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Abstract

Qualitative Coding is an important tool for classifying unstruc-
tured data and identifying its fundamental themes. However, the
process can be very time-consuming and tedious to do. The rapid
advancement of large-language models (LLMs) offers opportuni-
ties to automate much of this procedure. While prior studies have
explored LLMs in qualitative coding across various domains, this
work investigates their reliability specifically for security-related
data. Using a dataset of tweets about users’ perceptions of Chat-
GPT in security contexts, we conducted manual qualitative coding,
iteratively refining the codebook to better represent the data. After-
wards, we passed these codebook iterations to Llama 3 and GPT-40
mini as well as various well-crafted prompts and compared their
results with the manual ones. Chain-of-Thought prompting, which
asks the model to justify its decisions, significantly improved per-
formance. Our findings indicate that LLMs perform reasonably well
with mature, well-defined codebooks but are not yet capable of fully
automating the classification process. We propose an LLM-human
codebook co-development approach to leverage the strengths of
both, enabling faster, accurate, and reliable qualitative coding.
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1 Introduction

Qualitative Coding is a procedure for systematically classifying
qualitative data. In practice, this procedure is often performed by
several reviewers who come together to develop a shared classifica-
tion system known as a codebook, which they then utilize to classify
subsets of the data on their own; periodically, they reconvene to re-
solve discrepancies, refine the codebook, and maintain consistency.
This procedure is especially prominent in security subfields such as
human-centric security, where it serves as a vital tool to understand
how users and developers perceive threat models, engage with se-
curity tools and protocols, and make security-related decisions. For
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example, [7] employed qualitative coding to classify vulnerabilities
commonly introduced by developers, examining their type, the de-
gree of attacker control they allowed, and their ease of exploitation
to provide valuable insights into mitigation strategies. Similarly,
[1] applied qualitative coding to classify how and why developers
propagated insecure code from Stack Overflow.

Although qualitative coding is a vital tool for classifying unstruc-
tured data and uncovering overarching patterns in it, the procedure
is time-consuming and requires significant manual effort. The need
for reviewers to not only label the data but also periodically resolve
discrepancies, refine the codebook, and maintain consistency means
that the procedure becomes increasingly challenging as the data
grows in size and complexity. The rise of large-language models
(LLMs) in recent years opens up the door to automate much of this
work, leveraging their ability to process and interpret unstructured
information, identify patterns, and generate consistent labels based
on context. Notably, several new studies, including [2], have ex-
plored using LLMs to assist with labeling general qualitative data
across various domains. A pertinent question is whether LLMs are
reliable for qualitative coding in security. Specifically, the central
question we aim to investigate in this paper is as follows: are LLMs
reliable enough to interpret a codebook and apply it correctly to
security-related data?

To address this question, we evaluated the performance of two
popular LLMs, Llama 3 and GPT-40 mini using the dataset pre-
sented in [5], which contains tweets about users’ perceptions about
ChatGPT in the context of security. We analyzed prompting strate-
gies to identify those that improved model performance and ap-
plied the most effective of such strategies to assess how well these
models could interpret and apply predefined codebooks. These
predefined codebooks were developed from two of us conducting
qualitative coding on the dataset and updating the codebook at
various points to better capture the characteristics of the tweets en-
countered throughout the procedure. Each codebook iteration has a
sentiment category, a discussion type category, and a topic category,
which is consistent with the format used in [5], and each one has
the same exact codes; the only difference between them is the code
definitions, which become progressively more refined with each
codebook. With that in mind, our approach was to systematically
apply the codebooks to the LLMs using well-crafted prompts and
compare their outputs against the manual coding results, which
served as the ground truth.

Our results demonstrate that that the LLMs performed better
when prompted to justify their answers. Additionally, they show
that LLMs can be reasonably reliable when using mature codebooks.
Overall, our findings suggest that qualitative coding is most effec-
tive when humans and LLMs collaborate and take advantage of
each other’s strengths. More detailed insights can be found in the
subsequent sections.
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2 Related Work

We briefly discuss related work that informed our investigation, in-
cluding studies on security-related qualitative coding, guidelines for
utilizing LLMs in qualitative coding, and approaches for measuring
inter-coder agreement (ICA) to analyze our results.

