AYAC: A Probabilistic Complex Event
Processor for Incomplete Streams*

Mohammad Toossi
toossi@umd. edu

University of Maryland, College Park

Abstract. In this paper, we present the design of AYAC, a data stream
processor designed to efficiently support complex event queries defined
over an unreliable stream of simple events. Each complex event is speci-
fied using a SQL-style query over a sequence of events in a fixed order.
Negative events, events that should not occur in the stream, are also sup-
ported. A probability is assigned to losing each event in the input stream.
AYAC can detect complex events with missing components. The prob-
ability that the complex event has actually happened is estimated and
reported using a model based on the past history of the input stream. Us-
ing several optimizations allows our system to evaluate each input event
in time linear in total number of query states, and consume memory
linear in query time window size.

1 Introduction

As receptor devices such as RFID readers and various wireless sensors become
cheaper, a quickly growing number of businesses deploy large networks of these
devices. Applications then need to execute complex business logic on top of data
streams produces by those networks[11]. The business logic is usually defined in
terms of complex event patterns detected in the data stream.

The main component of such applications is usually a system that receives
the data stream as input and outputs the triggered complex event patterns.
This component is called a Complex Event Processor (CEP) or an Event Stream
Processor (ESP).

Typically, input stream is assumed to consist of a uniform sequence of Simple
Events received in real time as events are sensed by receptor devices. Each
simple event at least includes a timestamp and the identifier of the receptor.
Additionally, a set of queries or Complex Events is registered with the CEP.

Depending on the type of events and application, the data stream through-
put, the number of queries, and the complexity of the query can vary signifi-
cantly. For example, in a publisher/subscriber system, new simple events arrive
at a slow rate, and the queries are relatively trivial, but the number of queries
is very high.

* Submitted as scholarly paper for M.Sc. degree in Computer Science; Spring 2007

In this paper we focus on networks of RFID receptors. In such networks, a
relatively high-throughput data stream is generated, and queries have moderate
complexity. However, the total number of queries is usually limited. Efficient
time and memory management are some of the primary concerns of a real-time
RFID stream processor.

One aspect of RFID networks mostly ignored by previous work is the inaccu-
racy of RFID sensors. A sensor may read an RFID tag partially or incorrectly,
or not read it at all. A traditional CEP completely misses a complex event even
if one of its simple event components is not read accurately.

This is our motivation for designing AYAC, a probabilistic event processor for
inaccurate data streams. AYAC attempts to efficiently estimate the probability
that each complex event is triggered at any given time. If this probability is above
a user-defined threshold, the complex event is output along with its estimated
probability.

Next subsection provides a quick survey of related previous work. In Section
2, we define simple and complex events more precisely and outline the features
of our complex event specification language. Section 3, explains how event prob-
abilities are computed for a given input stream using our probabilistic model.
Then, we illustrate the basic concepts behind our NFA-based event detection
algorithms in Section 4. Next, Section 5 summarizes some of the critical op-
timizations that make our algorithms practical for high-throughput streams.
Conclusion and future work are discussed in Section 6.

1.1 Related Work

There has been extensive research on sequence query processing and complex
event processing (CEP), both on the definition of the query languages and on
the efficient implementation of these languages. This is because this work applies
to a very wide range of applications from RSS feeds to database maintenance
tasks to intrusion detection. On the other hand, noisy data streams are only a
problem in a few cases. This fact along with the novelty of the area has limited
the amount of work done on probabilistic version of sequence query processing.

In publish/subscribe (pub/sub) systems[1][3][7], there are generally many
subscribers, each interested in a subset of the published events specified by a
predicate-based filter. The goal here is to efficiently match each new event against
a high number of predicates. Each predicate, however, is stateless and operates
on one event at a time.

A recently proposed more expressive pub/sub system[6] suggests stateful sub-
scriptions, effectively allowing predicates spanning multiple events. However, the
goal is still efficiently handling many subscribers. This makes the NFA-based
implementation impractical for some of the scenarios we are dealing with. Ad-
ditionally, queries requiring absence of events are not well supported.

The research on active databases [15][5][4][8] is also closely related to CEP
over streams. An active database (as opposed to a passive one) allows the users to
define persistent rules. These rules consist of a condition over in-database events
and an action that gets triggered as soon as the condition is satisfied. Conditions

are written based on simple database events such as inserts or complex events
specified using event processing algebras over event histories.

