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1. Introduction 

Large language models, or LLMs, have a huge capacity for producing and processing natural 
language. Given a prompt, modern models can output a stream of words that read as cohesive 
and natural as human output. They have learned to produce language often indistinguishable 
from ours, a feat once considered a piece of intelligent behavior (Turing, 1950). However, we 
cannot be sure if they have developed this ability with human-analogous methods. Knowing this 
is necessary to interpret these opaque models and see how they can actually contribute to our 
scientific understanding of human language and language processing. 
    For example, we can wonder whether the LLM syntactically parses the sentence or represents 
syntax at some level of its representation. Tian et al. (2024) investigate the ability of LLMs to 
succeed at constituency parsing, or syntactically breaking down a sentence into chunks. Models 
are only trained to create embeddings for individual words (or tokens), and not for larger phrases. 
LLMs are normally ineffective at these parsing tasks, producing very shallow parse trees and 
preferring shorter chunks over longer ones. However, Tian et al. show that using careful 
chain-of-thought prompting, models can learn to create valid parse trees and correctly identify 
constituents. Results such as these suggest LLMs can be “taught” to show their syntactic 
knowledge, although it is still unclear if the syntax exists in the model without precise 
prompting.  
    Hewitt & Manning (2019) present a different methodology for finding out whether an LLM 
represents syntactic structure. Rather than looking at the output, or if its next-word prediction is 
correct, they actually look at the representation an LLM has made of the sentence. By sending a 
structural probe into the representation, they test if there is some layer that looks like it is 
representing syntax, specifically human-annotated syntactic dependencies between the tokens of 
the sentence. After generating such representations from the model and comparing them to 
ground truth syntactic parses, they report that BERT (Devlin et al., 2019) is actually encoding 
syntax “through our structural probes”.  
    This is a hugely impactful result, as it would imply that neural networks do in fact abstract 
syntactic information from language in a human-like way. Neural networks are often extremely 
obscure, with billions of weights and hundreds of dimensions per word. In these spaces, we can 
only talk about relative directions and theorize about small slices of the network. There is no way 
a human can comprehend everything a neural network does. Therefore, showing that it 
represents syntax would contribute to arguments that LLMs are capable of abstracting in 
human-like ways (Kim et al., 2023; Wang et al., 2025)1.  
    One issue lurking in the shadows of the Hewitt & Manning method is semantics. Another way 
that the dependency between, say, “green” and “tree” could emerge via the probe is if the model 

1  In the six years since its publication, Hewitt & Manning has been cited 1,360 times per Google Scholar, frequently 
as evidence for LLMs learning or representing syntax. 
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is simply representing them as related semantically, rather than syntactically as an adjective 
modifying a noun. If the layer was truly representing syntax, we should see the same trees 
emerge for the same syntactic structures no matter the semantic relationships between the words; 
“green” and “tree” should have the same relationship as “consular” and “tree” would. Therefore, 
Hewitt & Manning’s methodology is missing an absolutely critical piece. Only if the structural 
probe works for sentences that, despite being semantically anomalous, are still syntactically 
correct, can we confirm that it is finding a syntactic tree.  
    In this paper, we propose a methodology to fill this piece and clarify the meaning of this tree 
in the network’s representation space. We generate semantically anomalous sentences from a 
corpus and test the exact code Hewitt & Manning ran on them. We find that there is reason to 
think that Hewitt & Manning’s probes are using some semantic information, as the probes 
regularly fail to find the same dependencies on the anomalous sentences.  