[5] performed qualitative coding to understand users’ percep-
tions of ChatGPT in security contexts and tested its most frequently
mentioned use cases. To collect data, the researchers used the Twit-
ter API to compile a list of tweets that matched keywords closely
associated to the topic and filtered for the most relevant ones. Their
qualitative analysis examined the users’ sentiment (the user’s feel-
ings about how ChatGPT might influence society), discussion type
(the manner in which the user conveyed the information), and topic
(the specific content the user discussed). Among the security tasks
discussed, vulnerability detection stood out as a prominent focus.
The researchers investigated ChatGPT’s performance in this do-
main and found that ChatGPT often provided generic responses,
indicating that it may not yet be suitable for the industry-level
vulnerability detection that many users were hoping for. The paper
provides an online reproduction package, including its dataset of
annotated tweets. Although the study did not share the paper’s
codebooks or labels outright (we did the full qualitative coding
ourselves), the outline of analysis it used (general direction, and
the categories contining the codes) helped inform the structure and
formatting of our own codebooks during the process.

Building on the insights from [5], we now turn to guidelines for
effectively utilizing LLMs in qualitative coding. [3] discusses the
influence of Chain-of-Thought prompting in qualitative analysis.
Chain-of-Thought prompting involves asking the LLM to justify its
coding decisions, and the study found that this approach resulted
in more accurate model behavior. Given the success of Chain-of-
Thought prompting in general qualitative coding scenarios, we
sought to investigate its potential in the context of security-related
qualitative coding. This result motivated a part of our experiment in
which we compared the performance of LLMs when asked to justify
their coding decisions on the ChatGPT-Security-Twitter dataset
versus when they were not. Further contributing to this discussion,
[2] outlines a tested approach called LLM-assisted content analy-
sis (LACA) for humans to interact with LLMs during qualitative
coding. It emphasizes evaluating the LLM’s understanding of the
coding task, refining the codebook to enhance clarity, and compar-
ing human-human agreement with human-model agreement, all of
which are integral to the framework of our work.

[2] also analyzes the utility of LLM for deductive coding, but
places more emphasis on experiment design, dataset and code vari-
ation, and prompt construction; we loosely based the design of our
experiments on their work. The authors found that while GPT-3.5
performed poorly, GPT-4 was competent for qualitative coding.
They ran experiments on four diverse datasets, and computed a
battery of metrics to consider many possible biases.

While these papers papers largely focused on model prompting
techniques and codebook formatting, they did not consider the
evolution of the codebook that would normally occur during manual
coding. [6] conducts aa meta-study involving qualitative coding,
and finds that a significant number of disagreements occur between
coders pair-wise. However, the authors argue that this complex
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interaction eventually benefits the codebook and the quality of
coding. One goal of our study is to see how LLMs can interface
with this disagreement resolution and codebook evolution process.

An imperative part of qualitative analysis is ensuring reliability
through ICA metrics. [4] describes widely used ICA metrics such
as percent agreement, Cohen’s Kappa, and Krippendorf’s alpha.
[4] not only defines each of these metrics but also explains the
interpretation behind them and what each metric best reveals about
coder consistency. This thorough explanation fueled our analysis
later in the work, particularly in assessing whether the models
could be considered reliable for qualitative coding in the security
domain.

3 Methodology Overview

Our experiment consists of two parts: manual coding and LLM
coding. The manual coding starts with two human coders devel-
oping an initial codebook while working together to code the first
batch of tweets. Then, the two human coders iteratively refine the
codebook by independently analyzing the next batches of Twitter
tweets and modifying the codebook after each batch. The agree-
ment between the coders must reach satisfactory scores in terms
of the Inter-Coder Agreement (ICA) metrics detailed in [4]. Then,
for each batch after the initial batch (when the initial codebook
is created), we have various LLMs perform the coding of the sub-
sequent batch alongside the humans (using the same codebook).
We compare the LLM output to the human-agreed results of the
batch and compute another set of ICA metrics. The LLM coding
was done using two models, Llama 3.2 8B Instruct and GPT-40 mini.
We provided each of these models with the various versions of
the codebook developed in manual coding to maintain consistency
between the code definitions followed by the humans and LLMs.
The prompts were constructed to get scores for all three categories
so that we can effectively compare with the manual results. We
also experimented with modifying the prompt to ask the LLMs to
provide justification, as this has been observed to improve coding
accuracy, as observed in [3]. Our experimental design is visualized
in Figure 1.

4 Manual Coding

In this section, we describe the process of manually coding a dataset
of Twitter tweets to analyze sentiments, discussion types, and topics
related to ChatGPT/AI use in security. This process involved the
iterative development of a codebook through the collaborative
efforts of two human coders, ensuring high inter-coder agreement.
The goal was to establish a refined codebook that could serve as a
reliable benchmark for evaluating the performance of automated
coding using large language models (LLMs).

