersect any of the remaining Oj , then let Oj be the remaining optimal disk
with the greatest size. Since we chose Gj greedily, |Gj | ≥ |Oj |. We charge each point in Oj to
a point in Gj . Since Gj is disjoint from all other Oj , no point in Gj will be charged to twice.

Points are either charged to themselves or to some point in an Ej which is disjoint from all Oj and
therefore only used once. So no point in an Ej is charged to more than once. Every point in every
Oj is accounted for by one of these cases, so each point in the optimal solution is charged to some
point in the algorithm’s solution. So |O1, O2, ..., Ok| ≤ |E1, E2, ..., Ek|.

B Example (3 + ε)-approximation Point Set

We present an example in order to justify that the discrete (3 + ε)-approximation ratio is a tight
upper bound for our algorithm. Figures 7 and 8 give an example point set with k = 3 and t = 21/23.
Here we will run the basic steps of the algorithm on this point set.

We start with i = log 25 = 5, l = 2, ε = 3/4, s = 10, and p = 0. All options for 5 ≥ i ≥ 3 are
trivial since all points are easily covered for any greedy choices given the expanded radius.

Consider i = 2 with points at level S0 and radius of 22(1 + 1/2). We greedily choose the node
farthest to the left marked with a cross as our first center and cover all 9 points within 3 ·22(1+1/2)
of it. We then greedily choose the node in the middle as shown in Figure 7. Note that this is the
first choice which deviates from the optimal solution. We cover all 13 points within 3 · 22(1 + 1/2)
of this point which have not earlier been covered. Finally we greedily choose the single point on
the right of the point set.

This solution at i = 2 satisfies our restrictions for k and t so we consider i = 1. We greedily
choose any circle that covers two points, since the points are far enough apart so that with circles of
radius 21(1+1/2) this is the best that we can do. We then cover all points within distance 3 ·21(1+
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Figure 7: This is an example of a set of points for which our algorithm gives an approximation ratio
of 3 (k = 3, t = 21 of 23 points). If greedy disks are expanded by a ratio of R < 3 this example is
still forced to give an approximation ratio of 3. Gray circles represent the outer limit of the optimal
disks. Black circles represent greedy disks and their corresponding expanded disks. Circled points
are nodes in level S2. The centers of the greedy disks were chosen in order from left to right.

1/2) of these nodes. There are more than three nodes that can be chosen so that the inner circle cov-
ers two points, so we always choose such a node. However none of these points lie in the circular pat-
tern of 8 points on the left. These points are farther than 3 ·21(1+1/2) away from the centers which
are chosen. So there are at least 8 points which are not covered by this size radius. This does not sat-
isfy our threshold t, so the algorithm returns the previously found set of centers with radius 3·22(1+
1/2). The optimal radius for this point set is 22, so the algorithm produced a (3+ε)-approximation.

We then run the algorithm 9 more times with p set from 1 to 9 and take the minimum radius
output. The minimum output will be the radius when p = 0, since for p = 0 the points covered in
the algorithm’s solution are right on the perimeter of the covered space, so expanding the radius to
cover a larger space will not capture more points and will only increase the radius that is output.

C Kinetic Spanner Quality Details

C.1 Compactness and Locality

Compactness and locality conditions ensure that maintaining certificates for the kinetic data struc-
ture is not too costly by bounding the number of certificates. Compactness bounds the total number
of certificates and locality bounds the number of certificates in which each point can participate.
Theorem C.1. Our KDS satisfies compactness and locality with O( n

εd ) total certificates and
O(log α/(εd)) certificates per point.

Proof. Before our modifications, the deformable spanner had O( n
εd ) total certificates and O(log α/(εd))

certificates per point [9]. No certificates were added or removed, so these bounds remain the
same.

C.2 Efficiency

The efficiency condition ensures that maintaining the kinetic data structure is not too expensive
by bounding the number of certificate failures that can occur. This is compared to the number
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Figure 8: Heirarchy of points from Figure 7 when put into a deformable spanner [9]. Darker,
larger circles represent higher levels of the spanner. The circle at level S5 (the highest level in this
spanner) is only partially shown. The circles at level S0 which only contain individual points are
not shown. Circled points are nodes in level S2.

of required changes to the combinatorial structure of the spanner to determine if the number of
certificate failures is reasonable.