2. Hewitt & Manning’s Structural Probes 
Deep learning has progressed from less to more use of context in capturing words’ roles in 
sentences. Word2vec (Mikolov et al., 2013) succeeded in using a very small window to develop 
surprisingly rich lexical meaning spaces. ELMo (Peters et al., 2018) introduced word 
embeddings that are a function of the entire input sentence: a crucial aspect of this training is that 
it uses a bidirectional LSTM which maximizes the likelihood at a given point of both the forward 
and the backward directions; e.g. the probability based on both the previous and the next tokens. 
This allows each word to gain information based on its position in the overall sentence, not just 
based on the previous tokens.  
    BERT (Devlin et al., 2019) uses an even more advanced technology to learn the context of 
each word in the sentence: the transformer. The transformer identifies which information the 
network should pay attention to at any point in the input. This allows the parts of the input that 
are important to shine for each specific word and allows the model to capture the context of the 
input better. Additionally, the model can now focus on distant parts of the input simultaneously, 
improving its performance on syntactic tests. To create its word representations, BERT was 
trained with a masked-word prediction task. For a given sentence, some proportion of the words 
were covered with a mask: “Outside the state capitol, they were raising the MASK”. If the model 
knew enough about the words to output “flag”, it would succeed at this masked task. This 
ensured the model had a deep knowledge about each different sense of each word in its 
vocabulary and its requirements in a syntactic and semantic context.  
    Contextual appropriateness, however, is not a monolithic concept. Chomsky and decades of 
continuing research have provided evidence that humans’ syntactic and semantic capacities are 
distinct: the famous “colorless green ideas sleep furiously” illustrates that a sentence can be 
identified as syntactically well-formed even if semantically nonsensical, and we can understand 
“The Force very powerful is” even if it violates rules of English syntax. 
    To investigate the syntactic abilities of these newer models, it is therefore not enough to just 
look at the next-word prediction or the output, as they are extremely capable at producing natural 
output. Instead, Hewitt & Manning (2019) decided to look at their new innovation: their vast 

 



 

word representations. The model was not given trees as input, just huge corpora, so this is not 
finding anything that is encoded explicitly in the input; any trees that are found must be created 
in the model’s representation, using its implicitly encoded knowledge of language. Hewitt & 
Manning created a transformation to find the slice of the network that best encoded a tree, 
arguing that if these tree structures matched human parses, this provided evidence for LLMs 
encoding human syntax.  
    Specifically, they introduced a structural probe, which looks for tree structures by finding a 
transformation between the squared L2 norm of the vectors of two words’ representations and 
their distance in the parse tree. Through supervised gradient descent (shown in the formula 
below), the distance probe finds the transformation that approximates these properties best. It is 
important to note that the distance probe is not given a tree as input, nor supervised to reconstruct 
them, but merely to find a space in which squared distance encodes trees. 

 
    The formula above represents their distance probe. |sl| is the length of the sentence, dT is the 
tree distance between the two words, and dB is the probe’s predicted distance based on the words’ 
vector representations hi and hj. The goal of gradient descent is to optimize the matrix B, the 
parameters of the probe, to minimize the difference between the probe’s predictions and the true 
parse distance. 

 
    To get the depth of a word (the number of edges between that word and the root node), they 
train a second probe, shown by the equation above. This probe approximates the vector norm of 
a given word, ||wi||, again through gradient descent of the parameter matrix B. Depth is naturally 
represented by this norm, since both represent an ordering of the words in the sentence. Using 
both probes’ predictions, the tree is recoverable by interpreting any words with distance 1 as 
neighbors in the result, and the word with the greater depth as the child. Take, for example, the 
sentence:  
 

A) The chef that went to the stores was out of food. 
 

 



 

Figure 1: The results of the depth probe (on the left) and the distance probe (on the right) for sentence A. 
The dependency tree over the sentence can be reconstructed from these results. 

 
 

    The left of Figure 1 shows the depth of each word in sentence A, and the right shows the parse 
distance between pairs of words. We can see that “the” and “chef” are neighbors, as are “chef” 
and “out”, using the predicted parse distance. To recreate the predicted tree, we compute the 
minimum spanning tree of the predicted distances, shown on the bottom of Figure 2.  
 

 
Figure 2: The lines above the sentence display the gold parse, and the lines below display the predicted 
parse generated by the probe data in Figure 1. Blue lines below agree with the gold parse, while the red 

line disagrees.  
 