COMPOSE from the Ode system[8] and the SNOOP[4] composite event lan-
guage are examples of two such active database query processing languages. They
define operators such as as conjunction, disjunction, negation and sequence on
the event history. There is a high number of proposed event algebras with various
inconsistencies and peculiarities.

Zimmer[15] analyzes the foundation of complex events and provides a meta-
model for any event algebra, decomposing them along multiple independent di-
mensions. The main issue with active database query languages is that they do
not support sliding time windows, and they generally do not allow queries to
include constraints that compare values of simple events being matched to each
other.

The work on sequence databases is also related. Unlike traditional databases
that store unordered tuples, a sequential database is aware of the data ordering
and is capable of performing sequence oriented queries more efficiently. Queries
are generally specified by extensions of the SQL language. AQuery[9], SQL-
TS[12], and SEQ[13] are three such systems. Since queries are still processed
similar to traditional databases (e.g. joining relations), they are too slow for our
application. Also, support for non-occurrence queries is very limited.

SASE[14] defines a stream CEP language by further enhancing these query
languages. A native sequence operator and allowing for more complex non-
occurrence constraints are some of its main features. The NFA-based imple-
mentation includes a number of optimizations to achieve acceptable speed and
memory usage. As a result, SASE seems like a practical system to be used over
high-throughput data streams. AYAC is most closely related to SASE. Our query
language and processing methods are derived from SASE, but have been heavily
enhanced and adjusted to the probabilistic problem at hand.

Barga et al.[2] attempt to unify all the different query processing languages
and pub/sub systems. They argue that these systems differ only in the tar-
get workload, language features and consistency requirements. Moreover, they
propose CEDR and formally define a spectrum of consistency levels. This ef-
fort seems to be currently concentrated more on theoretical aspects of this new
language and efficient implementation has yet to be worked on.

The vast majority of previous work on sequence query processing deals with
precise data streams. Rizvi[10] introduces the concept of probabilistic complex
event processing (PCEP) after providing a comprehensive survey of the area.
He uses a state tracking module which interacts with CEP and stores the cur-
rent probabilities for various events in the system. Incoming simple events also
have probability values associated with them. PCEP is introduced as a general
framework without any concrete practical details.

In case of RFID events, it is not acceptable to assume we have a probability
or confidence value associated with each simple event. Generally, enough redun-
dancy is available in RFID information to determine whether a particular RFID

read is bogus or not, and to either correct or discard the given read accordingly
resulting in an incomplete but accurate data stream.

2 Simple and Complex Events

In this section we define our simple events more precisely, and describe the
structure of our complex events as well as a language for specifying them.

2.1 Simple Events

AYAC receives a real-time stream of simple events as input. A simple event is
generated whenever an RFID tag is detected by an RFID reader. The simple
event contains basic information about the read such as timestamp, reader ID,
and the tag contents. For simplicity, we assume that the simple event is a k-
tuple that also contains all the extra information relevant to this tag that may
be used in a query. In practice, this information is typically obtained by querying
a database using RFID tag contents as the key.

For example, in a library, an RFID tag attached to a book may be scanned
and then searched in a database to find the book title and category. However,
we assume that simple events received by AYAC already contain book title and
category which may be referenced in queries.

Furthermore, we assume that this uniform stream of k-tuples is delivered to
AYAC in the order of increasing timestamps and that it is error free. That is, an
external buffering mechanism is used to hold tuples that arrive out of order, and
all partial or noisy reads are completely dropped from the stream (e.g. using a
check-sum).

2.2 Complex Events

We define a complex event to be a particular set of simple events occurring in
a given order within a time window. A complex event can also specify certain
simple events that should not appear in the sequence at given positions. AYAC
processes the incoming stream of simple event tuples and outputs the complex
events that could have been triggered by these tuples with a probability higher
than a threshold set by the complex event. The output includes contents of all
tuples triggering the event along with the probability of the event.

We use shop lifting detection in a retail store[11][14] as our example: An RFID
tag is attached to every item in the store. RFID receptor A is installed above
the shelves, receptor B is installed above the checkout counter, and receptor C
is installed at the exit. A shop lifting is detected if a tag ID is read at A and C
without being read at B in between.

