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Abstract

Web Services is an emerging paradigm in which very loosely coupled a@ftw
components are published, located, and invoked on the Web as paidtriblded
applications. Web Services provide a new way of distributed computingewvhe
the interoperability between diverse applications is achieved through nofesfod
language independent interfaces. The main focus of Web Services a&biiity
to easily combine existing components to create compositions that proweé no
functionality that was not directly available from the existing services. Wab S
vices composition is useful for a wide range of audience: ordinarysusang
everyday tasks on the Web, commercial organizations involved iniadsassap-
plications, and researchers doing intense scientific computation ovebutistt
networks such as the Grid.

Automated composition of Web Services requires fairly rich machinextnd
standable descriptions of services that can be shared between batzyag agents.
Given appropriate descriptions, Al planning techniques can be entptoyauto-
mate the composition of Web Services described this way. However, @Afsics
Composition problem differs from classical planning problems in varisags.
The information about the world is incomplete and constantly changing;dhe d
main knowledge, i.e. Web Service descriptions, have been develgpditfdrent
parties and are distributed over the Web; and the plans generated inooineuni-
cation and interaction with other agents, i.e. providers of the Web Servicdss
setting, creating a composition to accomplish a goal requires to interleav@nia
with execution where both the state of the world and the domain knowledge abo
planning operators are gathered during the planning process.

In this paper, | present the preliminary work | have done for automatiag
composition of Web Services and discuss future directions for oveéncpthe
limitations of the preliminary work. The purpose is to show that Al planning-tec
nigues can be extended to automatically generate useful and purpmsefosi-
tions of Web Services under incomplete information. As a starting pointyed ha
worked on how Web Ontology Language (OWL) can be used to descriieSaf-
vices. | have created an interactive tool for a user-oriented compositiproach
and also studied how HTN planning can be used for automated composition o
Web Services. In both systems reasoning with Web Ontologies has begéous



facilitate the composition task. The goal of this paper is to investigate how these
approaches can be combined, with each other and can be extendédientbf
address the issues related to the nature of the Web, i.e. a large, distriyutachic
environment with incomplete and possibly inconsistent information.

1 Introduction

Web services are self-contained, self-describing, maodydplications that can be pub-
lished, located, and invoked across the Web. Web serviaeslesigned to provide
interoperability between diverse applications. The plaif and language independent
interfaces of web services allow the easy integration affiogfeneous systems.

Service Oriented Architectures tend to be component ariewnith loose coupling
as a systematic design emphasis. Services should not oriobely coupled with
their implementation, but they should be able to be coupdgdther with a minimum
difficulty so thatcombinationsof services can be separated from their particular real-
ization. Given such combinations — called sengoenpositions— a service consumer
can mix and match components at will depending on servicikaaiy, quality, price,
and other factors.

While realizing service compositions on particular conesatrvices is an important
task, generatingsuch compositions to achieve new functionality is equatisame-
times even more important. Creating novel functionalitynbgans of composition is
essential when there is no single service capable of peirfigrthat task but there are
combinations of existing services that could.

There are many different application areas where autonsatigposition of Web
Services would be useful.

e Web Task§ here are many tasks ordinary users perform on the Web exeryd
When the objective requires interacting with different jgart e.g. making travel
arrangements may involve buying plane tickets, bookinglhatoms, and rent-
ing cars —the task becomes tedious. Locating the servitdbseguired specifics
and coordinating the flow between these sources is not anasisy

e B2B ApplicationsThe composition is very important in B2B applications where
online partnerships can automatically be formed withoudrpagreements. A
business who wants to order some items from a manufactudethan arrange
the shipment details can achieve this goal by combiningehéces provided by
manufacturers and shipment companies. These composdilons the forma-
tion of dynamic trading communities.

e Grid ApplicationsThe Grid provides a computational framework to solve large-
scale problems in science, engineering, and commerce. kakg on the Grid
requires the coordination and combination of multiple Esy and resources.
Composing these services in workflows of varying compleigtyequired for
different tasks. For example, a scientist working on bioinfatics would want to
get data about DNA, apply some specific tests on the data andrdnsform the
results to a certain format. Each of these services may hede by different
sources and need to be combined together to satisfy the goal.



e Pervasive Computingxposing the functionality of devices as Web Services pro-
vides a uniform method for describing the capabilities efsthdevices and thus
enables us to compose these services together. In todagtedech environ-
ment, most tasks require the ability to compose servicels aadhe ones pro-
vided by printers, projectors, kiosks with the programs oarycomputer or the
services available on the Web.

All these examples come from relatively different areassbilltshare some funda-
mental characteristics:

o Distributed SettingService descriptions are created by different sourcesdihat
not necessarily share common knowledge or understandihgs iffiplies that
services that will be used to create the composition shoeldiscovered from
remote sources. This discovery process should take intsidemation possible
misalignments between the vocabularies of Web Serviceigésas.

e Incomplete InformatioMhe composition system will have incomplete informa-
tion about the world. When the size and nature of Web is consitjeve cannot
assume that the system already knows the information netediéd a com-
position. As the set of services grows very large (i.e., asstaet using large
repositories of heterogeneous services) it is likely thghg) to complete the
initial state will be wasteful at best and practically impitée in the common
case.

¢ Interleaved Execution and Compositibhe composition system should execute

the necessary information-providing services during ramosition process to
gather information. While not all the information relevanta problem may
have already been known, i.e. the amount of money in the becduat, it will
often be the case that that information is accessible toythiem, i.e. by using
the service provided by bank’s Web site. The relevance dsiptesinformation
can be determined by the possible combinations the plasmemisidering, so it
makes sense to gather the information at that point.

e Web Scald\ system to compose Web Services should scale to the Webastind
where the number of available services may be in the ordeiilbdns. It is not
possible to handle this number with any naive approach.

The dynamic composition of services primarily requiresensthnding theapa-
bilities of the available services (i.ayhatthey can do) and theompatibilityof those
services. Several technologies, such as SOAP [45], WSDL, [44], are being devel-
oped to provide a standard way of describing Web ServicesveMer, Web Service
standards mainly concentrates on the syntactic propertig® descriptions , i.e. syn-
tax of the descriptions, structure of messages exchangeaée services, etc. Au-
tomating the composition process requires more compraledascriptions where the
semantics of a Web Service can be expressed in a machinestart#able format. The
means for sharing information between separate partietsriede established in order
to combine the services together to achieve the overalla@fahke composition.



The Semantic Web vision is of a world where loosely couplediependently
evolving ontologies provide common understandings betweserogeneous agents,
systems, and organizations. Several current efforts (OW24% SWSI [1], WSMO
[13]), are attempting to integrate the two visions, thatagyroduce a world where Se-
mantic Web ontologies support greater automation of WekiGerelated tasks, such
as service discovery and composition.

Fairly rich Web Service descriptions provide the means tieustand the semantics
of single services but it will still be required to put thesewces together to accomplish
goals that cannot be simply fulfilled with an individual see: Producing a sequence
of actions to reach a certain goal is the objective in Al plagnWeb Service descrip-
tions can be mapped to action definitions and an Al planneibeansed to generate
compositions of Web Services.

The purpose of my research is to show that Al planning tectesgan be extended
to automatically generate useful and purposeful commostof Web Services under
incomplete information. My work will provide a basis for hde encode service de-
scriptions of sufficient richness to support partial to fultomation of composition.

As a starting point, | have worked on how Web Ontology Langu@WL) can be
used to describe Web Services and their capabilities. Tbik vesulted in developing
tools that partially automates of generating expressivbe Bérvice descriptions and a
composition tool that helps users by using these descniptio do selection and fil-
tering of the services. | have developed a Description Lbgged OWL reasoner that
was used to find combinations of Web Services and filter thdtsslsased on user con-
straints. As a preliminary work on automated compositioavehworked on mapping
Web Service descriptions written from OWL-S to SHOP2 plagrdoemains. | have
focused on the incomplete information problem and the ssekated to interleaving
execution with planning process. | have also examined hdvatalle the expressivity
of ontologies in the planning process. | have extended mkwarreasoning proce-
dures to effectively handle precondition evaluations efgtanner when the knowledge
about the state of the world is expressed in OWL.

In my future work, | will primarily concentrate on how to addss the issues and
challenges listed above. | will work on extending the erigtHTN planning paradigm
to be able to generate plans with operators and methodsrthdeacribed by separate
sources. Enriching the task and method representationow ehsy-sharing descrip-
tions between different parties while improving the apitid match remote methods
with tasks at hand is going to play an important role. | wilvelep algorithms and
methodologies to interleave planning with execution nat jio gather information
about the state of the world but also discover new plannirgraiprs and augment
the domain knowledge about the problem. | will not limit miyse use Web Services
described in a planning-oriented language such as OWL-Slboitty to extend the
horizon to use less expressive Web Service descriptiogs, \Web Services that do
not have explicit precondition/effect specifications batdssociated with a message
exchange patterns or classified in a Web Service taxonomy.



2 Background and Related Work

2.1 Semantic Web and Ontologies
2.1.1 Semantic Web Languages

The Semantic Web [6] is an extension of the current Web in vimiformation is given

well-defined meaning, better enabling computers and peopleork in cooperation.

This is realized by marking up Web content, its propertiesl iés relations, in a rea-
sonably expressive markup language with a well-defined stosa

Semantic Web languages are used to represent informatérn edsources on the
Web. This information is not limited to be about Web resoaroet can be about any-
thing that can be identified. Uniform Resource IdentifierR(§) are used to uniquely
identify entities. For example, it is possible to assign d téR person, to the company
he works for, to the car he owns, etc. so relations betweesetlmtities can be written
and shared on the Semantic Web.

There is a stack of languages that have been published as Ve8@mendations
to be used on Semantic Web. At the bottom layer of the staeke ks the Resource De-
scription Framework (RDF) [9]. RDF is a simple assertiomalduage that is designed
to represent information in the form of triples. Triples atatements that contains a
subject, a predicate and an object. RDF Schema (RDFS) [8t@lection of RDF
resources that can be used to describe properties of othErr&fdurces. Unlike its
name suggests, RDFS is not a schema that specific consipainie structure of an
document, but instead provides information about the jimé&tation of the statements
given in an RDF data model. In this regard, RDFS has simigarib frame based lan-
guages and can even be described as a relatively inexpgrésacription Logic (DL).
Though it should be noted that RDFS has a much more free epeg®on and quite
different semantics that traditional DLs.

The Web Ontology Language (OWL) [14], is the most expresdimedardized Se-
mantic Web language that is layered on top of RDF and RDFS. O#i_be used
to defineclasses(unary relations) angroperties(binary relations) as in RDFS but
also provides constructs to create new class descript®tagacal combinations (in-
tersections, unions, or complements) of other classesiedeéirdinality restrictions on
properties and so on. OWL has three different species: OWL,. OgL DL and OWL
Full. OWL Lite and DL differ from OWL Full such that they definertain constraints
on RDF and RDFS so as to be compatible with the traditionabseics of DLs.

2.1.2 Reasoning on Semantic Web

The semantics of unrestricted RDF-S and OWL Full is non-tiaal and the reason-
ers built for OWL Full fragment tend to be sound but incompleBénce there is no
straight-forward way to extend the existing reasoners fipstt the full expressivity
of OWL Full. Therefore, focusing on OWL DL fragment of the laage and use the
sound and complete reasoning techniques developed foriptse Logics.
Description Logics are a family of class-based knowledgeagentation formalisms
[4]. A DL knowledge base typically comprises two componerasTBox” and an
“ABox”. The TBox contains intensional knowledge in the fooha terminology and



the ABox contains extensional knowledge that is specifiti&individuals of the do-
main of discourse. Intensional knowledge is usually thoungit to change and exten-
sional knowledge is usually thought to be contingent, oredejent on a single set of
circumstances, and therefore subject to occasional oreestant change [4].

In DLs, there is one main inference problem, namely the steisty check for
ABoxes, to which all other inferences can be reduced. Fomela checking if an
individual a belongs to a concept ter@in an ABox A can simply be done by checking
if AU {a : —=C} is not consistent. Almost all other reasoning tasks, i.gaiknent,
query answering, can be reduced to consistency checking.

2.2 Web Services
2.2.1 Web Service Standards

There are various different standards that have been qeelior different Web Ser-
vice tasks such as description, discovery and invocatidres& technologies are pri-
marily designed to be used in conjunction with other Web cdiaths, e.g. XML for
syntax and HTTP for communication.

SOAP [45] is the communication protocol designed to exchangssages between
applications over the Web. It is fundamentally a stateless;way message exchange
paradigm, but applications can create more complex inferapatterns by combin-
ing such one-way exchanges. SOAP provides a distributeckpsing model where
a SOAP message is delivered from a sender to an ultimatevezoga zero or more
SOAP intermediaries. This distributed processing modelstgport many message
exchange patterns including but not limited to one-way @gss, request/response
interactions, and peer-to-peer conversations.