   
  Using the gold parse (from the corpus) and the predicted parse, we can calculate the Undirected 
Unlabeled Attachment Score (UUAS), the percentage of undirected edges put in the correct place 
by the probe. In Figure 2, the probe placed 9 of 10 edges correctly, for a UUAS of 90. Overall, 
their probe obtained an average UUAS of 79.8 on BERT-base and 82.5 on BERT-large-15, as 
well as a UUAS of 77.0 on ELMo. These results demonstrate the existence of some hierarchical 
structure encoded in the model’s representation, since neither the probe nor the model were 

 



 

provided with any structure in their inputs. However, they do not guarantee any results about 
syntax, since they never demonstrate that their probe actually isolates syntax. Future papers, as 
well as ours, seek to find how much of this result is boosted by the semantic cues available in the 
data. This paper is a new contributor to that literature. 

3. Work in the Field Since Hewitt & Manning (2019) 
Hewitt and Manning’s results have been taken by subsequent literature as strong evidence for 
syntactic representations in LLMs (Varanasi, Amin, & Neumann, 2020; Lenci & Padó, 2022; 
Mysiak & Cyranka, 2023). However, their method, and this interpretation, neglect a potentially 
crucial confound: how can we be certain that the semantics of the words involved does not 
influence these trees? Deep within the model’s representational space, semantics could be 
anywhere - every part of this space was given access to the full context of the word during the 
training, so we cannot escape the idea that the semantics of the word could influence these 
distance metrics, the context of the sentence, or anything the model may have paid attention to in 
training. What is captured by the “syntactic” probe may be partly, or even mostly, about 
semantics, not syntax. 
    Other papers have investigated the idea that syntax and semantics are intertwined in the results 
of these probes. One approach to this issue is to transform test sentences to disentangle syntax 
from semantics. Maudslay & Cotterell (2021) provided the probes not with normal corpus 
sentences, but with Jabberwocky sentences - named after Carroll’s 1871 poem with the same 
name, the Jabberwocky corpus contains nonwords with English grammatical markings. These 
nonwords have not been seen by the LLM before, and contain no semantic information, but still 
inhabit syntactic roles and can still be placed in a dependency tree.   
 

 
Figure 3: An unlabeled, undirected parse of a Jabberwocky sentence, with the original words below the 

Jabberwocky words. From Maudslay & Cotterell (2021). 
 
 

    Maudslay & Cotterell used the Universal Dependency (UD; Nivre et al., 2016) treebank to 
transform sentences using pseudowords from the ARC Nonword Database (Rastle et al., 2002). 

 



 

They used fine-grained part-of-speech tags to create transformed Jabberwocky sentences that 
have the same syntactic structure as the original sentence. For example, in Figure 3, “enjoyed” 
and “povicated” are both VBD (past tense verb), and “briticists” and “presentations” are both 
NNS (plural noun).  
 
 

 
Figure 4: UUAS results from Maudslay & Cotterell’s probing on unchanged sentences vs Jabberwocky 

sentences. From Maudslay & Cotterell (2021). 
 

 
    If the probe is truly finding syntax, then it should not lose any accuracy when parsing these 
new, transformed sentences. However, they find a sharp drop in UUAS when testing BERT, from 
78.9 to 67.1 (Figure 4). This result strongly suggests that the probes use at least some semantic 
information during training and output generation. All of the probes they tested performed worse 
on LLMs, while the baselines (which receive no semantic context or lexical information) 
performed the same. 
    This paper still leaves some elements untouched. Since the LLM has not seen any of their 
replaced words, it can’t have learned any of their specific syntactic or semantic properties. This 
limits the power of the result, since some of the decrease in probe accuracy may have been 
because the model had never seen these words before. While the model should be expected to be 
able to adapt words it knows to new situations, it is not trained to be able to understand 
non-English words. To clear any doubts about how much impact this had on the result, we need 
to isolate syntax using only English words. 
 
