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Abstract

We tackle the problem of generating binary hashcodes for retrieval in image databases. We try
several methods and compare them against the state-of-the-art. Our algorithms are based on well-
established ideas from the Unsupervised Learning literature and, in particular, Principal Component
Analysis [16] and Vector Quantization [9]. We show that one of our algorithms, termed unbalanced
PQ-2Means, performs similarly to the renowned Spectral Hashing algorithm [25], but is outperformed
by ITQ [8].

1 Introduction

In recent years, the Computer Vision community has shown significant interest in the problem of produc-
ing binary codes for images. This task is frequently referred to as image hashing. A frequent miscommu-
nication between the Vision and Databases community concerns the meaning of the term “hashing”. In
Databases, hashing consists of two steps. First is finding an appropriate transformation from the input
space to a small discrete set, typically the subset of integers from zero up to a small prime integer.The
transformation is known as a hash function.Second, it is required that a hashing method supplies a
mechanism for resolving collisions, which occur when two items hash to the same number. In Vision,
only the former element of hashing is examined. In a database setting, collisions are an unavoidable neg-
ative consequence of hashing and they affect performance negatively. In Vision, and Image Retrieval in
particular, collisions can be beneficial, because they effectively mean that - depending on the properties
of the hash function used - the images that collide or nearly collide are in some sense “similar” and this
should be made evident to the user.

In the Image Retrieval setting that we examine, the hash functions are essentially binary embeddings,
that is, the input image is transformed into binary strings. The advantages of this transformation are
two-fold. First, in terms of storage. If we have just 4GB of main memory, storing every image as a 32-bit
hashcode results in over a billion images possibly being stored. Second, in terms of retrieval efficiency. If
the embedding is such that the Hamming distance between the hashcodes respects the locality structure
of the images in the original domain, then even the naive nearest neighbor search algorithm of complexity
O(n - d) can be computed very efficiently, given highly optimized code for computing the Hamming Dis-
tance between two binary strings. Furthermore, the embedding makes approximate similarity techniques
well-studied in the Data Mining domain, such as MinHash[4], possible.

In the Database community, it might seem counter-intuitive that locality-preserving hash functions are
useful. Database researchers are often exposed to cryptographic hash functions, a key property of which
is -approximately- uniform key distribution. The Vision community, however, has shown time and again
that similarity preserving hash functions (binary embeddings) are possible. Locality Sensitive Hashing
(LSH) [11] is one of the first methods that successfully demonstrated the concept. In [1], the authors
introduce locality-sensitive hash function families for the Hamming, L1 and Lo distances.

From a Data Structures perspective, the use of hashing for finding similar images might seem hasty at
first. One might advocate the use of spatial data structures such as quadtrees[19] or kd-trees [3] for



finding similar images in the original d-dimensional space. Unfortunately, the former suffer from an
exponential blow-up in the nodes of each level as d grows large (which is why they are typically limited
to at most 3 dimensions, at which point they are called oct-trees) and the nearest-neighbor problem in
a kd-tree takes O(2¢ + logn) time to solve for a perfectly balanced kd-tree (and there are no balance
guarantees in the structure). Therefore, tree-based representations are ill-suited to solve the general
image retrieval problem, and we resort to hashing schemes. The obvious trade-off is that now we have
probabilistic guarantees for finding an approzrimate nearest neighbor instead of the best set of nearest
neighbors. This is nothing new, and it has been examined in previous setings as well. [4]

The remainder of this report is organized as follows. Section 2 outlines the related work on the field with
particular emphasis on the methods that inspired us and we compared our algorithms with. Section 3
outlines the algorithms that we tried with particular emphasis on two: PCA_Direct and PQ-2Means,
and discusses their pros and cons. Section 4 contains our experimental results. We conclude in Section
5 and give pointers for future work.

2 Related work

The Vision literature is replete with works introducing similarity-preserving binary embedding methods.
See [8, 22, 11, 5, 12, 17, 25, 18, 24] for some representative examples. In this section, we will focus on
what are arguably the most influential of these methods, namely Spectral Hashing [25], Product Quan-
tization [12] and ITQ [8].}

Spectral Hashing (SH) has been shown [25] to outperform Semantic Hashing [18], which is itself based
on the Restricted Boltzmann Machine [10]. In [25], the authors show that the problem of finding an
optimal binary code given a dataset is NP-Hard. By relaxing the original constraints, a closed-form
eigenvalue solution is obtained which is based on thresholding the eigenvectors of the dataset’s graph
Laplacian. Despite the fact that SH has been since outperformed by the state-of-the-art methods [12, 8],
we consider some of the insights learned from the algorithm to be important. Firstly, the authors of [25]
outline the properties that a good binary code should have. Those should be:

(a) The code should be short enough to simultaneously allow storing a large number of images in
memory.

(b) The code for a test point should be computed fast.

(¢) The code should be similarity-preserving, in the sense that distances in the original space should
be correlated with distances in the Hamming space.