Complex events in AYAC are specified in a format based on the SASE[14]
event language with a few enhancements and adjustments to accommodate our
more general assumptions. Instead of the formal definition, we illustrate the main
features of our event language by defining the shoplifting event and looking at
each component here:

SEQUENCE (x,!'y,z)

WHERE (x.receptor[’A’] = ’A’) AND
(y.receptor[’B’] = ’B’) AND
(z.receptor[’C’] = ’C’) AND
(x.id[y.id] = y.id[x.id]) AND
(y.id[z.id] = z.id[y.id])

WITHIN 12 hours

THRESHOLD 0.80

SEQUENCE Clause All complex events fix the ordering of underlying simple
events in time. The SEQUENCE clause simply assigns a name to each simple event
so that they can be referenced in the WHERE clause.

It also specifies the event type: A Positive Component, which appears without
a leading “!” in the clause, is a simple event that should exist in the sequence.
On the other hand, a Negative Component, specified with “!”, should not appear
anywhere in the stream between the preceding and succeeding positive compo-
nents in the sequence.

We note that “ANY” operator defined by the SASE event language is no
longer necessary due to our generalized format. Since simple events are untyped,
an entire “ANY” clause can be replaced with a single component here.

WHERE Clause Similar to an SQL query, this clause defines predicates on
attributes of the positive and negative components labeled in the SEQUENCE
clause. However, since some of the events may be missing when the query is
being evaluated, a default value is specified for each attribute in brackets. For
example, if AYAC believes that event x has occurred but missed by the sensor,
the fourth predicate still evaluates to true because it will be translated to y.id
= y.id.

The WHERE clause is always converted to disjunctive normal form (DNF). We
define a “predicate” as a conjunctive clause in the DNF. We refer to a predicate
as a Trivial Predicate if it only depends on the values of a single component. In
our example, the first three predicates are trivial while the last two are not.

As we will see in the next sections, trivial predicates play a critical role
in event detection. As a result, we require that, for each sequence component,
at least one trivial predicate is present. A particularly common class of trivial
predicates are those that fix the RFID reader of a component.

WITHIN Clause The WITHIN clause specifies a time window length. The entire
event sequence should happen within the time window. This allows us to discard
any events older than time window length. Additionally, a negative component
at the very beginning or very end of a sequence only becomes meaningful when
a time window is present.

THRESHOLD Clause This is the minimum probability required for the event
to be reported. AYAC drops partially and fully matching events with lower prob-
ability. Setting this threshold to a very low value can degrade AYAC’s perfor-
mance even if not many matches are produced because of the internal optimiza-
tions performed using the threshold. Usually, threshold should be higher than
€2. (e is the error rate of the RFID reader as defined in Section 3.)

3 Probabilistic Model

The simple event stream received by AYAC is incomplete as a result of RFID
tags being missed by RFID readers. A model for estimating the probability that
a given event occurred but was lost is needed. We estimate these probabilities by
gathering statistical information from previously observed events, and by making
some basic probabilistic assumptions.

Our first assumption is roughly the Markov property: The timing of compo-
nent e; in a complex event sequence (e, ez, --,e,) only depends on the time
that the last positive component preceding e; happens. (i.e. e;_1 if it is not
negated, otherwise e;_» if it is not negated, and so on.) For example, the time
difference between e; and e;—; does not depend on when e; occurred. This is a
reasonable assumption because the sequence usually tracks the physical location
of one or more RFID tags as they move, and the time we observed them at last
location is the most significant factor in predicting the time we will observe them
at next location. The second assumption is that all instances of a complex event
behave similarly.

Therefore, we can define probability density function f;(t) that e; happens
t time units after the previous positive component. Estimating this function
is a separate task which can be performed in the background using history
information gathered from previously detected complex events. Alternatively,
a simple probabilistic model may be used based on the event semantics. This
process does not have any other interaction with the main event processor and
is not discussed any further in this paper.

Our next assumption is that an RFID reader misses or drops a tuple with
fixed probability €. This can be easily generalized to assign a different probability
to each component of a complex event (and usually each RFID reader). Finally,
we define F;(T') to be the cumulative distribution function F;(T') = fOT fi(t)dt
for later use.