Web Service Description Language (WSDL) [10] is the languagédescribe the
mechanics of interacting with a particular Web service. @hstract functionality of
the Web service is defined in terms of the types of messagesdissand receives in
WSDL interface An interfaces is a set afperationsand an operation is a sequence
of input and output messages. An operation associates sagesgchange pattern
(MEP) with the message types that will be exchanged in thataijpn. The message
types are defined using a schema language such as (but nedliito) XML Schema.
The abstract interfaces are associated to concrete mefsgaggs and transmission
protocols withbindingdescriptions.

Universal Description Discovery and Integration (UDDI}[4s an emerging stan-
dard registry system for Web Services. UDDI allows busias$s advertise their Web
Services by publishing their descriptions on a global tegisThere are three main
parts of this registry: White Pages that list contact infdioraabout the company that
developed the Web service; Yellow Pages that organize Welices by such cate-
gories as geography and industry code; and Green PagesttiaV/BDL descriptions.
UDDI supports the association of an unbounded set of pri@gerd the description
of Web Services via a construct called TModel. For examplkeraice may specify
its category using an arbitrary classification system thatingir meaning is not cod-
ified, therefore there may be two different TModels with tlaene meaning, but this
similarity cannot be recognized.



Business Process Execution Language for Web Services (BRBl.[12] is a lan-
guage to define compositions of Web Services. It uses WSDLrigéisas as the build-
ing block of the composition. BPEL4WS process is a kind of a ftdwart composed
of activities An activity is either gorimitive or astructuredactivity. Primitive activi-
ties include single step operations such as invoking aratiperon some Web Service
or waiting for a message from an external source. Structpredesses defined com-
positions using constructs such as sequences, condgjdnaps and so on. Similar
to WSDL, BPEL4WS allows both abstract (not executable) andeta (executable)
descriptions. An abstract process description specifeesbssage exchange behavior
between different parties without revealing the interretidvior for any one of them.
An executable process, on the other hand, specifies thetexeouder between a num-
ber of activities constituting the process, the partnevelired in the process and the
messages exchanged between these partners.

OWL-S [34] provides a set of OWL ontologies to describe Web Besvin a more
expressive way than allowed by WSDL. The features of the Webi&g e.g. message
types, constraints and capabilities, are defined usingettmest from Web Ontologies.
OWL-S partitions the semantic description of a web servitetilree components: the
service profile, process model, and grounding. $leeviceProfiledescribes what the
service does by specifying the input and output types, piditions and effects. The
ProcessModaliescribes how the service works; each service is eithAt@nicProcess
that is executed directly or@ompositeProcedhat is a combination of subprocesses
(i.e., a composition). Th&roundingcontains the details of how an agent can access a
service by specifying a communications protocol, paramsetebe used in the protocol,
and the serialization techniques to be employed for the comication. The similari-
ties between OWL-S and other technologies may be briefly ezpteas follows. The
ServiceProfile is analogous to yellow-page- like adventisets in UDDI, the Process-
Model is similar to the business process model in BPEL4AWS,thadsrounding is
a mapping from OWL-S to WSDL. The main contribution of OWL-S ie #ibility to
support richer descriptions of the services and the redbventities they affect in such
a way as to support greater automation of the discovery amgbasition of services.

Both BEPL4AWS and OWL-S represents compositions from the petise of a
single party. The client is responsible from handling thetaal and data flow between
the components of the composite service. This view of coitipads calledorches-
tration. This view differs fromchoreography which is more collaborative in nature
and aims to describe each involved party’s part in the iotema so each participant
will exact know how to interact with others. The choreognagbscription outlines the
roles of participants, their obligations in the choreo¢mga@nd the order and structure
of messages exchanged between these participants. A plastyvants to participate
in this choreography needs to obey these rules. A W3C workiagpgis now devel-
oping the Choreography Description Language (CDL) to $pdbe details of such a
description language.

2.2.2 Web Service Discovery and Matching

Research on Semantic Web Service discovery and matchingrimaarily focused on
using the subsumption relation between Web Service adeentnts and requests. And



more specifically the subsumption relation between thetiapa output types have
been used to generate matchings for Web Services that wénedieising OWL-S.
The DAML-S ! Matchmaker [35] is the first system that implemented thisiigdea
system. The Matchmaker is designed to augment the curreBtl dizhitecture with
semantic service descriptions. Using concepts from Webl@gites for matchmaking
allows to find flexible matchings beyond the capabilities &fJ which only supports
text based matching.

The Matchmaker system uses DAML-S (or, presumably in a Ssoreupdated
Matchmaker, OWL-S) profiles to describe service requestsedisas the services ad-
vertised. A service provider publishes a DAML-S descriptto a common service
repository. When someone needs to locate a service to peafspacific task, a Servi-
ceProfile for the desired service is created. Request @afitematched by the service
registry to advertised profiles using DL subsumption as tite inference service. In
particular, the Matchmaker computes subsumption relatmtween each individual
input, output, precondition and effect (IOPE) of the requesl the advertisement Ser-
viceProfile. If the classes of the corresponding parameter&quivalent, there is an
exact and thus best match. If there is no subsumption ralatien there is no match.
Given a classification of the types describing the IOPEs,Miaéchmaker assigns a
rating depending on the number of intervening named cldsst®geen the request and
advertisement parameters. Finally, the ratings for atheflOPEs are combined to pro-
duce an overall rating of the match. In summary, the basiegaised in matchmaking
are as follows:

e Exact If advertisement A and request R are equivalent concepiscilled an
Exact match

e Plugin If request R is sub-concept of advertisement A, it is call®iLgin match

e Subsumelf request R is super-concept of advertisement A, it is del&ubsume
match

e Fail Otherwise, there is no match

[21] and [29] extends the matchmaking algorithms to exptate features of sub-
sumption relations. For example, when there is no subsompélation between the
advertisement and request, a rating callgdrsectionmay be assigned when their in-
tersection is not empty, i.e. advertisement and requestrigésns are not disjoint.
This case implies that relaxing some of the constraints enrélguest may provide
better results. And both approaches differ from the Matdtendecause they use
the whole service description, or more correctly the praféscription, for discovery
purposes and try to find the subsumption relation betweesethere complex class
expressions. Lei and Horrocks point out a problem about OWireile descriptions
where encoding too much information in the profile, e.g. nameé address of the
provider, prevents effective matching. They overcome phidolem by separating var-
ious components of the description; in particular the dpson of the service being
provided was separated from the descriptions of the progidid requesting “actors”.

1OWL-S was formerly named as DAML-S and was based on DAML+OIL



Benatallah et al. [7] presents a different matching albarit called “best pro-
file covering problem” to support flexible matching beyond&dy and subsumption
matches. In this approach, matching the service requestimed as a new instance
of the problem of rewriting concepts using terminologiese foal is to rewrite a Web
Service request descriptiddinto the closest description expressed as a conjunction of
(some) concept names (Web Service descriptions) in anagyid@?. To enable flexi-
ble matchings, a difference operation on service desoriptis proposed to meet this
requirement. Such an operation enables to extract from sesuh Web service de-
scriptions, the part that is semantically common with a igigervice request and the
part that is semantically different from the request. Knugvihe former and the latter
allows to select relevant Web services and then to choodestteones.

Roughly speaking, the difference of two descriptigrisand D, expressed using
C — D, is defined as being a description containing all infornratidhich is a part
of the descriptionC' but not a part of the descriptiob [43]. However, it is worth
noting that, in some description logias,— D may be a set of descriptions which are
not semantically equivalent. Teege [43] provides sufficeanditions to characterize
the logics where the difference operation is always seroalhti uniqgue and can be
implemented in a simple syntactical way by computing thedgfédrence of subterms
in a conjunction. According to [43], structural subsumptie a sufficient condition
that allows to identify such logics.

In the profile cover algorithm, difference operator is apglio the inputs (denoted
by I(R)) and outputs (denoted b§(R)) of a request profilekR and advertisement
profiles. Finding a set of advertised profildgo minimizeO(R) — O(A) ensures that
the resulting set will satisfy the required output consitsi The algorithm considers
both themissingand theextrainformation in the found answer set. The implementation
of the algorithm is done by computing the minimal cost tramsals of a hypergraph.

2.2.3 Automated Web Service Composition

Narayanan and Mcllraith [32] define the semantics for a eegubset of DAML-S
in terms of the situation calculus. Atomic process desicnist, preconditions and ef-
fects in DAML-S are mapped to situation calculus construbtsliraith and Son [31]
extends this mapping to encode composite processes in @8 high-level logic
programming language built on top of the situation calcullisey adapt and extend
the Golog language to enable programs that are generi@roirstble and usable in
the context of the Web. To support information gathering biored with search, they
propose a middle-ground Golog interpreter that operatdsan assumption of rea-
sonable persistence of certain information. A ConGologrjmeter is augmented with
online execution of information-providing services witffliae simulation of world
altering services.

Berardi et al. [5] presents a framework in which the expoldieHavior of a Web
Service is described in terms of its possible executionsdition trees). The frame-
work is specialized to the case in which such exported behé&ve., the execution tree
of the Web Service) is represented by a (deterministick&itate Machines (FSMs).
It is shown that a composition for an external schema reptedeas a FSM is con-
stituted by a Mealy FSM (MSFM). Then synthesizing such a MFSMchieved by



reducing the problem of composition existence into sah#fig of a suitable formula
of Deterministic Propositional Dynamic Logic (DPDL).

2.3 Al Planning
2.3.1 Classical Planning

Most of the planning approaches rely on a general model, thgehof state-transition
systems. In a state-transition system there are finite arsaely enumerable set of
states, actions and events along with a transition fundtiah maps a state, action,
event tuple to a set of states. Given a state transitionmsydte purpose of planning
is to find which actions to apply to which states in order toieah some objective,
starting from some given situation.

Classical planning is mainly based on the initial modelifithe STRIPS [16] sys-
tem. In this representation a state is represented by a getafid literals expressed in
a first-order language. An action is an expression spegjfyihich first-order literals
belong to the state in order for the action to be applicalmd vehich literals the action
will add or remove in order to make a new world state. An ajoholds in states iff
p € s. If g is a set of literals with variables,satisfiesy (denoteds = ¢g) when there is
a substitutioro such that every positive literal of(g) is in s and no negated literal of
o(g)isins.

In classical planning, a planning operator is a triple (haméo), precondo), ef-
fectgo)). Effects of an operator can be positive or negative,éftects (o) (generally
referred as the add list) represents the set of literalswitblbe added to the state and
effects (o) (generally referred as the delete list) represents thef éigtrals that will be
removed from the state. An operatois applicable in a statewhen the preconditions
are satisfied in the state, i.e = precond(o). Most planners represent the world state
with a relational database and thus precondition evalnasioery fast. Applying the
effects of an operator is done by adding or deleting entris the database.

This representation is insufficiently expressive for soea domains. As a result,
many language variants have been developed. Action Déscripanguage (ADL)
[36] is an important variation. ADL extends STRIPS repreéaton by explicitly in-
cluding negative literals in the state, having conditicefédcts for operators and allow-
ing existential variables and disjunctions in goal fornsul@enberthy and Weld [39]
developed a partial order planning algorithm named UCP@ptRthandle a signifi-
cant subset of ADL action representation.

2.3.2 HTN Planning

HTN planning is similar to classical planning in that eachridcstate is represented
by a set of literals and each action corresponds to a statsitim. However, HTN

planners differ from classical Al planners in what they plan and how they plan for
it. The objective of an HTN planner is to produce a sequenactibns that perform
some activity or task. The description of a planning domagiudes a set of opera-
tors similar to those of classical planning, and also a setethods, each of which is
a prescription for how to decompose a task into subtasksinilg proceeds by us-
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ing methods to decompose tasks recursively into smallersamaller subtasks, until
the planner reaches primitive tasks that can be perfornmedttli using the planning
operators.

Many service oriented objectives can be naturally desdrivi¢h a hierarchical
structure. HTN-style domains fit in well with the loosely gbed nature of Web Ser-
vices: different decompositions of a task are independethe designer of a method
does not have to have close knowledge of how the further deositions will go or
how prior decompositions occurred. Such hierarchical ringds the core of the
OWL-S [34] process model to the point where the OWL-S procesdeinconstructs
can be directly mapped to HTN methods and operators as shojidli

SHOP2 [33]is a domain independent HTN planner. A distirctdéature of SHOP2
is that it generates the steps of each plan in the same oralethtbse steps will later
be executed, so it knows the current state at each step ofahaipg process. This
reduces the complexity of planning by eliminating a greatl @é uncertainty about
the world, thereby making it easy to incorporate substhekipressive power into the
planning system. Thus SHOP2 can do axiomatic inferencegangéymbolic/numeric
computations, and calls to external programs during ptaqnni

2.3.3 Planning with Incomplete Information

The XII [20] is a general-purpose planner which was oridindkesigned to help an
autonomous agent plan in the presence of incomplete intamaOther planners of
this genre include Cassandra [11] and IPEM [2]. XII can harigith causative goals
and knowledge-information goal. As an example one couldXlk&o first compress

all the ps files in a directory and then list all files which aeddw a certain size.