 
 

 



 

4. Our Anomalous Idea 
    To fix these issues with the Jabberwocky study, we propose a new transformation using 
English words, but in semantically anomalous contexts. We substitute the content words in a 
sentence with different content words of the same class. For example, a given sentence: 

B) The chef baked the tastiest pizza. 
has semantic relationships (chef-baked, baked-pizza, tastiest-pizza) in addition to its syntactic 
relationships. After substitution: 

C) The desk considered the sincerest airplane. 
these semantic relationships are destroyed, but the syntactic structure remains the same. A 
human could parse this sentence and imagine sentient furniture having a heartfelt conversation 
with a vehicle, but this is likely to be nonsense with respect to the model’s semantics. Therefore, 
its semantic representations should not help it on this task. If we can still see the structural probe 
having the same effect it did when the semantic relations were present, then we can confirm that 
the structural probe is isolating syntax. If the tree the structural probe finds does not match the 
gold parse as well as it did when the semantic relations existed, then this calls Hewitt & 
Manning’s results into question.  
    There are several subtleties to consider with this transformation. The main priority is to keep 
the substituted sentence syntactically correct, with the same exact structure as the original 
sentence. To control for this as much as possible, we made use of Combinatory Categorical 
Grammar (CCG), which draws inspiration from lambda calculus to produce an extremely 
fine-grained syntactic category set (Steedman, 2000; Hockenmaier & Steedman, 2002). Each 
word in a CCG parse has a syntactic tag and dependencies to other words linking predicates to 
their arguments. Therefore, a word’s syntactic role is quite well-specified. After confirming that 
agreement is observed using the syntactic tags, substituting from a bank of words that can be 
used in the same position and relational situation will generate an appropriate sentence. Figure 5 
shows possible substitutions for the sentence “The company is being acquired”, using words that 
occur in the corpus with the same treebank tag and CCG tag.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

      LLR 

Penn Treebank 
Tag 

 NN   VBN  

CCG Tag  N   S[pss]\\NP  

Original 
sentence 

The company is being acquired. 6.56 

Substitution 1  itinerary   revised. 1.37 

Substitution 2  snafu   suggested. 0.79 

Substitution 3  freezer   adjourned. 0.02 
Figure 5: Possible substitutions alongside their LLR values for the sentence “The company is being 
acquired”. The best substitution of these is “The freezer is being adjourned”, with an LLR of 0.02.  

 
 

 
 
 
 

 
Figure 6: A contingency table for words A and B, used in the LLR calculations. More information (and 

the code used) at https://github.com/tdunning/python-llr.   
 

    A key aspect of the transformation is that we must ensure the substituted words are 
semantically distant from the original. We use the Log Likelihood Ratio (LLR) score (Dunning, 
1993), which measures the similarity of words based on how often they occur near each other. 
We measured how often words occurred in the same sentence together. For a given pair of words 
A and B, we construct a contingency table (Figure 6), counting the number of times they occur 
together and apart. If these words occur independently, we would expect the first and second 
rows to be in the same proportion; that is, we would expect the distribution of A given that B is 
present to be the same as the distribution of A given that B is not present. The LLR of two words 
is given by  
 

LLR(A, B) = 2[D(k11 + k12, k21 + k22) + D(k11 + k21, k12 + k22) - D(k11, k12, k21, k222)] 
 
where D, the denormed entropy of a list of numbers C, is given by: 

 

 A Not A 

B k11 k12 

Not B k21 k22 

https://github.com/tdunning/python-llr


 

 
For sentences that have more than two words to replace, we calculate the maximum LLR 
between each pair of new words. We then choose the sentence with the lowest of these maxima; 
the sentence where the most related word pair is the least related among all of the candidate 
sentences. This will ensure that the substituted sentence is overall composed of semantically 
anomalous words that did not occur together in the corpus.  