In the next few subsections, we show how complex event probabilities can be
computed using our model in various situations.

3.1 Missing A Positive Event

Let E; be a complex event defined by sequence (e1,es,---,ey,). However, we
have observed (e1, ea,---,€i—1, €11, -, €n) in the incoming stream. We need to
compute the probability that F; has happened. This is the probability that e;
happened between e;_; and e;;; but was missed by the RFID reader. Let T be

the time gap between e;_; and e;11. Given f;(t), the probability density of e;
happening ¢ time units after e;_1, we have:

T
P(E; has happened) = 6/ fi(t)dt = eF;(T) = S{(T)
0

The above result, named S, is a non-decreasing function of T specifying the
probability of missing positive event e; in a time interval of length T'.

3.2 Missing A Negative Event

This time, we are given complex event E» specified by sequence (e1,- -+, €1, le;, €41, -

and observed sequence (er,---,€;—1,€;41,"*,€,). The probability that Es has
really happened should be computed because there is a chance that negative
event e; has happened but was missed by the reader. Similar to the previous
case, the probability that e; happens between e; ; and e;; with time gap T is
F;(T). Therefore, we have:

P(e; does not happen) =1 — F;(T)
P(e; is not observed) = P(e; does not happen) + P(e; is missed)
= (1= Fy(T)) + eFi(T)
P(E> has happened) = P(e; does not happen | e; is not observed)
P([e; does not happen] A [e; is not observed])
B P(e; is not observed)

_ P(e; does not happen)
P(e; is not observed)

_ 1-F(T)
~ eFy(T) +1-F(T)
= SN(T)

Note that the function S for missing negative event e; in time 7' is non-
increasing.

3.3 Multiple Missing Events

In the general case, missing tuples in complex event E can be an arbitrary subset
of the event sequence (ey,---,e,). However, if the subset consists of multiple
non-adjacent segments in the sequence, the probability can be independently
computed for individual segments and multiplied together. Furthermore, if more
than one positive event is missing, the resulting probability will be below €2 which
can be assumed to be much lower than threshold for majority of applications.
Below, we compute probabilities for the most significant cases:

1€n),

S(PN) S(NP)

b8 3 o

receptor="A’ receptor="C’

(a) (b)

Fig.1. NFA states for the shoplifting example. Initial and final states are in-
dicated with double circles. Trivial predicates available for internal states are written
below the state. (a) shows the basic precise model for the complex event. (b) is the
imprecise version where each edge is labeled with a scoring function from Section 8.
S(PN) refers to STV, S(N) refers to ST, and so on.

Two Positive Events Two consecutive events e; and e;; have happened in
time interval T' but both have been missed. For every ¢ in (0,T'), we integrate
the probability of e;11 happening at ¢ and e; happening in (0, t):

S{P(T) =€ /T fira () Fi(t)dt
0

Multiple Negative Events The probability that negative events e;,e;41,- -+, €;
have not happened in time interval T' assuming that they have not been ob-
served, can simply be computed by multiplication because of our independence
assumption:

S N(T) = ﬁ S¢(T)
k=i

A Positive Event Surrounded By Negative Events For missing sequence
lei—p, -+, leiz1, €5, €41, -+, leiyq, we use a combination of the techniques used
above to get:

SZN...NPN...N(T) _ 6‘/T (ﬁ Szj\ik(T)> fi(t) (f[Sﬁ_k(T)> dt
0 \g=1 k=1

4 Basic Event Processor

A complex event can be modeled as a Non-deterministic Finite Automata (NFA)
such as in Figure 1(a). States are named Vo, Vi,---,V;, Vi41, where Vp is the
initial state, and Vjy; is the final state. NFA starts at Vy and can make a tran-
sition per input tuple. However, it can only move to a connected state if the
tuple satisfies the predicates in that state. Also, it can always move to Vjy; if
it is reachable. Note that NFA does not have any states corresponding to the

negative components of the complex event, and only checks trivial predicates.
Negative components and non-trivial predicates are checked at a later stage in
the algorithm.