4.1 Dataset Processing

We examined a dataset of Twitter tweets, retrieved from [5], to qual-
itatively code the authors’ sentiments towards leveraging ChatGPT,
or generally Al in security use cases. The dataset initially contained
704 tweets, each with information about the author, engagement
metrics (likes, retweets, replies), and the text scraped from the tweet.
Each tweet was included because it included keywords related to
the topic, like "ChatGPT", "AI", or "security". However, we quickly
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Figure 1: Process diagram showing the steps involved.
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realized that in these 704 tweets, there were numerous examples of
tweets that did not directly relate to the use of Al for security pur-
poses, which prompted a trimming of the dataset. The authors of [5]
supported this notion by mentioning how they trimmed the dataset
down to 266 tweets, but they did not describe their approach in the
paper, so we created our approach with the following guidelines.

The first guideline is an incorrect use of the word security, which
was the leading cause for removing a tweet from the dataset. For
example, instead of referring to security in a computer context,
the tweet could be referring to job security or income security,
which are clearly in the wrong context. We also removed tweets
that were duplicates because we found several instances of tweets
that were being repeatedly sent on the Twitter platform. We also
noticed several instances where the tweet was not referencing
ChatGPT In the end, our new dataset consisted of 273 tweets that
communicated information relevant to understanding user opinions
towards ChatGPT’s role, and this dataset is what we conducted our
manual coding process on.

4.2 Manual Coding Process

We started by dividing the dataset into six different batches, one for
each iteration of the codebook development process. The manual
coding process begins with two coders working together to create
a codebook by analyzing the first batch of tweets. There are three
categories that we created codes for which are sentiment, discussion
type, and topic. The goal is to determine what the overall tone of
the tweet is, what type of format the tweet follows, and what the
specific topic of the tweet is. We provided definitions for each of
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the codes so that when we independently code the next batch of
tweets, we know what criteria to follow. These definitions are also
necessary for the LLM portion of the experiment because the LLM
needs to understand what we meant for each of the codes. This
codebook is known as codebook v1 and its resulting codes are as
follows.

e Sentiment:

(1) Positive

(2) Negative

(3) Neutral

e Discussion:

(1) Advertisement

(2) Complaint

(3) Warning

(4) Joke

(5) Informative Discourse
(6) Endorsement

e Topic:

(1) ChatGPT/AI Vulnerability
(2) ChatGPT/AI Application
(3) Finding

(4) Security Solution

(5) Other

The next step was the two coders needed to independently define
the codes for the second batch of tweets following the codes above.
Then, the coders discussed their results and tried to find common
issues in the labeling of tweets where their codes differed. We
ensured that a final code was agreed upon so that we could maintain
a set of agreed-upon codes that could be compared to the LLMs’
codes. The codebook definitions were modified to better account
for these issues in future iterations, and this codebook is known as
codebook v2. Then the process repeats for the next four batches
of tweets, with the codebook being finalized after the last batch.
The codes themselves did not change between the iterations of the
codebook, as we were able to fit all of the tweets into one of the
codes for all three categories. However, the definitions changed
significantly because we encountered common issues that needed
to be accounted for, examples of which are shown in Table 1.

During each of the meetings after completing a batch of tweet
codings, many conversations about differences, like the three exam-
ples above, iteratively the definitions in the codebook over all of the
iterations. This resulted in a refined final codebook that we were
confident in providing to the LLMs, but we needed to quantitatively
ensure that this codebook is valid using ICA metrics.

4.3 Inter-Coder Agreement (ICA) Metrics

To believe that our manually created codebook can be treated as a
ground truth to compare the results of the LLM Coding against, we
need to ensure that the two coders are in agreement. If our codebook
is usable by two humans to produce codes that are mostly similar,
then we can expect the codebook to be usable by one human and
one LLM to produce similar results as well. [4] outlines three metrics
that can be used to determine the strength of our codebook.

The simplest of the metrics is Percent Agreement which is cal-
culated by determining the number of times 2 coders agree on a
given code divided by the total number of codes (times 100 to get
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Table 1: Examples of tweets on which the two human coders disagreed, prompting re-examination of the appropriate code definitions. One

example for each category is presented, along with commentary.