6. Methods 
    To generate our dataset, we make use of the CCGBank dataset (Hockenmaier & Steedman, 
2005), which contains Treebank sentences parsed into the CCG format. We use the pipeline in 
Figure 7. For each sentence, we generate ten candidate sentences with content words substituted 
with words that have the exact same Treebank and CCG tags. We cleaned up each candidate 
sentence to fix simple grammar mistakes, such as agreement and capitalization, that could affect 
how the model parses a given word. We then pick the candidate sentence with the lowest LLR as 
the transformed sentence. As a confirmation that the sentences are as syntactically identical as 
possible to the original sentence, each transformed sentence was then put into the spaCY parser 
(Honnibal & Montani, 2017), and was discarded if its spaCY parse did not match the CCGBank 
gold parse of the original sentence. 
 

 
Figure 7: Our pipeline to transform the sentences of CCGBank into semantically anomalous sentences 

for testing the probe. Code is available at https://github.com/Innoviox/random-sentences.  
 
 
    We also used human raters to confirm that our replacement procedure was indeed preserving 
the syntactic structure. We surveyed two human raters and calculated their inter-rater reliability 
using Cohen’s kappa (Cohen, 1960). They were presented with the following task for pairs of 
sentences (original and substituted): 
 

You will have to rate the pairs on a scale from 1 to 5, where 1 means they have 
completely different structures and 5 means they have identical structures. Try 
your best to answer each question, but don't spend too long on any one question. 

 

 

https://github.com/Innoviox/random-sentences


 

    Raters, recruited on the Upwork platform, were required to have prior experience 
diagramming English sentences, demonstrated by producing a traditional sentence diagram for a 
sentence they had never seen before. Both raters were native speakers of English and both 
described themselves as enthusiastic about grammar. 
    Items were presented in blocks of 20 sentence pairs, plus 5 pairs where the syntactic structure 
did not match (the replacement was from a different sentence) as attention trials. There were four 
such surveys for a total of 80 double-rated sentences. Overall, we calculated a kappa value of 
0.68, indicating “substantial agreement” (Landis & Koch, 1977), with both reviewers agreeing 
that 85% of the sentences are syntactic matches (see Appendix for an example survey question). 
We ran the probe with the original BERT weights using 500 transformed sentences, as well as all 
68 of the sentences that human reviewers agreed were syntactic matches. We evaluate the probe 
using UUAS, the same metric as Hewitt & Manning (2019) and Maudslay & Cotterell (2021)2.  

7. Results 
 

 
Figure 8: Our results for original sentences (green) and substituted sentences (orange).  

 
 

2 Maudslay and Cotterell also employed a novel probe, the perceptron probe. We focus on the original Hewitt & 
Manning probe since the results of the two probes did not differ substantially in Maudslay & Cotterell’s results. 

 



 

    Figure 8 shows the result of running the probe on our sentences that spaCY confirmed were 
syntactically identical (the two left bars) and the subset that human reviewers both confirmed 
were syntactically identical (the two right bars). For the spaCY sentences, we obtained a UUAS 
of 0.764 on the original sentences and 0.524 on the substituted sentences; for the human 
sentences, we obtained a UUAS of 0.782 on the original sentences and 0.566 on the substituted 
sentences, or a reduction of 31% and 27%, respectively.  
    For comparison, Hewitt & Manning obtained a UUAS of 0.798 on the original sentences, and 
Maudslay & Cotterell obtained a UUAS of 0.789 on the original sentences and 0.671 on the 
Jabberwocky sentences. The similar values of UUAS on the original sentences confirm that we 
have successfully replicated Hewitt & Manning. The greater reduction in UUAS for the 
semantically anomalous sentences, compared with Maudslay & Cotterell’s Jabberwocky 
sentences, confirms that Hewitt & Manning’s result can be attributed, to a significant degree, to 
the model’s knowledge of semantic relationships between human English words.  

8. Further Analysis 

 
Figure 9: Separating dependencies by what classes of words they connected (blue bars represent 

dependencies that connect closed-class to open-class words, while red bars represent dependencies that 
connect open-class to open-class words). White sections of the bar represent loss in accuracy from the 

original sentence to the substituted sentence. 
 