The first is a causative goal, while the second is an infoilmnagiathering goal, whose
outcome might change based on the causative actions thagiim might take before
considering this goal. In this case, some of the postsctgd fvhich were above the
size threshold before the compression was done, my get libkthreshold after the
compression, and thus become eligible tuples for the indtion gathering goal.

XIl can in principle be used to solve the pure informationhgaing problems,
with source calls modeled as information gathering actiwith knowledge effects.
However, use of XIl for pure information gathering turns ¢abe an over-kill. This
is because the absence of causative changes to the envirbarmend the information
gathering agent (the contents of the information sourcesatrmodified by the queries
sent to them) vastly simplifies the planning problem, féafing specialized methods
such as the ones described in [27]. However, XII methodotogy be useful once we
consider variants of the information gathering problent thadel updates to sources
(either made by the information gatherer, or more likelythey source providers).

PUCCINI [20] is an extension of XII but has a richer languagepecify actions
and goals and handles verification links. Interleaving piag with execution builds on
the approach used in IPEM. Unlike IPEM, PUCCINI can repreggormation goals
as distinct from satisfaction goals.

Knoblock et. al [3] developed the Sage system which is oaifynintended to
be a query planner for the SIMS project, that deals with logiemeous distributed
databases. Sage assumes information source descript@esraplete, and that no
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source has query constraints, Sage casts the informatibargay problem as a query
reformulation problem. Sage uses a modified version of UCR©OD$earch for the

correct sequence of reformulation operations that witigfarm the user’s query into
an equivalent query only on information sources.

3 Preliminary Work

In this section, | describe my preliminary work on Web Seeviomposition. Section
3.1 explains the interactive composition of Web Servicesrela user builds a compo-
sition with the help of a semi-automated tool | built. Theltoses Web Ontologies to
find and filter Web Service matches. Issues such as the gemeodtOWL-S descrip-
tions from WSDL specifications and use of concept-mapping Bétices to improve
multi-ontology matches is also described in this sectiorcti®n 3.2 describes how
to automate the composition of Web Services using HTN plamniThe section ex-
plains how the OWL-S processes was mapped to HTN task déeaspind includes
the proof for soundness and completeness of the plans gedextier this mapping.
Section 3.3 describes my initial work on information gathgrduring planning and
presents some of the preliminary results obtained. Se8tibulescribes the issues re-
lated to using Web Ontologies to describe preconditionsedfetts of Web Services.
The integration of a Semantic Web reasoner with an HTN plaimexamined and
the problems caused by the extra expressivity of Web Oniedagnd their distributed
nature are discussed. Lastly, section 3.5 describes myavoikplementing a Seman-
tic Web reasoner and how this relates to the various reagdagks that were used in
different parts of my preliminary work .

3.1 Interactive Composition of Web Services

As a starting point, | have developed an interactive tooladiglly automate the Web
Service composition process. The composition of Web Ses\vi achieved in a goal-
directed fashion where the composition is gradually geedraith a forward or back-
ward chaining of services. At each step, a hew service ischtidne composition and
further possibilities are filtered based on the currentedrand user decisions.
Building the composition step-by-step is very intuitive foany cases. For exam-
ple, consider the task of making the necessary travel agrangts for a trip. The first
step is to book a means of transportation. You start by finthiegservices that let you
make reservations for transportation. Then you need to filese services because not
all of the services are relevant to your current task—e.g.s ¢dhat does not provide
transportation to your destination or ones that have ndabiliiy at the desired dates
should not need to be considered. Filtering may be furthed i3 help determine the
service that best fits for your personal preferences, suet@pting a certain credit
card or serving particular destinations with non-stop figlfter this step is resolved,
you can continue the composition process by finding comieadigrvices. Perhaps you
have a clear idea of what further tasks you'd like to accostpliith this composition
or perhaps just seeing the available, compatible servidesuggest further goals. Just
as with business or consumer services, we expect propyniguiite a key factor in de-
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Making Travel Arrangements
1. Book transportation
1.1. Find transportation services
1.2. Filter out the services which has no availability atdiesired dates
1.3. Select a service that accepts your credit card, offgood price, etc,
2. Make hotel reservation
(feed date of arrival information from previous servicehistone)

3. Record expenses in your financial organizer
(compute total of expenses from previous steps)

Table 1: A step by step composition of a service that will milestravel arrangements
for atrip

termining desirable compositions, particularly when thgtfa” services are not strict
requirements of the current task.

3.1.1 Creating Semantic Service Descriptions

Partial automation of composition can effectively be domemwthe Web Services have
fairly rich descriptions that will help to find the relevante¥/ Service matches. As
discussed in section 2.2.2, using Semantic Web ontologiglescribe Web Services
provides possibilities to automatically generate fleximatches. Unfortunately, it is
not possible to find a large number of Web Services describ®WL-S. On the hander
hand, there is an increasing number of WSDL-described webcssravailable on
the Web, both from independent developers and large compdaig., Amazon and
Google). Annotating these web services with OWL-S providgead opportunity for
us to access a lot of semantically described, executablesesr

For this reason, | worked on to partially automate the déowaof OWL-S de-
scriptions from WSDL descriptions. For eagperationa WSDL document describes,
the document will provide a description of the input and atitmessages and their
substructure for that operation. Normally we take a WSDL afpen to correspond to
an OWL-S AtomicProcess, with the parameters of that processsponding to var-
ious message parts. In nearly all WSDL documents, the confanessage parts are
described by XML Schema datatypes, quite often complexstyfiat is, types which
describe elements with possible attribute or subelementtste). Since parameter
type compatibility is a critical part of the interactive cposition method, it is very
important that the service description supplies suffityegtpressive types.

For many purposes it is preferable to have the parametes yjp@WL-S services
be OWL classes, as it would allow for more flexible matching arwate natural OWL-
based descriptions. Since we are already augmenting tvariafion in a WSDL de-
scription, it seems reasonable to do so with the types as Walis, we treat the WSDL
supplied types as descriptions of the “wire format” of thevie parameters, that is,
the serialization of the values actually used by our praceés extended the OWL-S

13



_ioi x|
Enter URL: |http:r!www.wehsenﬂcex.netn,Iszip.asmx?WSDL | - H || Load |

Operations Service information
GetinfoByCity Service Name |Get\nfUByAreaCUde \
GetinfoByState Text description |Get State Code,City,Area Code, Time Zone, Zip Code by Area Code =]
GetinfoByireaCode )
GetinfoByZIP I~

Inputs

WEDL Parameter | WSDLType | DAMLSMame | DAML Type |
in ns¥:GetinfoByAreac... in address:AreaCode
Outputs
WSDL Parameter | WSDLType |  DAMLSMame | DAMLType |
return ns¥:GetinfoByAreaC . [return daml:Thing
Mamespaces
Apbbr | URI

rdfs hitpihonannne 3. org/2000001 irdf-schema

nsg http:iirpc.xml.coldfusion

daml hitp:ihweeewe darml argf2001/03/dami+oil

rdf hitp:ihwenenewe 3. 0rg/1 999/0 202 2-rdf- syntax-ns

sDap_enc  hftpifschemas xmlsoap.ora/soapfencoding! |

nsa hitn:iiswanandmokashi.coms >

Generate DAML-S

Figure 1: A tool to automate translation from WSDL descriptidco OWL-S

Grounding to all for the inclusion of marshaling and unmaitity functions which
our OWL-S executor can use to coerce XML Schema values to OWLiihehls and
back? These functions are, by default, encoded as XSLT styleshéair example,
an unmarshaling function is written as an XSLT transfororafrom XML fragments
matching the specific XML Schema type to an RDF graph seeidlia the RDF/XML
exchange syntax. That graph encodes the relevant asseationt the individual which
is the actual input to the service. Marshalling functioresiarplemented as the inverse
transformation. Using published XSLT obviates the needlierOWL-S executor to
be extended with specific type coercion functions — it jugidsea generic XSLT pro-
cessor, perhaps running as a remote service. The downgits due to the extremely
free syntax of RDF/XML (especially, the plurality of equigat forms), it is difficult
to write XSLT that can handle all the legal serializationagfiven RDF graph, and the
resulting stylesheet is difficult to understand and mamtai

Clearly, writing such transformation functions by handas feasible. Marshalling
and unmarshaling functions already can be a source of sbibge as they require a
deep understanding of both source and target formalismpd goderstanding of the

2These extensions, with further development by the OWL-S toajiwere subsequently included in
OWL-S. These extensions and their implementation were donelleboration with Fujitsu Labs of Amer-
ica, College Park, with extensive feedback from Ryusukeudka.
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services both on the WSDL side (i.e., of the operational s¢iggaf the service) and
on the OWL-S side (i.e., of how the descriptions affect theower of OWL-S related
inferences). Adding essentially irrelevant and idioswticr details of a specific lin-
ear syntax for RDF compounds the problem. Unfortunatelyretu standard solutions
tend to compromise interoperability. In our system, sineecantrol all our execution
engines (in fact, we reuse a single implementation), we eguire a specific profile
of RDF/XML that avoids confusing or redundant constructgeatly if other engines
do not generate that profile, then our XSLT transformati@rsfail. Also it is unclear
that, even with a suitably designed profile, the necessaatiXBueries will be suffi-
ciently obvious and transparent to the programmer. Finalhile feeding the XSLT
processor some XML allows for great flexibility, both in cbeiof implementation of
processor and of the specific instance of some processoutilikely that the internal
representation of the individual will be, say, W3C DOM tressthere is the constant
need for additional data conversion.

All three issues would be dealt with by the incorporation ofRDF and OWL
sensitive query language (such as RDQL or Versa) into theTX&Lperhaps XQuery,
standards. Even if generic XSLT or XQuery processors gépdeled to include
such extension, it would provide a standard and appealiggtéor OWL-S engines to
implement; and, even if the query languages were not ideay, would have both less
of a conceptual gap and less of an implementation gap thathXfaries.

An appealing alternative to either technique is to use adri¢gvel mapping lan-
guage, perhaps along the lines of MDL [46] as proposed in [[B#e mappings could
be compiled to XSLT or other transformation languages.ethesuld be an enormous
gain in portability, and by eschewing the general exprespmwer of programming
languages like XSLT, there might be a significant gain ingparency and analyzabil-
ity. Unfortunately, the design of such a language coverirgdntire expressivity of
OWL is a formidable task.

3.1.2 Using Web Ontologies for Partial Automation of Compoiion

I have built a system to provide support for our interactieenposition approach us-
ing semantic service descriptions. Filtering and selectibservices is achieved by
using matchmaking algorithms similar to those implemeritefB5], [21] and [29].
extended this algorithm to consider the subsumption mdietween the request and
advertisement profiles considered as whole concepts.

Our system uses the same basic typology of subsumption lagtthes, but in
some contexts we match based on the subsumption of the prdfikes, and in other
contexts we use subsumption only to directly match indiaigharameters.

The system has two separate components. An inference eisgiegponsible for
storing service advertisements and processing matchstxquihe inference engine is
Pellet [38], the OWL-DL reasoner | implemented. The other porent of the system
is the composer where the workflow of service compositiorisgated. The composer
communicates with the inference engine to discover passilaitches and present them
to the user. It also lets users to invoke the completed coitipo®n specific inputs.

The composer lets the user create a workflow of services Isgptimg the possible
choices at each step. The user is first presented with ali/tikable services registered
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Location

[ GeographicLocatio [ Address |

USAddress

Figure 2: A simple hierarchy of location related concepts

to the system. This first step is totally unguided. Each syieset step of the composi-
tion makes use of two sorts of matching, on IOPEs (which iy falitomated) and on
other service parameters. Forms for entering constramtheservice parameters are
generated from the ontologies defining those parameteanyistep, the final selection
of the specific service is done by the user.

3.1.3 Matching on IOPEs

At each step of the composition, a list shows the IOPE corbjgasiervices that can
be added to the composition. When a service is selected freristh the composer
presents as options those services whose output could betfeglcurrent service as an
input. Suppose the selected service accepts an input ofAtgtdeesswhich is defined
in a certain ontology where the concept hierarchy is showhigure 2. We would
like to find the services which have an output that is compatiath this type. An
output of a service would be considered compatible if it wiatgee Addressor another
concept which is subsumed Byddressi.e. USAddressWhen the output of a service
is subsumed by the input, the output type can be viewed ascéatiped version of the
input type and these services can still be chained togeHmrever, a service whose
output isLocationcould not be composed with this service sidaressconcept will
most likely have additional properties and restrictionstioa existing properties of
Location

Clearly, only Exact and Plugin matches between the paramet&erviceProfiles
would yield useful results at this step. For service sabegtive need match on indi-
vidual parameters types instead of whole profiles, as weidenall type compatible
services to be reasonable “next steps” of a composition. iBeeesting extension
would be to consider certain service parameters againbabtmnstraints as part of
service compatibility. For example, suppose before stguitthe composition process,
the user enters an overall price limit on the compositionaiyt step, the system sums
the values of all cost service parameters of the currentilypmsed services, and uses
the difference between that sum and the set limit to filteeptial next steps.