Category of
Discrepancy

Tweet

Commentary

Sentiment

"Everyone’s  chatting about
#ChatGPT. Here are 11 things it
can do for #malware analysts,
#security  researchers, and
#reverse engineers. A thread —
1/13"

The coding differed because one coder thought this is a neutral tweet that simply
states facts about what ChatGPT can do, whereas the other coder thought this
is a positive tweet that endorses ChatGPT’s abilities in a security context. We
ultimately decided that this is a positive sentiment tweet, and the definition of
positive was modified to account for instances where ChatGPT is promoted as
a tool to aid security.

Discussion

"4. Amazon, JP Morgan, and
many other organizations are
restricting employee access to
ChatGPT due to security con-
cerns. https://t.co/oh3r2UzfHc"

The coding differed because one coder thought this tweet is an informative
discourse where the author is trying to inform about this topic, but the other
coder thought this tweet is an advertisement for the linked article. We decided
that this should be classified as an informative discourse because the main point
of the tweet is to present a fact rather than try to promote the provided link.
We modified the definition of advertisement to not account for tweets that do
not explicitly promote the external link.

Topic

"Working with Kubernetes secu-
rity? It’s so cool to see that @ar-
mosec platform users can now
utilize ChatGPT to quickly and
easily create custom controls”

The coding differed because one coder thought this tweet was talking about
using ChatGPT as a security solution, and the other thought this tweet was
talking about using ChatGPT as an application. We decided that the topic of
this tweet is a ChatGPT/AI application. The definition of security solution was
modified to account for instances where ChatGPT/AI is the primary engine of
at least a majority of a security solution. Application was modified to account
for instances where ChatGPT/AI is not meant to solve an entire security need,

but rather provide a solution to a specific task.

a percentage). As Table 2 shows, the percent agreement numbers
improved significantly as the codebook was refined, with agree-
ments in all three categories exceeding 90%. This metric is a good
indicator of how often the coders agree, but it struggles to show
whether the agreement occurred by chance. Percent agreement
does not account for the possibility that coders might randomly
assign the same code to an item, which can inflate the perceived
level of agreement.

To address this limitation, more robust metrics such as Cohen’s
Kappa or Krippendorff’s Alpha are often used. These metrics adjust
for chance agreement and provide a more accurate measure of
inter-coder reliability. The scores for both of these metrics range
from 0 to 1 with higher numbers being better, so being close to
1 is ideal. Cohen’s Kappa compares the observed agreement with
the agreement expected by chance, providing a more well-rounded
evaluation of coder consistency. Table 2 shows that the kappa scores
that we received for the final codebook were strong as sentiment
was 0.951, discussion was 0.878, and topic was 0.91. Interestingly,
each of these scores was almost double the kappa scores given to
the v1 codebook, showing that the definition refinements made a
significant difference in agreement.

The last metric, Krippendorff’s Alpha, accounts for not only
chance agreement, but also the number of codes being used and the
prevalence of each code. By accounting for both the number of codes
and their prevalence, Krippendorft’s Alpha ensures that agreement
is not overstated in situations where certain codes dominate. For
instance, in datasets where one code is disproportionately frequent,
percent agreement might suggest high reliability even if coders are
only agreeing on the dominant code by default. Table 2 shows that

the alpha scores for the final codebook reached 0.952 for sentiment,
0.879 for discussion, and 0.911 for topic, all of which are strong
scores.

Using these three metrics, we have established that the manual
codebook we developed leads to strong ICA between two humans,
$0 now we can use it as a ground truth to compare to the results of
LLM coding and determine the ICA between a human and an LLM.

5 LLM Coding

After reviewing the relevant literature, we compile a comprehen-
sive collection of parameters that control LLM qualitative coding
performance. We fix several parameters to beneficial values based
on a literature assessment, and perform experiments with others.
We make use of the Llama 3.1 8B Instruct and GPT-40 mini models
for LLM coding. We report their performance in comparison with
the results from our manual coding as previously described.

5.1 Assorted Considerations

[3] and [2] both extensively discuss best practices for using LLMS
in qualitative coding tasks. We review some of these and their
motivations here.

Model size/complexity: The size of popular large language
models are significant indicators of their comprehension, level of
expression, reasoning ability, strength of parsing and interpretation,
and ability to follow instructions. [3] conducted experiments with
both GPT-3.5 and GPT-4, and found that the former was not able
to exhibit human-equivalent performance while the latter was.
Unfortunately, we do not have extensive computational resources
or funds. For a smaller model, we use Llama 3.2 8B Instruct, which
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Table 2: Agreement metrics between the two human evaluators. For each codebook iteration, the metrics are computed over the next batch
(~ 40 samples) using that codebook. The metrics computed are Percent Agreement, Cohen’s Kappa, and Krippendorff’s Alpha, separately for
each of the categories: Sentiment, Discussion Type, and Topic.