Theorem C.2. Our KDS satisfies efficiency with O(n2 log α) possible certificate maintenance
events.

Proof. The deformable spanner had O(n2 log α) possible maintenance events because, under pseudo-
algebraic motion, events only occurred when the distance between two points was at the boundary
of some certificate on a given level i, namely 2i or c · 2i. Since there are log α possible levels and
2 · n2 of these inter-point distances, there were O(n2 log α) possible maintenance events [9]. Our
spanners change these base distances, but the number of maintenance events stays the same. Since
the spanner has not changed except for the base distance, the number of changes required by the
combinatorial structure of the spanner remains Ω(n2) [9], so any approach based on a spanner
requires Ω(n2) changes. So the kinetic data structure is efficient.

C.3 Responsiveness

The responsiveness condition ensures that maintaining the kinetic data structure is not too expen-
sive by bounding the amount of time taken to repair failed certificates.

Theorem C.3. Our KDS satisfies responsiveness with O((log α log n)/(εd)) time per certificate
update.

Proof. Before our modifications, the spanner could be updated in O(1) or O( log α
εd ) time [9]. Now,

the failure or addition of a certificate could require our algorithm to be re-run. When the priority
queue is updated during the re-run, a list of changes is maintained. After k centers for a level
are chosen, the priority queue is returned to its original state (the state assuming all points are
uncovered). Since the changes made are undone, this takes only a constant factor of extra time.
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Re-caluclating solution takes the same time as running the per-level subroutine (see Section 3.3)
that takes O((k log n log α)/εd) which is O((log α log n)/(εd)). Note that it is possible for the recal-
culation of the k centers to be forced any time a point moves. The failure or addition of a certificate
could also require points to be updated for O(1/εd) nodes (see Lemma 3.4) on log α levels. The
total time a certificate could take to be repaired is O((log α log n)/(εd)).

D Non-Robust Kinetic K-Center Algorithm

In this section we mention that using the structure presented in Section 2 and refined throughout
the paper, it is possible to improve on the non-robust discrete k-center algorithm presented by
Gao et al. [9]. That algorithm achieved an 8-approximation and we improve that to a (4 + ε)-
approximation (both algorithms are for arbitrary k). This improvement follows the algorithm
presented in the Gao et al. paper, but performs the algorithm on all s spanners simultaneously
and chooses the minimum radius found as the output of the algorithm (shown in Figure 9). The
value of s is restricted in the proof of Theorem D.1. For proof of maintenance under motion, we
refer the reader to the proof of a similar algorithm given by Gao et al. [9].

Given k, S, α, and ε:
for p = 1 to s

for i = log α to 0
if |Si| > k

rp ← 2i+2(1 + p
s )

Kp ← Si+1

if |Si+1| < k
add arbitrary children of nodes in Si+1 to Kp

break out of inner loop
r ← minimum rp

output (Kp, r), each point is serviced by its ancestor in Kp

Figure 9: The non-robust kinetic k-center algorithm for arbitrary k.

Theorem D.1. Let ropt be the optimal radius for k-centers chosen from the input points and rapx

be the radius found by our non-robust kinetic k-center algorithm, then rapx ≤ (4 + ε)ropt.

Proof. The algorithm will choose some Si on spanner p with associated radius 2i+1(1+ p
s ) where Si

has the minimum radius such that |Si| ≥ k. Since 2i+1(1 + p−1
s ) < 2i+1(1 + p

s ), |Si| > k on spanner
p − 1. So at least two points from Si are assigned to the same center in the optimal solution.
These points are of distance at least 2i(1 + p−1

s ) apart from each other, so the optimal radius must
be at least 2i−1(1 + p−1

s ). To determine the approximation ratio we consider the ratio between
ropt ≥ 2i−1(1 + p−1

s ) and rapx ≤ 2i+1(1 + p
s ). Choose s ≥ 2

ε + 1
2 and the algorithm is determined to

be a (4 + ε)-approximation algorithm.

16