To accommodate the lossy input stream, we allow the NFA to skip states
which would have been matched by dropped tuples. However, the likelihood
of such events happening has to be taken into account. We label each edge
with a score corresponding to the probability that, given the current input,
this transition represents the actual sequence of events (Figure 1(b)). We define
a path’s score as the multiplication of all scores on its edges. Upon reaching
the final state, path score (which equals event probability) is computed and
compared to threshold.

More precisely, edges are labeled with scoring functions such as the ones
shown in Section 3 since the score is a function of the amount of time passed
between the two states. We refer to scoring function from V; to V; as H; ;(t). Also,
we define G; ;(T) = max,co, 1] H;,;(t). Both functions should be very efficiently
computable (e.g. using lookup tables). Finally, we note that many edges can be
removed because G; (W) is below threshold, where W is the query time window
length.

AYAC needs to efficiently keep track of states reached by the NFA (and
their partial scores) as it feeds input tuples to it. This is achieved using Proba-
bilistic Arrival Queues (PAQs) which are enhanced versions of Active Instance
Stacks[14].

4.1 Probabilistic Arrival Queue (PAQ)

At any moment through the lifetime of a query, its NFA can be in multiple
states, having arrived to each one via several different paths. This information is
efficiently tracked using data structures called PAQs. A PAQ is created for each
state of the NFA except the initial and final states.

First, we observe that we can identify a path uniquely using an (I + 2)-tuple
(ag,a1,---,a;,a;4+1) where a; is the initial arrivel time of this path at state V;.
This is possible since NFA does not have any cycles except the self-loops. Still,
explicitly storing arrival timestamps for every traversed path is impractical. As a
result, we use a PAQ per state. A PAQ simply stores all arrival times (and some
other information) to that state without regard to the possibly many paths that
may have arrived at that state at that time. When NFA eventually reaches the
final state, we can use PAQs to reconstruct all paths and evaluate them more
thoroughly.

Each PAQ is a queue of (t,u) pairs where ¢ is the arrival time, and v is an
upper bound to the maximum score of all paths reaching the state at t. u is
used by AYAC to significantly reduce memory and time requirements by early
elimination of paths that already have a low score.

Enqueue Operation Whenever a new input tuple is received, we need to
determine if it can cause a new arrival (a transition that is not a self-loop).

For each state V;, the tuple is evaluated against trivial predicates specified
by that state. Only if the tuple satisfies all predicates, NFA may go to V;'. In
this case, let (¢;.x, u;,) be the k-th tuple in PAQ of state V. Path’s reaching V
have maximum score u;; and they can move to V; using an edge with scoring
function Hj ;. Let tnew be the timestamp of the new tuple. The upper bound
on scores of all paths arriving in V; at tnew can be computed as:

Unew = je{l,r-r-l-?;?il},k ujk X Hji(tnew — tjk)
We enqueue (tnew, unew) only if unew is above threshold. Arrivals with lower
scores can be eliminated because a path’s score cannot increase as it extends.
Unfortunately, evaluating every tuple in PAQs of every state preceding V;
is an expensive operation. Dealing with this issue is one of the main focuses of
Section 5.

Dequeue Operation Any arrival before tnew — W can be safely discarded.
Since pairs in a PAQ are ordered by increasing ¢, this amounts to simply de-
queuing old tuples. Dequeue operation ensures that amount of memory consumed
by PAQs is in O(W) and does not grow indefinitely.

Removing tuples may enable us to improve (i.e. decrease) upper bounds in the
existing pairs in succeeding PAQs (possibly as a background process). However,
the naive approach for this operation would be too time consuming. We leave
efficient upper bound adjustments as future work. Of course, future arrivals still
benefit from dequeue operation because unew is computed using only recent
arrivals.

Initial and Final States So far we have ignored transitions from V4 and tran-
sitions to Vj41. There are no PAQs associated with these states. Final transitions
are discussed in the next subsection when we explain finalizing event matches.

An initial transition from Vj to a state V; that matches the input tuple can
happen at any time. The exact score for the transition cannot be determined
until the final state is reached. Therefore, our new upper bound uj ey, considers
initial transition with every possible time distance up to W:

Upew = Max {unew,tér[ha%cv] Ho,i(t)} = max {unew, Go,:(W)}

4.2 Match Generation

In this paper, we only explain detection of complex events ending with a positive
component when that component is not missing in the input. Some of the other
cases (e.g. when initial component is positive and not missing but the ending is

! For queries with long sequences, usually an index can be used to quickly locate
matching states.