The ordering of the result displayed in the list is based endigree of the match.
The Exact matches are more likely to be preferred in the caitipn and these services
are displayed at the top of the list. The Plugin matches arsgmted after the Exact
matches and Pluglin matches are ordered according to ttendésbetween the two
types in the ontology tree.
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3.1.4 Filtering on Service Parameters

The number of services displayed in the list as possible lmatcan be extremely
large. For example, a power grid or telephone network miglvelmany thousands
of sensors each providing several services. This will makefeasible for someone
to scroll through a list and choose one of the services sioplgame. Furthermore,
even if the number of services is low, the service hames tales may not be contain
enough information to let a user know what they do. When theenafithe service
does not help to distinguish the services, we turn to theraibivice parameters, such
as location, to help determine the most relevant servicahfercurrent task. Thus,
a sensor description, linked to a particular service, caguegied as to the sensor’s
location, type, deployment date, sensitivity, etc.

The ServiceProfile hierarchies defines a classificationiikiased at the first level
of filtering. By selecting a profile category from the listea$imits the shown available
choices whose ServiceProfile matches with the selectioneX@eine the definitions
of the various ServiceProfiles to build various user inpuini® for specifying further
constraints on the desirable services.

_io x|
File Options
Select a categons: |Acnu51i|:SensanEnlice (4 v|
Microph... ‘Omnidirec‘linnal v|
Latitude |inthe range | [30 |40 |
Location | Longitude ‘inthe range v| |TD| ‘ |?5 |
Altitude ‘equals v| | |
Advanced...
Soundintensity (double
RMS Calculator =~
FIR Filter hd
1
[ifindouwTyp e quiindowTypeName)] [LowerFreqLimit(Frequency)]  [UpperFreqLimit (Frequency)] [Eoundinput guaw)|
| | [
Uzer input (Window TypeName User input (Frequenc User input (Frequency)
- User Input - ~ | |- user inpu - v | |- user nput - v | -semicestss) - |
|Hamming v| | | ‘ |
o Am

Figure 3: Filtering is used to see only omnidirectional atmusensors that are located
at a latitude between 30-40 and a longitude between 70-7§séen that only one of
55 services satisfy these constraints

Consider a example in the sensor network where we want totsepecific sensor
service. With no other restriction, the system will presevery available sensor ser-
vice. This is better than presenting all the services, keirémaining choices can still
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be overwhelming. If the user chooses to filter the resulthécservices wittcoustic-
SensorServiceProfilethat decreases the number of matches significantly. The com
poser then queries the inference engine about the possihliees parameters of the
selected service type. Based on the answer returned frorantiee, the composer
creates a GUI panel in which the user can enter constrainthéoproperties of the
services as shown in Figure 3.

The user’s constraints are combined in a service requefiligprbhe service request
is sent to the inference engine and the result of this newydqsapplied to the previous
result set. The services that do not satisfy the currenttraings are removed from
consideration. The matchmaking for this step can use Reélexa@&ches as well as
Exact and Plugin matches. Using Relaxed matches will pighiabrease the choices
presented allowing the user to make a more flexible selectitelaxed matches are
permissible because we already know that the set of seivieasser is considering are
compatible in this context.

3.1.5 Improving IOPE Matching with Ontology Translation Services

With both IOPE matching and service parameter filteringdahgra strong need for a
suitable set of service descriptions of sufficient and cdibfgadetail to support, for
IOPE matching, the appropriate subsumptions and, for aeparameter filtering, in-
telligible form based queries. It is straightforward toledeate the service parameter
filter forms by extending the definitions of the concepts usadescribe those parame-
ters. We expect that such extension will be done using stdrardgology editing tools.

We have already discussed improving IOPE matching by ctingethe 10 type
descriptions from XML Schema datatypes to OWL classes. lngiacess, the choice
of target OWL class is critical to generating matchmaking.hithe Semantic Web is
likely to have a large number of somewhat overlapping omnfies, that is, ontologies
which have fairly similar, but distinct concepts. If semvidescription authors choose
different, but relevantly equivalent, classes to unmdrsheir XML Schema datatypes
to, the system will fail to match intuitively compatible s@es. Ideally, some sort of
concept or ontology mapping would make these relevant atgrices transparent to
the system. Aside from the normal OWL-DL constructs for eipgatlasses, we have
the concept of dranslatorServiceProfilghat is, of services whose entire job is to take
the description of an OWL individual against one ontology] paroduce the relevantly
equivalent set of assertions against another.

However, there is an important sense in which these serai@sinimportant to
the composition process. Rather, they andy important insofar as they promote the
composition of other services which actually move the ugeser to her goal. They
are not suggestive of interesting further steps, thus arelyna burden on the user.
To eliminate this, we do not actually present the transtasiervices to the user, but
rather created “fused” services on the fly. A fused servica ¢hain of translation
services terminating in a non-translation service. Theduservice is presented as
a type compatible non-translation service, thus incrgatie number of substantial
options at any particular step. Details about the mappingoesfound in [42].
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3.2 Automated Composition of Web Services Using HTN Planning

Web Service descriptions can be extended to include infiomauch as preconditions
and effects. OWL-S description language uses these cotsgive more information

about what the service does. It is possible to map such géisors to planning opera-
tors and exploit Al planning techniques for automatic sesw\iomposition by treating
service composition as a planning problem. Ideally, giverser's objective and a set
of Web services, a planner would find a collection of Web Smwithat achieves the
objective.

We believe that HTN planning is especially promising fosthurpose, because the
concept of compound tasks in HTN planning is very similahto¢oncept of composite
process descriptions. A Web Service workflow that has a cexrgitucture with many
different execution paths can be modeled as an HTN methad.ifflermation can be
fed to a HTN planner as a planning domain and planner wouldosma sequence of
atomic processes that would consitute a valid deccompasitithe original composite
service.

There are several ways in which HTN approach is promisingéovice composi-
tion. HTN encourages modularity. Methods can be writterhouit consideration of
how its subtasks will decompose or what compound tasks @rdposes. The method
author is encouraged to focus on the particular level of ohgasition at hand. This
modularity fits in well with Web Services. Methods corresgda recursively com-
posable workflowsThese workflows can come from diverse independent sourgks a
then integrated by the planner to produce situation spedifstantiated workflows.
Also HTN planning scales well to large numbers of methods@etators as method
decompositions provide means to prune the search spacadayrig unrelated method
descriptions.

In the following sections first encoding OWL-S process modsISHOP2 domains
is explained, then definition of how to formalize a Web Sesxdomposition problem as
SHOP2 domain is shown. Then the soundness and correctntres mins generated
by SHOP2 is proven with respect to the situation-calculusasgics of OWL-S given
in [31] and [31].

3.2.1 Encoding OWL-S Process Models as SHOP2 Domains

In [47] we have provided the details of a mapping algorithat thanslates the OWL-
S process descriptions to SHOP2 planning domains. The empofl Web Service
descriptions to HTN domains is achieved as follows:

e Each atomic process with effects is encoded as a SHOP2 op#rat simulates
the effects of the world-altering Web Service.

e Each atomic process with output is encoded as a SHOP2 opevdiose pre-
condition include a call to the information-providing Webr8ice.

e Each simple or composite process is encoded as one or mor@EH®thods.

3These processes are encoded as “book-keeping” operatibrsysdo not appear in the final plan.
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These methods will tell how to decompose an HTN task thaessmts the sim-
ple or composite process.

This mapping assumes that all atomic processes defined in S\Miocess model
can either have effects or outputs, but not both. An atonucgss with only outputs
models a strictly information-providing Web Service. Andaomic process with only
effects models a world-altering Web Service. In general,dag’t want to actually
affect the world during planning. However, we do want to gatbertain informa-
tion from information-providing Web Services, which etgagéxecuting them at plan
time. To enable information gathering from Web Servicedatmping time, we require
that the atomic processes to be either exclusively infdongtroviding or exclusively
world-altering.

It is also assumed that there is no OWL-S composite procesgimput that uses
SplitandSplit+Join control constructs. SHOP2 currently does not handle coanuay.
Therefore in our translation, we only consider OWL-S proaesslels that have no
composite process usiiBplitandSplit+Joincontrol construct. We also assume only a
non-concurrent interpretation @fnordered The details of the encoding can be found
in [47].

3.2.2 Encoding OWL-S Web Service Composition Problem as SHGPPIlanning
Problem

Narayanan and Mcllraith [32] give a formal semantics for OWin terms of the situ-
ation calculus [41] and Golog [28]. The situation calculusifirst-order language for
reasoning about action and change. In the situation calgcthe state of the world is
described by functions and relations (fluents) relativized situations, e.g., f(z, ).
The functiondo(a, s) maps a situatior and an actiom into a new situation. A situa-
tion is simply a history of the primitive actions performedrh an initial, distinguished
situationSj.

Golog is a high-level logic programming language based ensituation calcu-
lus, that enables the representation of complex actionfuiltds on top of the sit-
uation calculus by providing a set of extralogical condsug-igure 4) for assem-
bling primitive actions, defined in the situation calculirsto complex actions that
collectively comprise a progrand, Given a domain theory) and a Golog program
4, program execution must find a sequemgesuch thatD = Do(d, Sy, do(d, So)).
Do(6, Sy, do(d, Sp)) denotes that Golog progradrstarting atSy will legally terminate
in situationdo(d, So)) wheredo(d, Sp)) is used to abbreviate the following expression
do(ay,do(an—1,...,do(a1,S)). Thus,as,...,a, are the actions that realize Golog
programd, starting in the initial situation$.

The semantics given in [32] and [31] maps an OWL-S process tolag3oro-
gram where atomic processes in OWL-S are mapped to primitivers in Golog and
composite processes in OWL-S are mapped to correspondinglexi@olog actions.
Using these semantics, we can define the OWL-S service cotigpogioblem as fol-
lows:

Definition 3.1 (OWL-S Service Composition)LetK = {K;, K, ..., K, } be acol-
lection of OWL-S process models satisfying the assumpligtesl in Section 3.2.1,
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a - primitive action

d1; 92 - Sequence

cond? - test

01| 02 - nondeterministic choice of actions
0* - nondeterministic iteration

if cond then §; elsed, endIf - conditional
while cond do § endWhile - while loop

Figure 4: A subset of Golog constructs to create complexastthat are relevant to
OWL-S constructs.

C be a possibly composite process definedkin Sy be the initial state, and® =
(p1,p2,--.,pn) be a sequence of atomic processes defindd.iThenP is a compo-
sition for C' with respect tak in Sy iff in action theory, we can prove:

Y | Do(é¢, So, do(a@, Sp)))
where
e Y is the axiomatization of{ and.Sy as defined in action theory.
e ¢ is the complex action defined f6éras defined in action theory
e q; is the primitive action defined fgr; as defined in action theory

Note that this definition is for offline planning, i.e. thesaio execution of informa-
tion-providing Web Services during planning. This defmitiassumes that the initial
state contains the complete information for the domain.ehiity, this is not the case
as we interleave the execution of information-providingveees with the simulation
of world-altering ones to complete the information in théiah state. Information
gathering is done with respect to the the initial state soplla@ning process would
yield the same results if all the information-providing W8bkrvices were executed
prior to planning. There are some conditions (similar tolfRe assumption [31]) that
need to hold in order to extend this theorem for interleawegtetion. We will discuss
these conditions at the end of this section.

We will now prove that the plans SHOP2 finds for the OWL-S serndomposi-
tion problem are equivalent to the action sequences foursituation calculus. We
will use the simplified version of SHOP2 algorithm (Figuredbying the proof. Since
Golog does not provide adnorderedconstruct we will not consider this construct
in our proof and in the SHOP2 algorithm we have omitted thaitietelated to un-
ordered tasks. It is possible to defib@orderedconstruct in ConGolog (Concurrent
Golog) [19] which is an extension to Golog that allows coment execution. But since
SHOP2 does not allow concurrent processes we cannot usexthission. Also note
that in the original Golog formalism complex actions are edi as macro definitions
[28] so complex actions do not have preconditions. In ouofyrave will show the
correspondence to the original Golog approach and assumhéntthe given OWL-S
process model only atomic processes have preconditions.
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procedure SHOPZ2(T', D)
if T'is empty then return empty plan
Lett be the firsttask in T
if ¢ is a primitive task then
Find an operatos = (h Pre Add Del) in D such that
h unifies witht ands satisfiesPre
if no sucho exists then return failure
Lets’ bes after deletingDel and addingAdd
LetT” beT after removing
return p, SHOP2¢', T", D)]
else ift is a composite task
Find a methodn = (h Pre; Ty Pres Ty ...) in D such that
h unifies witht
12 Find the task list; such that
s satisfiesPre; and does not satisfireg, k < i
13 if no suchT’; exists then return failure
14 LetT’ beT after removing
and adding all the elements’ify at the beginning
15 return SHOP2(, 7', D)
16 end if
17 end SHOP2

abhwnN -

P P2 O00~NO®

= O

Figure 5: A simplified version of the SHOP2 planning procedur

Theorem 3.2 Let K = {K;, K», ..., K,,} be a collection of OWL-S process models
satisfying the assumptions listed in Section 3.2!e a possibly composite process
defined inK, Sy be the initial state, and® = (p1, po, - . . , p) be a sequence of atomic
processes defined ilf. ThenP is a composition folC' with respect tak in Sy iff P

is a plan for planning problemYy, M¢c, D) where M is the SHOP translation for
procesC' and D is the SHOP domain created froR.