 



 

 
    Parts of speech in English are generally considered to be either closed-class, meaning no new 
words can be created of that type (e.g. determiners, prepositions), or open-class, meaning new 
words of the class can be created to encompass new meanings (e.g. nouns, adjectives). For each 
type of dependency, we calculated how often it connected each pair of classes: closed-open 
dependencies are blue bars in Figure 9 above, and open-open are red. (Closed-closed 
dependencies did not show up in significant enough numbers; we only selected dependencies 
that had at least 100 appearances in the test data.) We would expect open-class words to carry 
more semantic weight, and therefore for open-open dependencies to degrade more than other 
types of dependencies under our substitution, since now the semantic link between those types of 
words should be gone.  

 
Figure 10: Boxplot of the loss in accuracy for the dependency types (open-open and 

open-closed). A t-test shows a significant difference in their means (p=0.041).     
 
    Figure 10 shows the accuracy loss for each dependency type. Open-closed dependencies 
maintain their accuracy better, and one (punct, connecting words and punctuation) even gains a 
bit of accuracy. Additionally, open-closed relationships have the highest accuracy after 
substitution.  

 
 
 

 



 

 
Figure 11: An example of a passive subject dependency (open-open) being mistaken. On top is 
the probe’s parse of the original sentence, and on bottom is the probe’s parse of the substituted 
sentence. Here, the blue line on top represents the subject dependency between “number” and 

“cut”, while the blue line on bottom represents the parser mistakenly placing a dependency 
between “repaired” and “of”.  

 

 
Figure 12: An example of a determiner dependency (closed-open) being mistaken. Here, the 
probe correctly identifies “a share”, but mistakenly identifies “$14 a” as the dependency after 

substitution.  
 
 

    Figures 11 and 12 show some mistakes that the parser made (more mistakes can be found in 
the Appendix). Frequently, the parser matches a word to a neighbor of the correct word, as is the 
case in Figure 11 (linking “of” to the main verb rather than “buddy”). Here, it’s possible that the 
semantic cues simply help to narrow down the area of the correct dependency, but the network 
may have enough information to know that the initial noun phrase in general should be the 
subject. Without the semantic information, it chooses a word closer to the center of the noun 
phrase. Figure 12 shows an example of an error where the chosen word is not a neighbor of the 
correct answer. When the probe made an error on a closed-open dependency, it frequently 
attached the word of the closed class to an erroneous word of the open class.  

9.  Discussion 
    Our results provide additional evidence against Hewitt & Manning’s claim that their probes 
are exclusively finding syntax. If they were, then no matter the content of the sentence, two 
sentences with the same structure should have the same parse. The discrepancy in our UUAS 
results show that this transformation has some effect on this probe. 
    To further explore whether our results are based on semantic relations, we check if our errors 
correlate with semantic dependence. Figures 9-11 show that semantic dependencies tend to do 
worse under our transformation. However, some clearly grammatical dependencies also do worse 
worse; for example, “determiner” is a dependency we had not expected to degrade. However, 

 



 

overall these demonstrate a general trend of the semantically anomalous substitution causing the 
probe to treat pairs of words differently, even if they have the same syntactic relationship.  
    We do not claim that syntax is nowhere to be found in the representational space. However, 
our results clearly show that relations these probes are exposing are not exclusively syntactic. 
One potential issue is that the part-of-speech tag associated with a given word is inextricably 
linked to semantic associations due to the training procedures to get the semantic context in the 
first place. While the model is not explicitly referencing part of speech information, it is certainly 
very informative in how one would set up a syntax tree. While an idealized syntactic probe 
would only have reference to this information, it is hard to disentangle just the grammatical 
knowledge from the rest of the semantic cloud surrounding that word. Therefore, even a slice of 
the representation that is primarily about extracting syntax from the input will be related to how 
much semantic information the model can squeeze out of the word. 
    This confound is very difficult to remove from experiments looking for syntax in LLMs, and 
indeed for LLMs as a whole, because LLMs’ representations are derived purely distributionally, 
and empirical distributions of words depend on a combination of syntactic, semantic, pragmatic, 
and contextual factors. Our results highlight that since semantic information is available to the 
LLM throughout its training, it is difficult to isolate any other part of the representation.  