10

arbitrary) can be detected similarly, but the general case is overly complicated
and even the query semantics have to be defined using non-intuitive assumptions.

In this case, the final transition to V;4; always happens as soon as Vj is
reached. Moreover, it does not affect the score because Hjy1(t) = 1. Conse-
quently, AYAC initiates match generation as soon as a new pair (tnew, Unew) is
added to PAQ for V;. During this process, AYAC considers all the paths lead-
ing arriving in Vj41 at tnew and filters them using non-trivial predicates of the
query, the time window constraint, and negative events that may have occurred.
The remaining results are output as matching complex events.

Naive Approach Take (I + 2)-tuple (ao,ai,---,a;,ai+1) containing arrival
timestamps that uniquely identifies a path from Vj to Vj41. If such a path exists,
clearly we can find timestamp a; in PAQ for V;. Also, a9 < a1 < --- < a; < aj41-

Using this result, the naive algorithm enumerates all possible paths by choos-
ing one element from each of the PAQs for V; to V;_1 with timestamps ¢; to ;1
respectively, such that tnew — W <t <ty < --- < tj_1 < tnew>

Next, simple events with these timestamps are retrieved. These events have
already satisfied trivial predicates and are guaranteed to fit in the time window.
The rest of the predicates are applied to these tuples, and if successful, negative
components of the query are searched for in the appropriate intervals of the
stream.

Enhanced Approach To speedup detection of negative events occurring in a
the path, AYAC maintains a Negative Arrival Queue (NAQ) for each negative
component. Similar to PAQs, NAQs queue the timestamps of tuples matching
trivial predicates of the negative component, but they are much faster to main-
tain because they only hold timestamps (and no upper bounds). Searching for
negative events in a time interval can then be efficiently performed using a binary
search in the NAQ.

More importantly, paths are iteratively extended by starting at V; and going
backwards. Every predicate applicable to this portion of the path is applied,
and negative tuples are searched for before extending the path. Also, the partial
score of the path combined with the upper bound for the rest of the path helps
us eliminate many paths in advance.

More precisely, if the current partial path goes from (tp,up) in Vj to (¢, uc)
in V; and has score s, we can extend it to (t,,u,) in V; only if all of the following
conditions hold:

— A transition is available to the beginning of the partial path in Vj: i < jAt, <
iy

— Upper bound on the score for the completed path is above threshold. This
upper bound is computed as: s X H;, j(ty — t5) X g

2 Note that the timestamp for arriving in Vj is tnew — W. This is to allow maximum
space for matching initial negative components.

11

— No negative elements are found between t, and ;. This is done by retrieving
an initial list of elements that match trivial predicates using NAQ. The path
can be eliminated if we can evaluate every predicate involving the negative
component just by using the current partial path.

— Applying additional (non-trivial) predicates involving (t,,u,) is successful.
In other words, non-trivial predicates are applied to the path as soon as all
the required components are matched.

5 Optimizations

In this section, we very briefly outline the two class of optimizations that are
critical for real-time processing of high-throughput streams.

5.1 Upper bound Computation

Obtaining reasonable upper bounds for PAQ entries is crucial for eliminating
the huge number of unnecessary paths generated by traversing low scoring edges
of the NFA. However, directly computing the upper bound formula given in
subsection 4.1 is expensive and impractical. AYAC employs several optimizations
to compute looser but faster upper bounds.

For instance, upper bound vnew is derived as follows:

unew = max max (ujkr X Hj;i (tnew —tjx))
je{l,--i—1} k

. H.: :(t — s
iy | (g (mpcttoon 200
|:<Inka.xu]',k> X Gj’i(tnew - tj,o):|

IA

IA

max
Je{1,i—1}

= Unew

The key to evaluating vnew quickly is being able to compute maxy, u;,x, the
highest upper bound stored in a given PAQ at any time, efficiently. This can be
done in amortized O(1) time by augmenting the PAQ with auxiliary information
as explained in the extended version of this paper. This reduces the running time
of upew computation to O(l). As a result, the enqueue operatoin is O(I2?) in the
worst case. This can be reduced to O(l) assuming that threshold is higher than
62.