Codebook ‘ # Tweets ‘ Percent Agreement ‘ Cohen’s Kappa ‘ Krippendorff’s Alpha

‘ ‘Sentiment Discussion Topic ‘ Sentiment Discussion Topic ‘ Sentiment Discussion Topic

vl 62 79% 60% 66% 0.552 0.432 0.483 0.554 0.434 0.485
v2 49 65% 63% 63% 0.387 0.555 0.472 0.392 0.544 0.471
v3 42 88% 79% 88% 0.638 0.704 0.799 0.639 0.704 0.801
v4 43 98% 95% 95% 0.959 0.939 0.933 0.959 0.940 0.934
v5 33 97% 91% 94% 0.951 0.878 0.910 0.952 0.879 0.911

we run locally. For a large model, we OpenAI’s developer per-token
pricing on GPT-40 mini, which is similar to GPT-4 but smaller (and
significantly cheaper).

Dividing categories: Performing coding for multiple categories
simultaneously is a fairly complex task. While it could be useful,
especially when the categories are related to each other in complex
ways, models perform better with simpler, delineated tasks. Thus,
we perform the coding of each category separately: each (example,
category) pair is fed as a separate prompt.

Codebook formatting: For the chosen category, each label
was fed to the model alongside its definition. The human coders
took care to be specific and descriptive, but avoid overly-complex
word choice and clause order. We also try to be concise, as larger
prompts lead to worse performance/generalizeability and longer
computation time.

Providing examples: Providing examples of datapoints and
human-assigned codes could in theory allow the model to asso-
ciate codes with characteristics of sample text through its own
understanding; this application of in-context learning could make
application very easy for the end-user, and allow for more complex
latent relationships to develop. However, [3] notes that providing
examples greatly increases the prompt size, which negatively has a
negative impact on the results; we also experienced this from our
ad-hoc testing, so we elected to not pursue this in our experiments.

Model justification: Having the model justify its responses ac-
cording to the codebook after outputting the correct code is known
to improve its accuracy and reliability. This is closely related to the
Chain-of-Thought prompting technique explored in [3] and [2]. We
run experiments both with and without asking for justification for
coding, and observe a slight increase (~ 5% in accuracy on average
across all codebooks/categories) for both models. The difference is
not significant; for all experimental results discussed, we use the
outputs from the prompts with justification.

5.2 LLM Prompt Construction

We use the same prompt format for both of the LLMs that we test.
We begin with a brief system prompt, which tells the model that
this is a qualitative coding task regarding the security risk of LLMs
in programming. Next, we provide the name of the category (Senti-
ment, Discussion, or Topic), and all of the codes in that category.
Each code is given as with its name followed by its definition on
the same line; each code is given on a separate line. After providing
the codebook, we instruct the LLM to read the tweet that follows,

output the correct code, and depending on which experiment we
are conducting, either output nothing else or output a justification
for its decision on the next line. Finally, we provide the tweet to
perform coding on.

We attempted to remain relatively concise and direct in our
instructions to the model, in order to avoid confusing it and to
decrease computation time.

5.3 Llama Experiments

We conducted our experiments with Llama 3.2 8B Instruct, a recent
small instruction-tuned LLM by Meta. We used the 8B model as we
did not have the computational resources to run the next-smallest
model (70B), and because it would act as a good proxy for a "small"
model comparison.

Table 3 contains the experimental results. Note that the agree-
ment metrics are fairly poor, and uniformly lower than the human-
human agreement found in Table 2. Most of the percent agreement
numbers are below 60%, and almost none of the Cohen’s Kappa
metrics are above 0.40, which [4] suggests as a lower bound for
acceptability. The agreement for Sentiment tends to be higher than
for Discussion and Topic. Additionally, all metrics for all categories
seem to be increasing with the codebook iteration.

5.4 GPT Experiments

We conducted our experiments with GPT-40 mini using the OpenAI
developer API. This model is similar to GPT-4, but much smaller and
thereby more cost efficient by an order of magnitude.! Additionally,
its reasoning ability and long context length make it a preferred
option as a large-scale language model for experimentation.

Table 4 contains the experimental results. These results are still
worse than the Human-Human agreement, but much better than the
Llama-Human agreement. Most of the percent agreement numbers
are above 50%, and many of the Cohen’s Kappa metrics are above
0.40. As was the case for Llama, the Sentiment agreement metrics
are the highest, and, all metrics for all categories are generally
increasing with the codebook iteration.