Furthermore, one of the major novelties of SH is that its optimization problem constrains the solution
such that the produced bits are pairwise uncorrelated and that each bit fires 50% of the time. The
reasoning behind both of these constraints is intuitive; for the former constraint, a bit firing at index 4
should have no bearing about whether a bit at index j should fire, otherwise the utility of j is put into
question. Similarly, if we have an encoding which consists of k bits and one of these bits fires 99% of the
time, then we could just as well get rid of that bit, since its information content [20] is very small.

Product Quantization (PQ) [12] is the next important work that we focus on. In this framework, Vector
Quantization [9] is used to decompose the original space into a cartesian product of low-dimensional
subspaces. These subspaces are clustered, and the input vectors are now represented as a sequence
of subspace cluster indices. Two different distance metrics, one termed “symmetric’ and the other
“asymmetric” are devised and their efficacy with respect to finding approximate nearest neighbors is
estimated. The method demonstrated top-of-the-line results at the time, outperforming SH by using
both local patch-based image descriptors (SIFT [14], SURF [2]) and global descriptors (GIST [23]) for
variable-length codes. It should be mentioned, however, that, in and of itself, PQ is not a binary em-
bedding method; it is simply a technique for approximating the Euclidean distance between two vectors
by the distance between certain cluster centroids, such that the quality of the approximation to the true
nearest neighbors is high. As we will show later on, however, it is possible to use PQ to find high-quality

ITechnically speaking, Product Quantization is not a binary embedding method, but we demonstrate that it can be
considered such.



binary embeddings.

Finally, Iterative Quantization (ITQ) [8] is currently the state-of-the-art method in producing binary
codes for retrieval. The idea behind ITQ is to first start by centering the data and projecting it onto
its principal components. Then, the sign of the projections is taken, yielding certain binary codes. As
is made evident by Figure 1, however, this simple embedding does not necessarily respect the locality
structure of the original data. For this reason, an iterative Expectation/Maximization-like process is
devised to rotate the points as close as possible to the vertices of a binary hypercube, thus minimizing
the quantization error of the binary mapping. Experimental results on the Tinylmages[21] and CIFAR
datasets [13] reveal that ITQ outperforms all other known binary embedding methods, such as Semantic
Hashing [18], Shift-Invariant Kernels[17], LSH[11] and Spectral Hashing [25]. A comparison with PQ is
not included because, as we mentioned earlier, PQ has not, until now, been perceived as a method that
might produce binary embeddings.
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(1) PCA aligned. (h) Random Rotation. (¢} Optimized Rotation.
Figure 1: Iterative Quantization.

Our method is mostly influenced by PQ. In a nutshell, the same way that ITQ begins with PCA em-
beddings and then essentially performs clustering in order to find the optimal rotation to minimize the
quantization error of the data projections, we begin with spliting the original vectors into orthogonal sub-
spaces and then perform k-means clustering with £ = 2, hence the name PQ-2means. When a test point
arrives, we split it into r orthogonal subspaces and then assign each and every one of these sub-vectors
into its closest cluster, as computed at training time. This produces a binary embedding of length r. As
will be shown in Section 4, this remarkably simple approach performs as well as SH, which is currently
the second-best method for learning binary embeddings. It is lacking, however, when compared to the
much more sophisticated ITQ.

3 Algorithms

In this section, we detail the algorithms that we used. We tried a large number of algorithms, but only
two of them ended up having reasonable performance and we will thus focus on those the most.

3.1 PCA-Direct

Before we even surveyed the literature, we came up with the idea that projecting the data onto its prin-
cipal components and taking the sign of the projections seemed to yield a conceptually correct result.
Figure 2 shows a qualitative view of the process. An obvious problem with this approach is that it tends
to cluster large portions of the data elements into similar distances. However, this is a common problem
with all of the approaches in the literature. While it is true that the space of possible Hamming encodings
is exponential in the length of the bitcodes, which means that we can store a tremendous amount of data
with a relatively short code, the space of possible Hamming distances is linear 2. This means that it is
possible, in these problems, to generate false positives; this problem is typically alleviated by performing
an additional post-processing step to filter out such false positives by ranking the returned neighbors [11].

2For k bits, we have k + 1 possible Hamming distances between two vectors: Either both vectors agree on all bits, or
they disagree on k different possible index combinations
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Figure 2: PCA Direct in 2 dimensions.

A closer look at the literature, however, revealed that PCA-Direct was compared against as a baseline of
ITQ [8]. Recall that ITQ begins from PCA-Direct and iteratively rotates the data until it is optimally
mapped to the vertices of the k-dimensional binary hypercube. In fact, one of the interesting findings of
[8] was that even if a random rotation was applied to the result of PCA-Direct (a technique that they
call PCA-RR for “PCA with Random Rotation”), the results can be significantly improved.

Nevertheless, we include PCA-Direct in our list of attempted methods, it is important to investigate
how it rates compared to our other methods and the competition.

3.2 PQ-2 means

Our most promising method was a combination of PQ and 2-means clustering. Inspired by [12], we first
split the input vectors into sub-vectors of the same dimensionality. Following that, we perform k-means
clustering, where we constrain k to be 2, hence the full name “PQ-2Means”. Influenced by [25], where
the different bits were constrained to fire 50% of the time and to be pairwise uncorrelated, we consider
two different approaches: a “balanced” 2-means, where the two clusters are constrained to contain the
same number of clusters and a classic, “unbalanced” 2-means. Figure 3 gives a visual interpretation of
how these algorithms differ.