Furthermore, using addition data structures not discussed here, AYAC can
significantly improve vnew (sometimes even reaching unew) whenever a mono-
tonic scoring function is used. As seen in Section 3, the vast majority of scoring
functions are monotonic.

5.2 Hashed PAQs

Very frequently, a complex event requires at least one particular attribute of
tuples, such as the RFID tag, to be equal across all components. (See PAIS in

[14].)

12

For such queries, AYAC can perform enqueue operations and match gen-
eration much more efficiently. Elements of the PAQ are partitioned by a hash
function computed on all equality attributes, and a linked list is maintained for
elements in each partition. Again, more details are available in the extended
version of the paper.

6 Conclusion and Future Work

We provided design and implementation suggestions for a probabilistic complex
event processor. An NFA is defined for each complex event. Each NFA then
processes input tuples as they arrive and triggers the complex event in real-time
as soon as the last component is detected. Inputs dropped or missed by RFID
readers lower the event’s likelihood but still trigger it if the likelihood is above
the threshold.

Using our optimizations, processing time per tuple per complex event per
state is in amortized O(1) time. Maximum memory used for each event is linear
in the time window length but is frequently much lower. Trivial predicates and
equality constraints play an important role in the real-world performance and
memory usage of the system.

Several assumptions which were made to simplify the problem can be basis
for further research. For instance, converting the WHERE clause to disjunctive
normal form and then requiring trivial predicates with high selectivity may prove
too restrictive for some applications. Also, complex events with a negative last
component or missing positive last component are also currently being ignored.

Moreover, the performance may be improved by finding efficient methods for
updating PAQ upper bounds as old elements are discarded in preceding PAQs.
Currently, discarding elements only improves upper bounds computed for tuples
inserted in the future.

References

1. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Match-
ing events in a content-based subscription system. In Symposium on Principles of
Distributed Computing, pages 53—61, 1999.

2. R. S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent streaming through
time: A vision for event stream processing. In CIDR, pages 363-374, 2007.

3. A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In SIG-
COMM ’08: Proceedings of the 2008 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, pages 163-174, New York,
NY, USA, 2003. ACM Press.

4. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In VLDB ’9j: Proceedings
of the 20th International Conference on Very Large Data Bases, pages 606-617,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

13

10.

11.

12.

13.

14.

15.

U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D. Mc-
Carthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny, and R. Jauhari. The
hipac project: combining active databases and timing constraints. SIGMOD Rec.,
17(1):51-70, 1988.

A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M. White. Towards
expressive publish/subscribe systems. In EDBT, pages 627—644, 2006.

F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filter-
ing algorithms and implementation for very fast publish/subscribe systems. SIG-
MOD Record (ACM Special Interest Group on Management of Data), 30(2):115-
126, 2001.

N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in
active databases: Model & implementation. In Proceedings of the 18th International
Conference on Very Large Databases, 1992.

A. Lerner and D. Shasha. Aquery: Query language for ordered data, optimization
techniques, and experiments. In VLDB, pages 345-356, 2003.

S. Rizvi. Complex event processing beyond active databases: Streams and uncer-
tainties. Master’s thesis, EECS Department, University of California, Berkeley,
December 16 2005.

S. Rizvi, S. R. Jeffery, S. Krishnamurthy, M. J. Franklin, N. Burkhart,
A. Edakkunni, and L. Liang. Events on the edge. In SIGMOD ’05: Proceed-
ings of the 2005 ACM SIGMOD international conference on Management of data,
pages 885-887, New York, NY, USA, 2005. ACM Press.

R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. Expressing and optimizing sequence
queries in database systems. ACM Trans. Database Syst., 29(2):282-318, 2004.

P. Seshadri, M. Livny, and R. Ramakrishnan. The design and implementation of
a sequence database system. In The VLDB Journal, pages 99-110, 1996.

E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
streams. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 407-418, New York, NY, USA, 2006.
ACM Press.

D. Zimmer. On the semantics of complex events in active database management
systems. In ICDE °99: Proceedings of the 15th International Conference on Data
Engineering, page 392, Washington, DC, USA, 1999. IEEE Computer Society.

14