6 Discussion

Both LLMs performed poorly in our experiments; indeed, worse
than expected, as compared to the results in [3] and [2]. This is

!https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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Table 3: Agreement metrics between Llama and human evaluation. For each codebook iteration, the metrics are computed over the next
batch (~ 40 samples) using that codebook (the same codebook is used by both the model and humans). The metrics computed are Percent
Agreement, Cohen’s Kappa, and Krippendorft’s Alpha, separately for each of the categories: Sentiment, Discussion Type, and Topic.

Codebook ‘ Percent Agreement ‘ Cohen’s Kappa ‘ Krippendorff’s Alpha
‘ Sentiment Discussion Topic ‘ Sentiment Discussion Topic ‘ Sentiment Discussion Topic
vl 59% 42% 50% 0.354 0.240 0.292 0.320 0.164 0.254
v2 60% 45% 49% 0.371 0.272 0.274 0.336 0.237 0.233
v3 59% 45% 48% 0.373 0.271 0.252 0.337 0.242 0.208
v4 57% 46% 50% 0.339 0.299 0.266 0.299 0.267 0.219
v5 64% 46% 50% 0.436 0.289 0.256 0.587 0.361 0.091

Table 4: Agreement metrics between GPT-40 mini and human evaluation. For each codebook iteration, the metrics are computed over the
next batch (~ 40 samples) using that codebook (the same codebook is used by both the model and humans). The metrics computed are
Percent Agreement, Cohen’s Kappa, and Krippendorff’s Alpha, separately for each of the categories: Sentiment, Discussion Type, and Topic.

Codebook ‘ Percent Agreement ‘ Cohen’s Kappa ‘ Krippendorff’s Alpha
‘ Sentiment Discussion Topic ‘ Sentiment Discussion Topic ‘ Sentiment Discussion Topic
vl 68% 59% 46% 0.475 0.453 0.292 0.468 0.448 0.262
v2 66% 62% 45% 0.435 0.492 0.282 0.427 0.488 0.253
v3 66% 63% 47% 0.441 0.508 0.293 0.432 0.505 0.274
v4 67% 64% 48% 0.460 0.511 0.314 0.451 0.507 0.295
v5 71% 60% 48% 0.512 0.466 0.313 0.507 0.463 0.297

likely due to us (1) using smaller models than the ones in those pa-
pers, (2) having relatively small sample sizes, and (3) not performing
as extensive prompt optimizations. Nevertheless, the variation in
our results is still insightful; furthermore, our setting is somewhat
realistic: most researchers attempting to leverage LLMs for qualita-
tive coding in practice (in general science) would likely prefer to
use off-the-shelf models and simple human-interpretable prompt
construction.

Our experimental analysis reaffirms some results from prior
work. First, the larger model GPT-40 mini performed moderately
better than the smaller Llama 3.2 model, showing that the more
complex model can better understand the definitions of each class
and discriminate the between the text distributions underlying each.
Second, the justification-based prompting approach did improve
performance. The metrics in Tables 3 and 4 are both using the
justification-based prompt; the metrics using the prompt without
asking for justification were slightly lower.

The results for the Sentiment category tended to be higher than
for Discussion and Topic. We believe this is due to Sentiment having
fewer total codes than the others; context length is an important
factor in LLM performance. However, Sentiment is arguably the
most "abstract” and emotional of the topics, which contradicts intu-
ition. It seems that the context length and still relative simplicity of
the codes are the more important factors.

Our departure from prior work was in using the LLM on incre-
mental versions of the codebook as created by the human evaluators.
For both LLMs, we see that all metrics tend to increase as the code-
book develops, matures, becomes more comprehensive, and is more
representative of the wide distribution of samples that fall within

each code. This demonstrates that (1) the model is actually using
the codebook definitions to perform the sample assessments, and
(2) the quality of the codebook is an important factor in the LLMs’
reliability for coding. This presents a challenge for practical appli-
cation: while the LLMs perform decently well when given the final
iteration of the codebook, in practice researchers would probably
want to use early iterations (as the goal of using LLMs is to save
time and not code as many samples).