The main intuition behind using a “balanced” 2-means is that, when the two clusters formed by the
subspaces are of the same cardinality, the training data’s bits will all fire exactly 50% of the time (since a
‘1’ will be assigned to exactly half of the vectors at that particular index, and the other half vectors will
have a ‘0’ at the same index).To perform this balanced 2-means clustering, we employed the following
algorithm :

Balanced 2-means :
1. Initialize centers using the k-means++ algorithm.
2. While n_iterations < MAX_ITERATIONS

(a) Create k rank lists which arrange points in order of proximity from each center.
(b) Assign one point from the ith rank list and remove it from all the other rank lists.

(c) Iterate amongst all the rank lists.
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Figure 3: Unbalanced (regular) vs Balanced 2-means

(d) Recompute the centers using the new assignments.

(e) If the centers converge, break.

3.3 Other methods

In addition to the above methods, we tried some other techniques, which did not yield good results. We
describe our methods below :

e In Spectral Hashing, each bit is given equal importance. However, we suspect that since the
eigenvalues are arranged in increasing order, the bits are actually of unequal importance. Therefore,
we tried to compute Hamming distances by weighting the bits with the eigenvalues. However, this
yielded poor results, likely because our weighting scheme was extremely naive. Still, this could be
a promising direction for research.

e Our product quantization approach involved splitting the feature space into subspaces, so that each
subspace could be used to compute a single bit. A different way to do the subspace sampling would
be random draws with replacement from the feature space. However, this method performed worse
than our previous unbalanced 2-means approach.

e Finally, we tried to perform a 4-means clustering, rather than a 2-means, to allocate two bits per
subspace. Our motivation behind this was that a vector space with four clusters would lead to
more non-linear clusters than with 2-means. In fact, the experiments of [12] support the strategy of
increasing the number of clusters per subspace, instead of increasing the number of subspaces and
keeping the number of clusters low. However, this approach did not do better than our unbalanced
2-means approach either. We suspect this is because our assignment of bits to cluster centers was
not optimal.

4 Experiments

To test our algorithms, we use image features from the Scene UNderstanding (SUN dataset)[15] dataset.
Out of the 19000 dimensional feature vectors, 1005 were randomly selected. We then performed centering
and unit normalization on these features, and plotted precision recall curves for the various methods
over a retrieval problem. We computed nearest-neighbor ground truth by brute force. The results are
visualized in Figure 4. Overall, we find that ITQ works extremely well for this dataset, while unbalanced
PQ-2means works as well as Spectral Hashing. Balanced PQ-2means and PQ-2means with random
sub-space draws all outperform the base-line of PCA Direct.

5 Conclusions / Future Work

In this project, we investigated several simple, yet for the most part novel approaches for producing
similarity-preserving binary hash codes for image retrieval. We compare our algorithms against the
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Figure 4: Precision-Recall curve showing various methods. PQ2meansU refers to unbalanced 2-means,
PQ2meansB refers to balanced 2-means and PQ2meansRand refers to 2-means where the sub-spaces for
product quantization are random draws from the feature space.

state-of-the-art on a portion of the SUN dataset and draw several important conclusions. While our
method does not beat the competition, it comes in second, performing similarly to the very popular
Spectral Hashing algorithm. It currently appears as if Iterative Quantization is unbeatable by any other
method. It seems as if the only way to perform better is simply to start with I'TQ and optimize over it.
However, we arrive to some very important conclusions.

First and foremost, it is very easy to reach the level of performance exhibited by Spectral Hashing. We do
so without solving a constrained optimization problem and we do not have to compute an out-of-sample
extension for the test points. Our method is therefore inherently faster and easier to conceptualize. More
importantly, our solution demonstrates that the Shannon-inspired heuristic of requiring the bits to be
uncorrelated and making them 50% likely to fire is not a requirement for good codes. This has been
theorized over the last few years by the community and in our lab in particular.

Second, Iterative Quantization is currently by far the strongest method. It seems as if the only way to
beat ITQ is by using it as a “stepping stone” and doing some further post-processing (e.g [7]).

Third, we expected balanced PQ-2means to perform better than unbalanced PQ-2means, but this was
not found to be the case. Perhaps the balanced assumption that we made about our data was incorrect.
In any case our results indicate that the “balancing argument” may not be sound. A further assumption,
that the bits be uncorrelated with each other, is likely to be universally true across all datasets.

Lastly, our work opens up broad avenues for research. This project, in conjunction with recent works (e.g
[6]) show that PQ can be used successfully for the task of Image Retrieval. The algorithms presented in
[6, 8] are all iterative in nature, which is a different approach than that taken in SH and similar works:
instead of solving a relaxed optimization problem in a spectral framework, an attempt is made to reach
an approximately optimal solution through Vector Quantization. In the future, we want to experiment
further with our method in other datasets beyond SUN, where the variance of every dimension might be
markedly different.
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