Proof 3.3 Before giving the proof we should note that there is a repregte®nal dif-
ference between how SHOP2 and situation calculus desctiilgestate of the world.
SHOP2 represents state by a set of ground atoms whereas sittlaion calculus,
the state of the world is described by relations (fluentsjtreized to a situation. For
example f(Z) is true at some point in the planning process when that atotamsdn
SHOPZ2's “state” (e.g., the set of ground atoms). In the ditba calculus, truth value
for that relation is relative to a specific situation argunte.g., f(Z, s). The changes
to the state in SHOP2 is done by adding or deleting atoms frastate whereas sit-
uation calculus defines successor state axioms to defineutievalues for the fluents
in different situations. Apart from this representationtfference, there is an equiv-
alence between SHOP2 state and situations, ¢.@) is true in the initial state of
SHOP2 iff f (&, Sp) is true in situation calculus. Applying the effects of an raper
will also preserve this equivalence. It is easy to verifyt the truth value for the pred-
icate f(Z) after applying the effects of an operator will be equal to theh value of
f(&,do(a, s)) whena is the corresponding situation calculus action and the titar
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states are equivalent. In general, when the same sequergetiohs/operators are
applied to a situation/state, the state of the world in thalfsituation/state will be
the same. Throughout the proof, we will use this equival@mceuse the same name
to denote world states in both notations when the meanintgar.cThe proof of the
theorem is by induction:

Hypothesis For a given OWL-S process, P is a plan for the planning problem
(So. M¢, D) iff ¥ = Do(d¢, So,do(a, Sy))) whered = [aq, aq,...] is the sequence
of primitive actions in situation calculus that correspaen the sequence of SHOP2
operators inP.

Base Case Supposed is an atomic OWL-S process amdis the corresponding
primitive action in situation calculus and, is the corresponding SHOP2 operator.
Then in Golog it is defined that

Do(a,s,s’) = Poss(a,s) As' =do(a, s)

It means when the preconditions for the process is satisfid@spect to situation
s then the primitive action sequence we will get for this semptogram will have
only one element, namellyy = [a]. As seen in line 9 of SHOP2 algorithm, the plan
for a primitive task will return the plan that includes theeyptor instance when the
preconditions of that operator are satisfied (the recursia will return empty list as
there are no more tasks in the list). Thus, the plan returne8HOP2 is § 4] which is
equivalent to the situation calculus result.

I nductive Step We will do a case by case analysis for each of the control cocist
in the process model to show that our translation and resgltilans SHOP2 finds are
correct.

Choice Suppos& is a composite OWL-S process defined &haiceof twad* other
processeg’; andC,. The SHOP?2 translation fat' will yield two methods\/; = (C
Mg¢,) and M = (C () Mc,). Note that the SHOP2 methods have no preconditifins (
is used for preconditions) because we have assumed thatositeprocesses cannot
have preconditions. Corresponding Golog program €bis d¢ = d¢, | d¢, and the
semantics is defined as

Do(d¢y1d¢cy, 8,8") = Do(d¢y, 8, 8") V Do(d¢,, 8, 8")

The disjunction means arjthat is a valid action sequence for eith&s, or i,
will also be a valid sequence fd.. From our hypothesis we know for each action
sequence that satisfie9, (or éc,) we have a valid SHOP2 plaR., (or Pc,). The
nondeterministic choice in SHOP2 algorithm (line 11) shteg when a plan is being
sought forC, the solution for any matching method instance, in this deseand M-,
will be returned as a result. This ensures that when SHOPZlked to find all the
plans forC', both P, and P, will be returned proving the equivalence to the answer
in situation calculus.

Sequence Suppos& is a composite OWL-S process defined &equencef two
other processe§’; andCs. The SHOP?2 translation fof' will yield one methodVi~

4The Golog choice operatdiis defined for two operands. A choice of more operands couldbbe 8y
nested operators which would not effect our proof here
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=(C 0 (M¢e, Mc,)). The corresponding Golog program {6t is ¢ = é¢, ; dc, and
the semantics is defined as

Do(d¢,;0c,,8,8") = (3s*)(Do(d¢,, s,5*) A Do(d¢,, s*, 8"))

Suppose that situatiog* represents a history of the action sequemge If the
action sequence recorded between situatishaind s’ is d@» then the final situation
s’ represents the concatenated sequefice d,, d,]. Calling SHOP2¢, M¢,, D)
will return Pg, and from our hypothesis we know that it is equivalent to thioac
sequencei;. We also know that calling SHORZ( Mc,, D) will return a plan P,
that is equivalent to the action sequenge The SHOP2 algorithm shows that (line 14)
when a task (in this cask/;) is removed from the input task netwdfkit is replaced
with its sub-elements (in this casdé-, and M¢,). The tasks to solve are selected from
T in the order they were added (line 3) so the resulting planSetOP26, M, D)
will actually be the concatenation @, and P, which is equivalent to the sequence
a.

If-Then-Else Suppose” is a composite OWL-S process defined witHfahhen-
Elsecontrol construct andond is the condition for the if statement; is the process
in the then part and’; is the process in the else part. The SHOP2 translationCfor
will yield one methodV/¢ = (C cond M¢, O M¢,). Corresponding Golog program
for C'is §¢ = (if cond then é¢, elsedc, endlf) and the semantics is defined as

Do(if cond then é¢, elsedc, endlf, s, s°)
= Do((cond?; §¢,), S, S)V Do((—cond?; éc,), S, S)
= (cond[s] A Do(d¢,, S, S))V (—cond[s] A Do(dc,, S, S'))

The expressionond] s] evaluates to true whenever the fluent.d is true in situ-
ation s. Supposet; is the action sequence for the situatién, and a, is the action
sequence for the situatiod,. If s satisfiescond then the result fodo will be @,
otherwise result will bel,. From our hypothesis we know for any possije(or d-)
we have a valid SHOP2 plaRq, (or Pc,). When we call SHOP2( M, D), the
algorithm will check the conditions in the method definit{tine 12), cond and § in
this translation. Ifcond is satisfied algorithm return®-, and otherwise return$c,
which is equivalent to the the result in situation calculus.

Repeat-While Suppose” is a composite OWL-S process defined witRepeat-
While control construct andond is the condition for the while statement afid is the
process in the loop body. As we have assumed that composiesses do not have
preconditions, without losing generality, we can simplifg SHOP2 translation to be
M =(C cond (Cy C) () ). Corresponding Golog program far' is 5 = (while cond
do dc, endwhile) and the semantics is defined as

Do(while cond do 6, endWhile, s, s*) = Do([[( cond?; d¢,)]*; ~cond?], s, S')

This definition includes the nondeterministic iterationemdion * which has a
second-order semantics [28]. We will use the restrictedsizer of Golog as defined
in [31] where the the iterations has a limt This restriction eliminates the problems
caused by unlimited looping and enables us to define a firgraemantics.

Assume the iteration runs times. Wherk = 0, the above formula will simplify
to Do(—cond?, s, S’) which returns an empty action sequence in situataioutus.
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This new formula also implies conditiaand is false in the initial situatiors. When
SHOP2 is trying to solvé/., sincecond is false the algorithm will choose (line 12)
the second condition-task list pair (note that the seconttitmn in M is # which
is always true). The second task listfisso SHOP2 will return an empty plan as
well. Supposei is a valid action sequence fak-,. From our hypothesis we know
for each action sequenaethat satisfiesy, we have a valid SHOP2 plafic,. In
the general case, whein > 0, the Golog formula becomée3o([cond?; (J¢,)"; .. .;
cond?; (0c,)*; =cond?), s, s’) hence the action sequence will bg [. . ., @]. Note
that action sequence for each step of iteration may be diffefor example whetfy-,
contains nondeterministic choices. We also know that! will be true in situations
s,S81,---,8;—1 and false in situatiors;,. When SHOP2 is searching a plan fbf,
the first condition fond) will evaluate to true and SHOP2 will chose the first task list
(Cy ©). Solving the first task’;, will add P; to the plan and solving second taSkwill
recursively continue untitond fails. Since, initial states are equal and plan prefixes
are samecond will not hold after kth iteration. At this point, algorithm will chose
the second condition-task list pair (empty task list) whigh conclude the recursion
and the plan returned will befy, ..., P]. At each step of the iteration we will have
the equivalent world states so the action sequencand planP; will be equivalent
due to our hypothesis. Therefore, the final plan and the finiba sequence will be
equivalent.

Repeat-Until The proof for this case will be very similar to the above prémf
Repeat-Whileconstruct.

Our proof did not include the effects of executing inforratiproviding services
during planning. Information gathering during planningeiguivalent to the Middle
Ground execution (MG) for sensing actions in the Golog apgihd31]. In both cases,
planning starts with an incomplete initial state and exegusensing actions adds new
knowledge to the state. As long as the information retridveih the services doesn’t
change over the course of planning, we would still have thivatence of world states
in both representations and it would be straight-forwarasttend the proof for this
case.

The correctness of MG depends on the Invocation and ReasoRalsistence
(IRP) assumption [31]. Intuitively, IRP assumption sayett th

o Information-providing services should be executable @itfitial state, and

o Information gathered from these services cannot be chamgesdternal or sub-
sequent actions.

The first condition follows from the fact that informationtgaring is done with respect
to the initial state. The second condition assumes no edtsource will change the
gathered information during the planning process but atebipits the planner from
changing the gathered information as well. This is to preyeablems such as this
one: In our example domain (see Section 3.2.3) a Web Serwvierecuted to get the
available appointment times from a hospital. Then planimaulstes scheduling an
appointment at one of the available time slots. If the infation-providing service is
executed again and the available appointment times (wlseé hot yet been changed)
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are added to the knowledge base then there would be a proklesmge planner would
be able to schedule another appointment in the same time $lo¢ IRP prohibits
the second step (changing the information retrieved) tocmree this problem. This
solution is certainly very restrictive and obviously ouraexple domain violates this
assumption. For this reason, our solution is to prohibitlgds step where the same
information-providing service is executed more than once.

To establish the soundness and completeness of our appredcive the following
assumptions about the information-providing Web Services

e executable (in the initial state with all parameters grad)d
e terminable (with finite computation)
e repeatable (with same result for the same call during thenatg process)

We also assume that the information that is returned froferaifiit Web Services are
disjoint, i.e. no two services return the same informatidimese assumptions guar-
antee that gathered information can only be changed by timnaglanner simulates.
Also there is no way that this simulated change will be undmnanother information
gathering step as long as we execute each informationgingviWeb Service at most
once. Note that we do not need to run the same service twice Hie information is
guaranteed to be same each time due to repeatability agsampt

One other thing to note is that, different from the Golog aagh, we don't al-
low the information-providing services appear in the finnpsince our translation
methodology maps them to “book-keeping” operators. Howetves is just a style
difference as in the Golog approach a post-processing stepggested to find the
world-altering services for the execution of the resultplgn. In some situations, it
could still be valuable to include the information-providiservices in the plan so a
prudent action could verify if the information-providingrsices still return same in-
formation. This could be easily achieved in our system byngireg the encoding of
information-providing services to use standard operatattser than “book-keeping”
operators.

3.2.3 Implementation

To realize these ideas, we started with an implementatian@iVL-S to SHOP2 trans-
lator. This translator is a Java program that reads in aaadie of OWL-S process
definitions and outputs a SHOP2 domain. As shown in the tatinsl algorithm in
Section 3.2.1, when planning for any problem in this doma&HQP2 will actually call
the information-providing Web services to collect infotioa while maintaining the
ability of backtrack by merely simulating the effect of wadltering Web services.
The output of SHOP2 is a sequence of world-altering Web sesvealls that can be
subsequently executed.

We built a monitor which handles SHOP2's calls to externtdrimation-providing
Web Services during planning. We wrote a OWL-S Web Serviceswrr which
communicates with SOAP based Web Services described by O\Wiodhdings to
WSDL descriptions of those Web Services. Upon SHOP2's regties monitor will
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call this OWL-S Web Services executor to execute the corretipg Web Service.
Since the information-providing services are always defiag atomic processes, the
service is executed by invoking the WSDL service in the grangndThe monitor also
caches the responses of the information-providing Webices\to avoid invoking a
Web Service with same parameters more than once duringipanithis will save
the network communication times and improve planning efficy, and establishes
the repeatability condition required for proving SHOPZisisdness and completeness.
Also information can only be added into the current stat¢ fifais not been changed
by the planner. We assume that the cached information wilbeachanged by other
agents during planning and we will generalize this in ouafetwork.

We also built a SHOP2 to OWL-S plan converter, which will camvkee plan pro-
duced by SHOP2 to OWL-S format which can be directly executethb OWL-S
executor.