Our proposed solution to this is LLM-human co-development
of a codebook. Human evaluators should manually perform the
coding process, produce several iterations of the codebook, and
have the LLM perform the same qualitative coding using the same
codebooks that they are on the appropriate batches of samples.
Once the codebook is sufficiently developed and the LLM using a
mature codebook reaches sufficient inter-coder agreement with the
human evaluations, the LLM can be used to code the remaining
samples. This process is most applicable to large datasets: human
evaluators will still need to do significant work to develop a suf-
ficiently mature codebook, but the LLM will still save effort on
the remaining samples. Determining the correct thresholds for this
condition would require a much more extensive and diverse study.

There are a few minor issues with our study design that could
have influenced our results. Our dataset is medium-sized; our re-
sults may have been more favorable for the LLMs and our trends
may have been more pronounced if we had additional samples and
been able to produce more codebook iterations. [4] notes that Co-
hen’s Kappa can be misleading when codes are not evenly applied
across the dataset, which is true in our case; this could explain
why some Kappa values seem low despite achieving high percent
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agreement. We hope that our using three metrics simultaneously
ameliorates this bias. Finally, we could have conducted more exten-
sive prompting design and hyperparameter tuning to make better
use of the models. However, in a real-world setting, we suspect re-
searchers would generally like to use simple prompt constructions
on off-the-shelf models for coding; thus, our experimental design
is appropriate.

7 Conclusion

In this work, we conducted an experiment to analyze the reliability
of LLMs for qualitative coding in security, assessing whether or not
they can understand and correctly apply a codebook to security-
related data. Based on the coding decisions of Llama 3 and GPT-40
mini when provided with various codebook iterations, we reaf-
firmed the effectiveness of chain-of-thought prompting and found
that large LLMs can be reasonably reliable when given mature, well-
defined codebooks. This suggests that while LLMs show promise
in applying codebooks to security-related information, they still
require a structured starting point to ensure consistent and accurate
coding. As such, we recommend an LLM-human co-development
approach for the codebook rather than relying on nearly complete
automation.

Our work also opens up several promising avenues for future
research. One direction is to examine the patterns in incorrect
coding decisions made by the LLMs. Comparing these errors with
the human coding decisions could provide valuable insight into the
nature and extent of each model’s shortcomings, offering a clearer
understanding of the gaps in their comprehension of the codebook.
For example, how "reasonable” are the errors made by the LLM; were
the human annotators also in disagreement about those samples,
and in the same way? Another avenue is to study the agreement
between different LLM models. Finally, though this may not be
possible now, eventually we would like to explore allowing LLMs
to develop and/or update the codebook independently, rather than
simply applying a predefined one; using longer-context technology,
eventually they may be able to learn from examples and update their
definitions accordingly, as humans do, without strong supervision.
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Table 5: Final codebook: definitions for codes in the Sentiment category

Code Definition

Positive If the tweet describes the influence of ChatGPT or some other Al-based tool as beneficial towards the overall
state of security or security in a particular case, then it should be classified as positive. If the tweet points out
benefits as well as drawbacks on this matter, then the tweet should be considered positive if it portrays the
benefits as outweighing the drawbacks or if it emphasizes the benefits over the drawbacks. Note that security
here is referring to security as understood in computer science as well as the ability to cause/prevent harm to
people.

Negative The tweet refers to the use of ChatGPT or Al in a bleak manner (e.g. complaints or warnings) in the context of
security. In this case, the dangers posed could outweigh the benefits provided by using these tools. Note that
security here is referring to security as understood in computer science as well as the ability to cause/prevent
harm to people.

Neutral The tweet does not provide an opinionated view on using ChatGPT or Al for security purposes. This means
that the intended audience of the tweet would not be swayed one way or another after reading the tweet
about using ChatGPT for security. Examples of this include facts, research findings, and insights. If the tweet
does not pertain to ChatGPT or Al in light of security (as understood in computer science or as it relates to
misinformation/ cheating/ deception), then it should be considered neutral. Note that, if a tweet is simply the
title of a resource such as a paper, video, etc, even if said title is positive or negative about ChatGPT/AI in
relation to security, the tweet should still be classified as neutral.

Table 6: Final codebook: definitions for codes in the Discussion category

Code Definition

Advertisement | The tweet’s main goal is to promote links, papers, podcasts, products, websites, or videos, especially in the
area of security though they do not have to be. For example, the tweet could highlight that a panel discussion
took place about how ChatGPT will influence the security landscape and include a link to a recording of it.
Note that a tweet should not fall into the advertisement discussion type category if the resource is not the
primary focus of the tweet but rather is a supporting piece of evidence to the main idea of the tweet.
Complaint The tweet criticizes aspects of using ChatGPT in relation to security (or whatever the subject of the tweet
is) and could contain examples of problems caused. The focus of the tweet is more about the annoyance and
dissatisfaction caused by the subject of the tweet than the various problems or risks posed by it. A complaint
often mentions a specific scenario in which the user is clearly dissatisfied, regardless of whether or not the
claims are warranted. The tweet may include other links or resources if they are meant to support the complaint
being made.