10. Conclusions 
The field of computational linguistics has made massive strides in the past decade. New methods 
give models more and more information from each data point. Ballooning parameters and 
training times have allowed them to gain near-complete fluency, and surprising capabilities 
across multiple tests associated with language understanding. 
    These same elements that have given LLMs their power have also made their behavior 
inexplicable. Was this error due to some quirk in the corpus, or some overlooked case in the way 
it was trained? What set of weights led to the model outputting this word over that one? Why do 
this model’s replies fit better with the surrounding context? The individual layers and pieces that 
go into building these networks have gotten far too large to look at holistically, and looking at 
each one individually often gives answers that do not explain very much.  
    Investigating which generalizations and what elements of underlying structure models detect 
is therefore a difficult task, but is important as a way to understand how these models are able to 
process language so well. Hewitt & Manning’s structural probes look at the network’s word 
representation space, a very high-dimensional space that encodes the model’s “understanding” of 
the meaning of a word or sentence. The probe searches transformations of this space to look for 
connections between the words of the input sentence that look like a syntax tree. Hewitt & 
Manning argue that since these trees are discoverable in the representation space of the model, 
the model must be using some axis or other part of the space to encode its syntactic knowledge 
of the input sentence. 
    This study aimed to fill a gap in this work. While the Hewitt & Manning probe was finding 
these trees, it did not account for potential semantic relations between these two words, which 
could also cause them to have meaningful relations within the representation space. A large 

 



 

proportion of the representation space, and the entirety of its training, is focused on gaining a full 
semantic view of each word in the corpus so that it can accurately discover the meaning of the 
sentence. Therefore, any unguided probe that just analyzes the representation space of a network 
may be affected by latent semantic information. Our methodology removes the semantic 
relations between the words of the input sentence to see if the probe can still find the same 
syntax tree, which should be structure-dependent but semantically agnostic. 
    We found that when we disrupted the semantic relations between the words of our sentences, 
the probe varied its structure as well. We observed much lower UUAS scores than the probe 
achieved on its initial dataset. We could also see that different relationships between the words 
caused the probe to behave differently, even though they seemingly had the same syntactic 
relationship to each other. Confirming and going beyond the Maudslay & Cotterell results, we 
have established that the Hewitt & Manning probe is not truly a “syntactic” probe, even when 
tested with words that are known to the model. 
    Future work must first investigate ways to corroborate our results, such as investigating if 
semantic relatedness really does correlate with the number of errors the probe makes. Future 
work should also look for additional ways to find syntax that are truly indifferent to semantics, 
which is extremely difficult when the representation space encodes the semantics of the word so 
deeply. Work like Syntax-BERT  (Bai et al., 2021) is a step in the right direction for investigating 
how models can be made to integrate syntax into their processing.  
    That said, it is unclear whether a model that is better at syntax would actually be a better 
model for passing context-based benchmarks, or a better model for some non-linguistic 
downstream task the model will actually be used for. It is important when looking at the results 
of these models to keep in mind the eventual goals of their creators. People are often not creating 
models to investigate properties of human language, or aiming to to limit themselves to human 
capabilities when they process language. LLMs today are being wielded as general-purpose 
tools. Despite active research on explainability and interpretability (Singh et al., 2024; Jia et al., 
2025; Balek et al., 2024), our systems may well become more and more inscrutable. 
Nonetheless, ensuring that our methods are actually finding what we think they are finding is a 
crucial part of the path to discovering how they work. 
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Appendix 
Example rating question: 

  
 

 
Direct object example 

 
Determiner example  

 

 



 

 
Nominative subject example  

 
Nominative subject example  

 

 
Auxiliary example 
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