The system was tested on a domain which we created based soehario de-
scribed in the Scientific American article about the SentaWiteb [6]. This scenario
describes two people who are trying to do arrangements &r thother's medical
needs. They need to fill the prescription given by the docta pharmacy, make
appointments for two different treatments, and make an iappent with the doctor
for a follow-up meeting. The planning problem is to come ughve sequence of ap-
pointments that will fit in to everyone’s schedules, and &t same time, to satisfy
everybody'’s preferences, i.e. time and distance consdtain

We ran this domain on our system. In doing so:

e Our system communicated with real Web Services. Unforelpnathe current
Web Services available on the Web have only WSDL descriptigtisout any
semantic mark-up. Therefore, we created OWL-S mark-up feW&DL de-
scriptions of these online services. For some servicesstneaessary to create
even the WSDL description, e.g. for the CVS Online PharmaoyeSit was not
possible to use real services for some of the services didwause they were not
available as Web Services, e.g. a doctor’s agent providiegatient's prescrip-
tion, or it was infeasible to use a real Web Service for the@esrg. making an
appointment with a doctor each time the program is execltedthese services,
we implemented Web Services to simulate these functioeslit

o We built Web Services that allow access to the user’s pelgtioamation sources.
For example, it is necessary to learn the user’s schedule &ble to generate
a plan for the example task in our demo. It is possible to getittfiormation
from the sources available on the user's machine such asariinformation
Manager like Microsoft's Outlook. We have implemented d8cSOAP based
services that will retrieve this kind of information. WSDL&OWL-S descrip-
tions are also generated for these local services so that#imebe composed and
executed in the same way as other remotely available service

Finally, some information gathering services were impleted as direct Java
calls from SHOP2 over a Java/SHOP2 bridge. For example, we aaervice
which asks the user for acceptable distances to the treataster by popping
up a window on the user’s client to accept input. Changingdétta entered at
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this point will possibly yield a different plan to be gene@tllowing the planner
produce custom plans depending on personal preferences.

e We also encoded a description of how to compose Web Senacésd tasks de-
scribed in this example scenario. The description is gigean@WL-S composite
process that is composed of several other composite pexctsa are defined as
sequence, choice or unordered processes. This OWL-S destrgpnstitutes
the top level composite process described in Section 3rfiisatranslated into
a SHOP2 domain for planning. We encode most of the conséramneintioned
above as preconditions of Web Services. Right now, ther® istandard pro-
cess modeling language for specifying Web Service pretiondi Therefore,
we directly encode the Web Services preconditions in SHORA4t.

Figure 6 shows the various components of the systemd the results achieved
from a sample run of the example domain. The user starts vgiimple user interface
where an OWL-S service description for any desired task calodmed. When the
service description for the example domain is selectedyma fo enter the required
parameters for the task is presented to the user. This fogarierated based on the
ontologies used to describe the input parameters of théceerVhe Ul will also au-
tomatically fill out some of the fields such as the home addiress a user specified
knowledge base.

Once all the input parameters are provided SHOP?2 startdahaipg process using
the domain description obtained from the translation of @WL-S files. Note that
the service selected in the Ul is specified by an “abstrac test, that is, a set of
tasks which can be achieved in a variety of ways. In order xe@céete” this service
we must decompose these abstract tasks into actions @&rtiat we can actually
invoked. SHOP2 decomposes the top level task into smalteasks, and of course
there may be multiple different decompositions for any gitesk. For example, one
decomposition for the top level task yields a task to schedwb appointments on
the same day for the same person whereas another decompaesitiyield a task to
schedule two appointments on two different days for twoedéht drivers for more
information on domain characteristics). Another examfisti@ct task is to find the
availability of the prescribed medicine in an online phacynstore. A decomposition
for this task will include all the different Web Services fhifferent online stores. These
decompositions are statically given in the OWL-S servicecdpsons but one can
imagine a more dynamic setting where a Web Service repgsgqueried for possible
decompositions.

The SHOP2 planner will execute the information-providingbervices to gather
the necessary information for plan generation. e.g. getvh#able appointment times
from hospitals. Based on the collected information the pdaurwill, if possible, pro-
duce a plan that is a valid decomposition of the top level.tag3kis plan is simply a
sequence of atomic, directly executable Web Services sutdrder the medicine from

5This system was demonstrated in the Developer’s Day of thi WAVW conference in Budapest,
Hungary
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Figure 6: A snapshot of the running system and the intenatt&ween different com-
ponents of the system

the online pharmacy store”, “make the appointment in thehaisfor the treatment”,
and “update my personal calendar with the appointment inftser has the option to
view the details of the plan, reject the plan if desired, agblan with a new set of
constraints.

To test the effectiveness of our approach, we have run SHQRRweral instances
of the example problem. These problem instances varied éamsas where it was easy
to schedule satisfactory appointments to a case in whicheadoy treatment centers
had treatment time slots that were close together, so tiiarii Joan would both have
to drive Mom for treatments on separate days. In all of theases, SHOP2 was easily
able to find the best possible solution.

3.3 Information Gathering During Planning

There is a fundamental difference between exclusivelyrméiion-providing and pos-
sibly world-altering atomic processes. We typically wamekecute information-pro-
viding atomic processes at various points in the plannionggss, while we never want
to execute world-altering ones during planning. Contra@yat composition execu-
tion time, the primary interest is in the execution of woaldering processes. Indeed,
in the implementation 3.2.3 we do not include any informatwoviding processes in
compositions. Furthermore, currently we do not permit diadtering processes to be
information-providing, at least in the sense that they nmas® no outputs. This sim-
plification made the system fairly easy to implement withsuibstantial modification
of SHOP2.
However, mapping information-gathering processes toadled “book-keeping”
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operators is somewhat unaesthetic. In the translatiorriigpwe described, for each
atomic process that does not have any effects a book-keepgrator is created with
a precondition that contains the external call to executestirvice and an effect to
assert the output results as knowledge effects. The boegikg operator appears as a
subtask in the method definition that uses the result of #hatce. But, these operators
are treated specially by SHOP2 and they never appear in $héing plans.

This approach successfully gathers information duringmlag time but still lacks
the flexibility of a general-purpose solution because iesebn the fact that information-
providing services are hard-coded in the given domain mé&dion. However, in a more
realistic situation the domain would not include such digsions, i.e. the services that
needs to be executed to gather the information. It is reduirat planner itself figures
out when and how to gather the information.

In [26] we have relaxed this restriction such that the infation providing services
do not need to be explicitly specified in the initial desddpt An arbitrary query
mechanism can be used to select the appropriate Web Senviteedly when the
information is needed. We have developed the ENQUIRER systlich extends
SHOP?2 by gathering information during planning as needed.

Executing Web Services to get the information will typigatke longer time than
the planner would spend to generate plans. In some cased| itolvbe known a
priori which Web Service gives the necessary informatiod iaimay not be possible
at all to find those services. Furthermore, in some casestirfservice cannot be
executed because the service requires some passwordehstdhcannot provide or
the service is inaccessible due to some network failure. BRRER was designed to
tackle this problem can continue planning while the infaiioraproviding services are
still running.

3.4 Using Ontologies During Planning

OWL-S descriptions mainly use Semantic Web ontologies teigpmput and output
types. All existing versions of OWL-S have left the particuenguage for encoding
preconditions and effects unspecified. Consequently, tqgpimg algorithm in section
3.2.1 assumed that the expressions were written in SHORE&Iing. However, these
conditions should (and as the forthcoming OWL-S 1.1 versiwods) and will be also
be written in OWL. In order to evaluate these preconditiomiolas written in OWL,
planners must understand the semantics of OWL. Unfortunated typical logic for
expressing preconditions and effects in a planning systeite differently expressive
than RDF and OWL do. Therefore, planning against the sortead@ings of the world
state that is expected to exist on the Semantic Web will Herdifit than the planners
can handle.

| have worked on integration of a Semantic Web reasoner witB2 planner
in order to overcome this problem. The integration means d@lieof the planner’s
interaction with the state, i.e. querying and updating) taé done by the reasoner.
And most important of all the world state itself is actualgpresented as an OWL
knowledge base. Evaluation of preconditions is done byg¢heaner and any statement
entailed by the KB is assumed to be true in the state.
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Following sections explain the challenges of this intdgratWe do not discuss the
soundness and completeness of the integrated system betaivally follows from
the fact that SHOP2 generates sound and complete plansgpadats theorem proving
is sound and complete.

3.4.1 Operator Definitions

We want to change the classical planning operator defimitsuth that preconditions
and effects will be written in OWL. First we need to determineatvkind of OWL
statements can appear in operator preconditions andffiéat this purpose, we will
look at what kind of formalisms has been used in planning canity and how these
can be used in our context.

The original STRIPS [16] language allowed to use arbitragfl-fiormed formulas
in first-order logic for preconditions and effects. Howewafining a semantics for this
formulation was problematic [30]. Thus, in subsequent wogkearchers have placed
some restrictions on the nature of the planning operators.

Typically, preconditions and effects contain only firster literals. This means
that only SWRL atoms, which are in essence OWL facts (ABox &sses) with vari-
ables, can be used and we should exclude usage of arbitrary @Wins (TBox ax-
ioms) in operator definitions. This is also intuitive beaatise axioms in ontologies
are used to model the world as we know it. They represent theenaf the world,
e.g. student is always subclass of person, whereas theafamis individuals represent
our current knowledge that may change over time, e.g. a pemsyy graduate and no
longer be a student.

Planners normally allow negated atoms to appear in pretiondi Planners gen-
erally operate with a closed world assumption and treatatimgas failure. For ex-
ample, a registration service may have a condition that pelyple who are not al-
ready registered may use that service and express thisheitiolowing precondition:
not(?person rdf:type Registered). With NAF this would evaluate to true whenever
we cannot prove the person is registered. However, with emetl semantics failing
to prove that person is registered may mean that we don't khperson is registered
or not. To make sure that person is not registered, we wambagsr condition such
as (person rdf:itype Not Registered) where Not Registered is the complement of
Registered. As SWRL does not allow negated atoms appear in rule bodies|see
restrict the preconditions to contain only non-negated SVERIMS.

One restriction planners impose on operator preconditmmseffects is that only
the variables defined as parameters can be used. It is easy thag we cannot allow
arbitrary variables to appear in effects because all Iteree add to the state should
be ground. However, this restriction can be relaxed as dotieei Planning Domain
Description Language (PDDL) [18] and implemented in exgikesplanning systems
like SHOP. In patrticular, it is possible to use existenyialuantified variables in the
operator preconditions and universally quantified vadabh the effects. When the
variables in effects are universally quantified, we donitehthe problem of unground
variables because the variable will be bound to every instémthe state. The existen-
tially bound variables in the preconditions may also apjre#ne effects as long as it
is guaranteed that there will be only one substitution fat thariable. If there is more
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(:action make-appoi nt ment
:parameters (?p - Person ?d - Doctor ?t - Tine)
:precondition ..
.effect (and (?d hasAppoi ntment ?appt)
(?p hasAppoi nt ment ?appt)
(?appt rdf:type Appointnment)
(?appt appointnmentTime ?t)))

Figure 7: A simplified service description where per8pmakes an appointment with
doctor?d at time7¢.

than one substitution and planner chooses one of thesenegibitrarily during plan-
ning all the rest of the plan may depend on this choice. Simeretis no way of seeing
this arbitrary choice in the plan generated (only the véeisin the parameters can be
known) there is no guarantee the same binding will be chosenglthe execution of
plan.

The restriction about variables do not apply to method prditions. Since method
descriptions in SHOP2 does not have any effects it is passihise existentially quan-
tified variables regardless of how many bindings for thoseattes may exist. Choos-
ing a binding for this variable becomes a nondeterminigmbhing point for SHOP2.
This feature is highly used in practice along with some haigs about which bindings
are most likely to yield a plan [33].

One problem about limiting use of variables in effects ariaden the effect of
an action is creating a new object that did not exist befotds Pproblem emerges as
a difficulty in modeling in some planning domains (see thel&stdomain in 2002
International Planning Competition [17]) and becomes ulbiys when using OWL-
S. Since OWL (and RDF) is based on triples, n-ary predicatest bridescribed using
some (possibly anonymous) intermediary individuals. E€h@sonymous individuals,
or so called bnodes, actually represent existential viasaim the KB. Suppose the
service description shown in Figure 7 which makes an app@nt for a person with a
doctor at a given time. Normally, this effect could be repréed with a three variable
predicate such agppointment(?p, 7d, ?t). But using OWL requires us to define an
additional object, i.e?appt variable, that will specify the relation between theseghre
objects.

These additional instances can be seen as the output ofrthieeseé.e. the service
creates a new appointment instance as an effect of its éaeclBut modeling these
variables as outputs of the service would not be approfietause output of a service
is considered to be some data returned by the service afeutan of the service.
It is more proper to define a special category of variablesgtinguish these“purely
syntactic” variables from variables which are relevanthe planning problem. For
example, in our implementation we used a simple syntax baskdion where any
variable that starts with a character(as in Prolog don’t care variables) is treated as
an anonymous node rather than an existential variable.