Warning The tweet contains various problems or risks posed by ChatGPT in the context of security (or whatever the
subject of the tweet is). The focus of the tweet is more about the aforementioned topic than the annoyance and
dissatisfaction caused by the subject of the tweet. Unlike a complaint, a warning must inform users about a
prediction that could prove detrimental. The tweet may include other links or resources if they are meant to
support the warning being made.

Joke The tweet is humorous in nature, for example, through the use of sarcasm or funny examples. The tweet may
provide actual information about ChatGPT, but if it is intended to create laughs, then it should still be classified
as a joke. The tweet may include other links or resources if they are meant to support the joke being made.
Informative The tweet contains undeniably true information, or it provides some information that makes a topic easier to
Discourse understand. The overall result of the tweet is enlightening the user, particularly about ChatGPT as it pertains
to security or as it relates to its behavior when performing a specific task. The tweet may include other links,
resources, or ChatGPT-generated quotes if they are meant to support the discourse being made.
Endorsement The tweet contains praise about ChatGPT as it pertains to security (or whatever the subject of the tweet is), or
it endorses its usage in a particular area of interest. For example, a tweet whose main focus is on recommending
ChatGPT as a tool to look over code for vulnerabilities should be classified as an endorsement. The tweet may
include other links or resources if they are meant to support the endorsement being made.
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Table 7: Final codebook: definitions for codes in the Topic category

Code Definition
ChatGPT/AI The tweet contains information about ways, within the context of security, that ChatGPT/AI can be exploited,
Vulnerability either maliciously or accidentally, can result in output that can be exploited, or fail to properly do the task

assigned to it. Specifically, the code refers to ways in which the average user can have negative interactions
with the tools, or ways in which attackers can take advantage of the tools’ weaknesses. For example, if a tweet
discusses how ChatGPT’s code often contains security flaws, then it should be classified as a ChatGPT/AI
vulnerability. If the tweet itself is not descriptive but it includes a link or resource that describes a ChatGPT/AI
vulnerability, then the tweet’s topic should still be classified as ChatGPT/AI vulnerability.

ChatGPT/AI The tweet describes ways in which ChatGPT/AI can be leveraged to perform security-related tasks. This task
Application is not about solving a particular security need or problem but rather doing a specific function needed by user/s.
If the tweet itself is not descriptive but it includes a link or resource that describes how ChatGPT/AI could be
used in such a manner, then the tweet’s topic should still be classified as ChatGPT/AI application.

Finding The tweet’s primary focus is on research regarding the influence and/or implications of AI on the overall state
of security or some subfield of it, or it encourages such research to be performed. This is primarily in the
form of descriptions/conclusions drawn from research papers, but there can be descriptions/conclusions from
other sources like articles. If the tweet itself is not descriptive but it includes a link or resource that describes
a finding pertaining to Al then the tweet’s topic should still be classified as a finding. Note that if the main
purpose of the information stated from a paper, article, or some other resource is to highlight a vulnerability
of, application of, or solution involving ChatGPT/AI, then the tweet should be classified as a ChatGPT/AI
Vulnerability, ChatGPT/AI Application, or Security Solution respectively.

Security Solu- | The tweet describes ways in which ChatGPT/AI is the primary engine for a large portion or entirety of a
tion security solution. This differs from a ChatGPT/AI application in the sense that a security solution involves
a whole idea or methodology to address a security need or problem (e.g. ensuring mobile app security) and
whereas a ChatGPT/AI application involves ChatGPT/AI being employed to address an individual task (e.g.
checking for a bug in a piece of code) that could be a constituent part of a larger security need or problem. If
the tweet itself is not descriptive but it includes a link or resource that describes a security solution, then the
tweet’s topic should still be classified as a security solution.

Other There are cases in which the tweet does not focus on the correct meaning of security because we are looking only
for instances of security as understood in computer science or as it relates to misinformation/cheating/deception.
If the tweet is not related to using ChatGPT or Al in security, it should be classified as other. Tweets that are
about ChatGPT’s output in areas outside of security and tweets whose main subject is the economic viability
of cryptocurrencies and/or NFTs should also be classified as other.