Planners use axiomatic inference to infer conditions thatewnot in the world
state. This extension establishes a distinction betweerctasses of predicates used
in the domain: primitive and derived predicates. Deriveddirates can be deduced
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from other primary and secondary relations whereas priipaagticates are true only if
they explicitly exist in the state. Including derived preaties in the effects of operators
causes a problem as we will discuss in detail in Section 3.€@mmonly accepted
solution to this problem is to allow only primitive relatisrio appear in effects of
operators and restrict derived predicates to appear orgyeiconditions. This is quite
an inconvenient restriction for OWL and we will discuss thEsue in more detail in
section 3.4.3.

3.4.2 Precondition Evaluation

The applicability of a planning operatoin a stateS is defined to be the satisfiability of
its precondition inS. In other words, a planning operator is applicable if itscoredi-
tion is the logical consequence of the state, writte§ &s precond(o). Preconditions
are generally defined as conjunctions and since we have defiaepreconditions can
only contain OWL facts (or ABox assertions in DL terminologgssibly with vari-
ables, a precondition expression becomes equivalent tojaradive ABox query [24].
When the precondition expression does not contain any ‘asaprecondition eval-
uation becomes boolean query answering, i.e. answeringryes. When there are
existentially quantified variables then we also need to gegadhe variable bindings
that makes the conjunctive formula logical consequenche$tate.

One important point in precondition evaluation is the pneseof existentially
quantified variables. The satisfiability of the preconditaxztually depends on whether
we want to get the variable bindings for these existentigiatdes or not. This is
a direct consequence of open world reasoning. Considesitmigle example: Sup-
pose we have a simple queryp(hasChild?c). If we don’t want to get the variable
bindings for?c then a KB containing only these assertidfarent = 3hasChildT,
John:Parent} would satisfy the query with the binding’p «— John} because we
know that John has a child even though we don’t know who thidd ¢ On the other
hand, when we want to bind the variable ?c to an existing iddal then the query
would fail for the very same KB. The same behavior would besolesd when there are
anonymous individuals, individuals with no URI referenicethe KB.

Since the precondition evaluation highly depends on therpmétation of these ex-
istentially quantified variables we need to define a clearaseics as to which inter-
pretation will be preferred. OWL query language proposa] Elisjgests to label the
variables asnust-bingd may-bind anddont-bindto control this behavior. This is also
consistent with the ABox query answering schemes where samigbles are labeled
asdistinguishedneaning they should be bound to a value.

Labeling the existential variables in preconditionslast-bindvariables cannot be
done arbitrarily. A variable isctiveif it is used in another context, e.g. an operator
may use it in the effects and a method may use it as an input aitask. Anactive
variable should always be bound to an actual individual suemthat we always have
ground termslnactivevariables can be labeled dent-bindor must-bindaccording to
the service writer. It is preferable that an existentialalale that is not labeled either
way be interpreted asdont-bindvariable since this way we can benefit from the open
world semantics of OWL to continue planning in the face of impteteness in the KB.

As we have mentioned in section 2.3.1, current state of th@amning systems use
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(:action buy-book
:parameters (?b - Book ?cc - CreditCard)
:precondition (and (?b hasCost ?price)
(?cc hasAvailableLinmt ?linmt)
(?price < ?linit))
ceffect ...)

Figure 8: A simple book buying service saying that the atdéldimit on the credit
card should be higher than the price of the book

more expressive constructs in preconditions such as disfuns and quantified expres-
sions. Evaluating a disjunctive would be equivalent to arévg a disjunctive query.

Note that answering disjunctive queries cannot simply beedry answering each dis-
junct separately because there are cases when the quérisitstbgical consequence
of the KB but none of its disjuncts are [24].

Universally quantified expressions in preconditions aleates a problem with the
open world semantics. Consider the following simple preéon {(V ?z)(P hasChild
?z)(?x:Male)} where it says that all the children @ should be male. The way
planners evaluate quantified expressions is with the clesettl assumption where
all the explicit children in the KB are found and tested witie tcondition. Then if
we consider the following KB ParentWithNoSon=VhasChildFemale, Female =
- Male, John:(>1hasChild ParentWithNoSon)} this closed world interpretation
of the query would succeed although we know for sure that balsra daughter (again
we just don’t know who she is).

In most real world problems preconditions involve some kifichumerical com-
putation (comparison). It is foreseeable that a lot of sEwiwill use expressions such
as the built-in primitives of SWRL to express these kind ofcpralitions. Consider
the precondition of the book buying service shown in Figue2 We can evaluate
this precondition at two steps. In the first step, we do thengue our KB as de-
scribed above and bind the variablgsice and?limit to actual values. In the second
step, we compare these two values and verify the condititaishdVith this approach
there are cases again where we can get incomplete resultsidéo another condi-
tion where{(?p hasAge?age), (?age > 18)} and a KB{PersonOlderThand0 =
JhasAgeM oreThand0, John:PersonOlderThand40} where MoreThan40 is de-
fined as an XML Schema type with the restriction on minValuzefa In our KB, we
don't have explicit information about John's age but we kntbet{?p «— John} sat-
isfies the condition (supposirigige is adon't-bind variable). But the expressivity of
OWL cannot handle more complex conditions, like the one iuféddg.4.2, so it may
be preferable to have another module that processes thesssions.

3.4.3 Applying Effects

The effects of an operator are applied to the current stas@rtalate the action. Ap-
plying an operatop to a states transforms it into a new state denoted hy.,, =

apply(o, s). After the application of effects, the atoms in the posig¥fects of the op-
erator should be entailed by the state, igply(o, s) = ef fectst{o}, and the atoms
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in the negative effects should not be entaileehly (o, s) = ef fects™{o}.

Applying the positive effects of an operator means adding assertions to our KB
which may cause inconsistencies. For example, a serviceaahagrtise a description
where the effect of the service is given 8sdrson president/ S A) saying that you
will be the president of USA after running that service. Hweer if the current KB
contains the information about the current president,there already exists another
distinct individual who has the president property withuelJSA and the president
property is defined as InverseFunctionalProperty, theimngdtiis new assertion will
cause an inconsistency in the KB. When there is an inconsigiarthe KB any con-
clusion can be deduced so we cannot guarantee the correctitbe further results.

Most planners assume that modeling the planning operatorsatly is the respon-
sibility of the person who supplies the domain. The sounslaaesl completeness of the
planners are proven with respect to correct domain degmmpte.g. a blocks world
domain where an operator causes a block to be in two diff@lanes at the same time
will cause the planner generate unsound plans. Since weeatiag with Web Service
descriptions that come from various different sources wmoaguarantee the correct-
ness of these descriptions. For this reason, a plannerdshejatt the application of an
operator when its effects cause an inconsistency in the KB.

Negative effects cannot cause an inconsistency in the KBusecof the mono-
tonic nature of our reasoning. Removing assertions fronmaistent KB cannot cause
it to become inconsistent. However, we have the problem ofd€Bving the same
assertion from other facts even after we remove that asadriim the KB. For exam-
ple, an unregister service may have a negative effect widghires the deletion the
fact (?person memberClub). But, if the KB includes another facC{ub hasMember
?person) such that hasMember is the inverse property of member treewi still
derive the same conclusion as before. This is exactly whynite systems make the
distinctions between primitive and derived predicates @mdot allow derived predi-
cates in effects (see section 3.4.1).

Unfortunately, restricting the usage of derived predisatesffects makes it nearly
impossible to model any action in OWL. The following table snarize the conditions
that causes an OWL propertyto be a derived predicate:

When p is a derived predicate | In DL syntax | How it is derived
p has a subproperty qCp q(z,y) — p(z,y)
p has an equivalent property | p=g¢q q(z,y) — p(z,y)
p has an inverse property p=q~ q(z,y) — p(y, )
p is a symmetric property p=p~ p(z,y) — p(y, x)
p is a transitive property Transitivep) | p(z,y) A p(y,z) — p(zx, 2)

A type assertion in OWL such as (df:type C) is equivalent to a single variable
predicate in the fornC(x). This type assertion would be a derived predicate if the
class for a clas€’ meets any of the following conditions:
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When C'is a derived predicate In DL syntax | How it is derived
C' has a subclass DCC D(z) — C(x)

C has an equivalent class C=D D(z) — C(x)

C is defined to be the range of a property rangep, C) p(y,x) — C(y)
C'is defined to be the domain of a propeftydomaing, C) | p(z,y) — C(z)

Note that being a subclass of some restriction could alseezduto be a derived
predicate, e.g.D C Vp.C A D(z) A p(z,y) — C(x). Itis even hard to enumerate
all these case because the combination of cardinalityicisirs, nominals and general
inclusion axioms may cause class membership to be derivaddther facts.

If we allow derived predicates to appear in negative effdod® we need a way to
make sure that statement will not be inferred after the effeapplied to the world
state. One possibility is to make the reasoner delete afielaged statements from the
KB until the statement in question is not entailed by the Ki&e@ the expressivity of
OWL DL this is quite a hard task. Furthermore, there is no deit@stic way to control
this behavior. For example, in the KB: A, 2:B} if we want to deleter: A 1 B then
we can either delete: A, x:B or both to have the same effect. Another possibility is
to make the service writer include all the enumerationsgopinedicates that the truth
value depends on, in the negative effect list. This workd feelsimple domains but
gets quite hard quickly when the ontologies and definitiegmime complex. Itis even
harder in the distributed setting of the Web where a serviitemmay enumerate all the
possibilities in the description to the best of his/her klemlge but the client who uses
that description may have access to another ontology thgghents those definitions
with some new descriptions with dependencies not mentiontte negative effects.

3.5 Reasoning with Semantic Web Ontologies

Ontologies play an important role in describing Web Semicénterpreting the in-
formation in these ontologies becomes a crucial task foerstdnding Web Service
capabilities and their behavior.

The performance of the planning system is considerablgt&ftewhen the precon-
dition evaluation of operators and methods are done by éneproving. During a plan
generation, planner will do hundreds of precondition extdins so the reasoner needs
to handle these queries very fast to be at all workable.

A significant majority of the preconditions consist of camjtive expressions so
we will focus on how to optimize conjunctive queries. As weddiscussed in section
3.4.2, operator preconditions (generally) do not contaiables whereas method pre-
conditions have many existentially quantified variabldsthé precondition does not
contain any variables we just need a yes/no answer, whenegsréconditions with
must-bindvariables than we have to generate answer sets for thesébbeai The ex-
isting conjunctive ABox query answering algorithms [24] 2&duce the problem of
query answering to one or more KB satisfiability problems.

The main idea is to consider a conjunctive query as a diregtagh where the
nodes are either variables or individual names (constamtsaddition, concept and
role terms provide labels for nodes and edges respectiy.example, the query
{(?z rdf:type Start), (?z path?y), (?z path?z)} corresponds to a graph with three
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nodes and two edges. When the query consists of one conneef@dtgen the query
can be answered with one satisfiability test.

Answering queries with only one term, i.e. the query graphri@edges, is equiv-
alent to an entailment check. [23]. For example, the querydf:type Rover) is
entailed by the KBS if and only if {S L (A rdf:itype complementORover))} is not
consistent. When the query contains multiple terms, i.e. quinery graph has more
than one edge, then the technique of “rolling up” is appliedransform the query
into an equivalent query with a single concept term. For ganthe following query
that has no variable§(C rdf:itype Computer), (C manufacturedBy\), (C hasCPU
CPU), (CPU cpuTypeCentrino)} can be transformed into the following concept
term (C:3.manufacturedBy{ L} 1 3hasCPU. {CPU} M JcpuType{Centrino})).
The query can now be answered by adding the negation of thiseps to individual
A and then check if the KB is consistent. If the query contaimdtiple disconnected
components, each connected subcomponent can be rolled apetndividual and
tested separately.

Rolling up technique is quite effective when we don’t neeel ¥ariable bindings
because one query that contains multiple terms can be aedwith one satisfiability
check rather than multiple entailment tests. However, tihitinique is not efficient
when we also want the variable bindings. The variable bigslare returned by replac-
ing each variable with one individual, rolling up the quendanswering the boolean
query. One must try every possible combination of bindirggget all the answers.
[25] proposes an optimization technique that attemptsdace the number of candi-
date individuals. The idea is to roll-up the query into aidiished variable prior to
substitute it with any individual name. The concept is userketrieve the list of indi-
vidual names corresponding to instances of the conceptréfthieved individuals are
used as the candidates for the distinguished variable.

This technique reduces the number of satisfiability teststilitries unnecessary
tests. Consider the previous query with all the individuahes are replaced with vari-
ables{(?c rdf:type Computer), (?c manufacturedBy'm), (?c hasCPU?cpu), (?cpu
cpuTypet)} where we want to get all the computers, their manufactutieesCPU they
have and the type of these CPUs. Suppose we have 10 compuatensactured by 10
different manufacturers and each computer has only one @R fotal of 10 distinct
CPU instances) and three types of CPUs, Pentium3, Pentimech4£antrino. In the
original setting, we need to try each individual. Since weeha3 individuals, assum-
ing nothing else exists in the world, we try every combinatd bindings where we do
a total of33* ~ 1186000 consistency tests. The optimization described above would
help us to reduce the number of candidates so we wouldn’dtnsé a manufacturer
as a candidate computer. Therefore, we have 10 differesilplises for variable<c,
?m, Tcpu and 3 candidates fdtt. The algorithm still tries all possible combination of
these bindings yield a total af) x 10 x 10 x 3 = 3000 tests.

The problem with this approach stems from not having theitgkit see why a
binding fails. For example, if comput&r'1 is manufactured by//1 then a binding
with C1 and M2 will fail no matter what candidates we try for the other vatés.
Unfortunately, it is not possible to learn the dependenbisveen variable bindings
using the rolling up technique. For this purpose, we pro@osew technique where
each individual term in the query is tested separately asngailment test. For the

37



given query example, given a candidate binding for a commpugewould try the 10
different manufacturers and find the one binding that is diggchl consequence of the
KB. Then we would try 10 different CPU bindings, out of whichlp one succeeds.
Then we try the remaining 3 candidates for the CPU types.dmiid, we end up trying
only a total of10 x (10 4 10 + 3) = 230 consistency tests.

Computing the likely candidates itself is a costly opematitn the example query
we have four distinguished variables so we need to perfoum iftstance retrieval
operations. Generally, reasoners realize the whole KB lgaxting and this retrieval
operations become cheap. Unfortunately, in our settingnaais constantly changing
the current state possibly invalidating the cached resitlis much preferable to use
the optimized instance retrieval algorithms designed yoadnically changing ABoxes
[22]. The motivation of this approach is to eliminate all bé&tirrelevant individuals
with only one consistency check. Obvious instances of tiieept need not be tested
at all and the rest of candidates can be eliminated with ayppartioning method. The
idea for retrieving the instances of concépis to add{x:~C'} assertion for every:
that cannot be eliminated by inspection. If the new KB is ¢stesit we conclude that
no more instances @' exist in the remaining set, otherwise KB is partitioned t&f ha
and this procedure is continued at each partition. Thusgat step binary partitioning
may eliminate half of the candidates using a single test.

Computing the candidates by rolling up the whole query gieesmany possibil-
ities. If we compute the candidates based on each statemérthe bindings done at
previous steps then we will find a smaller number of cand&ltitat are more likely to
succeed at later steps. When we concentrate on the stateshdmjuery we can also
make use of the existing assertions in the KB more efficieirtlynost DLs looking at
the existing role assertions is enough to determine if twlividuals are related to each
other with a given role. However, in the presence of nomittdtsis not the case any
more and we may get incomplete results with this approach.ifBue combine this
structural inspection with optimized retrieval we can ganhplete and fast results. For
example, if the statement in the query s p o) we can first examine the existing role
assertions to get the obvious answers. Then we can rethievagtance of the concept
dp.{o} to get the remaining answers. Note that, if all the individuae related with
explicit assertions then only one consistency check wikbeugh to eliminate all the
other possibilities.

When combined with an iterative query answering mechanissnajbproach may
help to avoid a lot of consistency tests. In a planning probi@ost of the time finding
the first plan is enough (e.g. if we are not trying to optimizeoat function). In this
case, we can first try the obvious candidates and delay ttsstency test as much as
possible. If the planner cannot find a plan with the initialdings then it would keep
asking the reasoner for more bindings which in the end woedgliire us to make an
expensive consistency test. But there is a good chance thlahacan be found with
these trivial bindings.
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4 Future Directions

This section describes the challenges that | have iden&iedresult of my preliminary
work, and discuss how | intend to address those challengey &sture work.

4.1 Planning with Web Service Descriptions

My preliminary work for using planning for Web Service consfion was based on the
assumption that Web Services are described in a fairly mchessentially planning-
oriented description language such as OWL-S. The processdoggtof OWL-S is
designed to describe Web Services similar to planning opexa\Web Services have
explicit precondition and effect descriptions and comfgoservices may be modeled
similar to compound HTN tasks.

Describing preconditions and effects of Web Services ugirb Ontologies intro-
duces some challenges. Handling the expressivity of Webl@gies during planning
is non trivial. For example, as discussed in section 3.4s®)guderived predicates
in effect descriptions is prohibited in planning for the sak soundness. However,
the expressivity of OWL causes almost all practical Web Serdiescriptions violate
this restriction. It is even harder to ensure this condittonthe Web where anyone
can extend an existing ontology causing a Web Service gtgeriviolate the restric-
tion. | will investigate if and how these expressive dedwifs can be handled in
planning. It might be possible to extend planner’s infenegcapabilities to handle
this expressivity but it might also be required to find sonterahtive ways of writing
these descriptions.

It is also important to note that not all Web Services are desd in a planning-
oriented language. Most of the Web Service descriptiontsatteapublicly available on
the Internet do not have explicit precondition/effect sfestion. These services are
merely described in terms of their functional signature jnput and output types. In
general, there is a tendency to describe Web Services usngfrtucture of messages
and the message exchange patterns between Web ServicetheAocommonly used
method is to use taxonomies, such as UNSPCS or NAICS, toidegbe functional-
ity of a Web Service. Although such descriptions are valeablrrently they cannot
be directly used in planning. | will conduct an in-depth as& of the Web Service
description characteristics. As a result of this analysaén to identify the features
that are critical for the automation of the composition taskl investigate how these
features can be used.

4.2 Planning with Distributed Descriptions

In classical planning, the planner is typically given coatelinformation about the
planning domain. The set of all the operators (and methddg)dan be used to solve
the problem is given to the planner as the input of the planpioblem. However,
Web Service descriptions will be distributed over the Wedsgibly stored in special-
ized Web Service repositories that use technologies lik®UB planner will need to
communicate with these remote Web Service registries toréleant Web Services
during the planning process.
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When the domain knowledge is distributed over multiple sesir¢he most im-
portant issue to solve is how to integrate Web Services tieas@applied by different
sources that use possibly distinct vocabularies (ontek)giln HTN planning, when
the planner is searching for the possible decompositiosgien task, the methods
in the domain knowledge are matched based on the name of andsks functional
signature, i.e. the number of the parameters and their typlss simple matching
criteria will obviously fail in a distributed and decenizdd environment as separate
developers cannot be expected to use the same names foiteiBervice descrip-
tions.

When the domain knowledge is distributed over multiple sesirit is required to
have more expressive task descriptions in order to matdis tshand with remote
Web Service descriptions. | will investigate how to deserdmmposite services so
matching and selection can be done effectively. | will exaartivo different paradigms
for describing composite Web Services:

e Complete Web Service Description: Every step of the contedskeb Service
is bound to a specific Web Service name. The decompositioheo$ervice is
expressed as a collection of existing services combineadan&ol construct.

e Partial Web Service Description: Some steps of the compddib Service is
not described in terms of concrete actions. Instead theges $tave abstract
definitions that outline the general features of the sertfiaécan be used at this
step.

Partial descriptionsare very useful when the exact Web Service to accomplistkagas
not known at design time. This type of description maximtbespossibility of sharing
and reusing Web Service. Therefore, many Web Service giscrilanguages allow
constructs to model sugbartial descriptions e.g. abstract processes in BPEL4AWS
and the SimpleProcess construct in OWL-S. On the other haisdeasier to generate
complete descriptionas shown in section 3.1, tools can facilitate this process.

I will investigate how to utilize Web Ontologies to exprebese two different types
of descriptions so that effective task selection and matcban be achieved. My in-
tuition is to exploit the analogy betwegrartial descriptions(similarly complete de-
scriptiong and classes (instances) in ontologies. Task selectiothesrbe formulated
as an ordinary reasoning problem, e.g. the instance ratqmeblem. The challenge
is to find the right level of expressivity for the Web Serviasdriptions so that effec-
tive matching can be done without the loss of correctness.aMyis to investigate
the trade-off between the generality of descriptions amdsticcess of the selection.
For example, having a geneBbokSellingServicerould help us to find a lot of possi-
ble matches but most of these matches could be useless beatifiarent instances of
this category may have very different constraints, e.gepiieg different credit cards,
different rules about shipping, etc.

4.3 Planning with Incomplete Information

In the Web context it is not realistic to assume that a plamvikthave the complete
information about the world. The information required tdveca problem needs to be
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acquired from external sources. Considering that the aiafuinformation available
on the Web is huge, the planner should gather the informasareeded by the planning
process. This means that information-gathering shouldteeléaved with the planning
process.

My preliminary work shows some results on how to interledve information
gathering process with planning. However, there are vanestrictions in the prelim-
inary work that need to be addressed. For example, it wasreskthat information-
providing services cannot have any world-altering effedtghout this assumption, the
correctness of the plans generated cannot be guaranteedisénchanges done by the
information-providing service may invalidate some of tkeps the planner has already
committed to. For example, paying a fee to acquire somerimdition may invalidate
the previous steps that committed the money to other taskaelkr, this restriction
is not necessary when the effects of the information-piingidervices do not interact
with the plan being sought for. If we consider the previousnegle, it would be safe to
execute the fee-based service and change the state of tltkiftbe original planning
problem has nothing to do with money or there is a reasonalilgéi that is enough
for both tasks. | will investigate the ways to relax the riesitng assumptions and iden-
tify the necessary conditions where world altering infotima providing services can
safely be executed.

Another important missing piece of the preliminary work @ahto find the Web
Services which will provide the requested information. &eample, in the case of the
appointment scheduling example, it is required to find tteélable time slots for the
hospital. In the preliminary work, this knowledge was asedrto somehow exist in
the domain description. In the real world, Web Services wlaescriptions match the
requested query need to be discovered and executed. Agtitiatlight be necessary
to execute a set of Web Services to answer a query. For examplaaformation
providing service may first require you to sign up for the s@rand supply a username
and password to ask a question. Or the query might only beerersiby combining
information from various different sources. This inforinatgathering problem itself
may be posed as another planning problem where the goaléntrate a plan that will
yield the required information upon execution. Howeveis theans that the objective
will most typically be a goal formula, which is the case iniastbased planning, rather
than a task, which is the case in HTN planning. This indicéttes combining these
two methodologies might be fruitful to solve this problenwill do further analysis to
investigate the applicability of this approach in the Webvi&es domain.

The information available to the planner is not only the hssieturned from the
Web Services but also the inferences dictated by the Webl@ys. These two kinds
of information should be combined together in order to hageraplete understanding
of the state. | will investigate how sound and complete reagpcan be done over a
set of ontologies and information supplied by Web Servicef there is one single
knowledge base.

4.4 Other Issues

In the previous sections, | have outlined the main focus ofresearch. However,
there are various other issues that need to be considerkd @ohtext of Web Service
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composition problem. The following paragraphs briefly dssthese issues.

Interaction with Multiple Agents  As stated earlier, most of the time the planner will
not have necessary knowledge or enough computationalnesoto solve the problem
at hand. In my future work, | suggest gathering informatianf remote Web sources
to overcome this problem. In this view, remote Web sourcesrardeled as reactive
agents that return answers for given queries. Howeveralitygthese agents may have
more sophisticated capabilities that can be exploitednduttie composition process.
For example, the remote Web Service registry itself may hheeability to create
compositions if enough information about the problem isvjgted. The discovery
process can then be done in a more conversational style. tNaténteraction with
humans can also be modeled this way, e.g. a human user caprbsamted as another
remote agent that the planner can communicate with.

My interest on this subject is on the cooperative aspecthefriulti-agent inter-
action where all the agents are trying to cooperate in sonet {gith each other to
accomplish a set of shared or overlapping goals. The leveboperation between
agents may vary depending on the situation. For exampleygewho is using the
planner to find a composition would be a fully-cooperativergggiving any kind of
help to the planning agent. On the other hand, in a B2B apfitaparties would be
less cooperative in the sense that not every participahbeitvilling to share all the
information he/she has. In this scenario, all the partieslied share an overlapping
goal, e.g. purchase of a product, but each party has diffetgactive functions, e.qg.
seller trying to maximize the profit where the buyer is trytogninimize the cost.

Generating Complex Workflows In classical planning, the result of the planning
process is typically a totally (or partially) ordered seopkrators. In the presence of
nondeterminism, the resulting plan may involve conditldmanches that contain sens-
ing actions. Generating such conditional plans is crucial¥eb Service composition
because the information used to generate a composition ersywell change at exe-
cution time. It is also possible that a Web Service in the fdéla during execution due
to an exception. The plan generated needs to be robust enogimdle these cases.
For example, undoing the effects of the previous steps gildremay be required, e.g.
a payment order is canceled if the Web Service that arrargesent has failed.

Composition Analysis and Optimization For any given task, it is probable to find
compositions with different components or even compasdtiwith different structure
that would achieve the objective. It is not satisfactory tafonly the first solution to
the composition problem. It is necessary to find all the “pgang” compositions and
sort these solutions based on an optimality criteria. Ofs®uthis requires the use of
some kind of metrics to assign a utility value to a compositibis not easy to come up
with such metrics since there are many different dimendiloaisneed to be considered
including the reliability, cost and duration of componeintthe composition.
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