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Abstract. Genomic repeats are the most important challenge in
genomic assembly. While for single genomes the effect of repeats is largely
addressed by modern long-read sequencing technologies, in metagenomic
data intra-genome and, more importantly, inter-genome repeats con-
tinue to be a significant impediment to effective genome reconstruction.
Detecting repeats in metagenomic samples is complicated by character-
istic features of these data, primarily uneven depths of coverage and the
presence of genomic polymorphisms. The scaffolder Bambus 2 introduced
a new strategy for repeat detection based on the betweenness centrality
measure – a concept originally used in social network analysis. The exact
computation of the betweenness centrality measure is, however, compu-
tationally intensive and impractical in large metagenomic datasets. Here
we explore the effectiveness of approximate algorithms for network cen-
trality to accurately detect genomic repeats within metagenomic sam-
ples. We show that an approximate measure of centrality achieves much
higher computational efficiencies with a minimal loss in the accuracy of
detecting repeats in metagenomic data. We also show that the combina-
tion of multiple features of the scaffold graph provides a more effective
strategy for identifying metagenomic repeats, significantly outperforming
all other commonly used approaches.
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1 Introduction

Genomic repeats are the most important challenge in genomic assembly even
for isolate genomes. When reads are shorter than the repeats (a common situ-
ation until the recent development of long read sequencing technologies) it can
be shown that the number of genome reconstructions consistent with the read
data grows exponentially with the number of repeats [10]. The use of additional
information to constrain the one genome reconstruction representing the actual
genome being assembled leads to computationally intractable problems. In other
words, when reads are shorter than repeats the correct and complete reconstruc-
tion of a genome is impossible. In the case of isolate genomes, long read tech-
nologies have largely addressed this challenge, at least for bacteria where the
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majority of genomic repeats fall within the range of achievable read lengths [11].
In metagenomics, however, the problem is compounded by the fact that micro-
bial mixtures often include multiple closely-related genomes differing in just
a few locations. The genomic segments shared by closely related organisms –
inter-genomic repeats – are substantially larger than intra-genomic repeats and
cannot be fully resolved even if long read data were available. Instead, the best
hope is to identify and flag these repeats in order to avoid mis-assemblies that
incorrectly span across genomes.

To date, most approaches for repeat detection have been based on the basic
observation that repetitive segments have unusual coverage depth, fact which is
usually ascertained through simple statistical tests. These approaches, however,
fail in the context of metagenomic data as well as in other settings (e.g., single
cell genomics) that violate the assumption of uniform depth of coverage within
the genome, assumption that is critical for the correctness of statistical tests.
Furthermore, the challenges posed by repeats to assembly algorithms are not
directly related to the depth of sequencing coverage within contigs, rather they
result from the fact that repeats “tangle” the assembly graph. More specifically,
the correct genomic sequence (whether of a single genome or mixture of genomes)
can be represented as one or more linear sub-paths of the graph. Repeats induce
links within the graph that are inconsistent with this linear structure, making it
difficult for algorithms to reconstruct the true genomic structure. We, therefore

Fig. 1. Assembly graph of a simulated community consisting of 200 Kbp subsets of
Escherichia coli str. K-12 MG1655 and Staphylococcus aureus. Nodes are colored and
sized based on their relative betweenness centrality with larger, green nodes indicating a
higher centrality. The highlighted nodes are inter-genomic repeats whose deletion would
separate the graph. Note that the betweenness centrality measure correctly identifies
these nodes.
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propose an operational definition of genomic repeats as those nodes in the graph
that induce inconsistencies. This definition is orthogonal to depth of coverage
considerations - high coverage contigs that do not “tangle” the graph do not
impact assembly algorithms, while contigs that confuse the assembly need to be
removed whether or not they can be conclusively labeled as “high coverage”.

We have previously proposed an operational definition of repeats in terms of
betweenness centrality. This approach was implemented in the Bambus 2 [12]
scaffolder and is a key component of the MetAMOS metagenomic assembly
pipeline [24]. An example of the effectiveness of this approach in a simple com-
munity composed of two genomes is shown in Fig. 1. The full implementation
of betweenness centrality, however, requires an all-pairs shortest path computa-
tion which is computationally too intensive for typical metagenomic datasets. In
Bambus 2, for example, repeat finding in a typical stool sample requires days of
computation. To overcome this limitation, we demonstrate here that substantial
speed-ups can be obtained through the use of approximate betweenness central-
ity algorithms without sacrificing accuracy. We further extend this operational
definition of repeats by integrating a larger set of graph properties to construct
an efficient and accurate repeat detection strategy.

2 Related Work

Repeat Detection in Scaffolding

Scaffolding involves using the connectivity information from mate pairs to orient
and order pre-assembled contigs obtained from an assembler to reconstruct a
genome. This problem of orienting and ordering contigs was shown to be NP-
Hard [9]. Various scaffolding methods have been designed based on different
heuristics to obtain approximate solutions to the problem. However, all of these
methods face difficulties when dealing with contigs originating from repetitive
regions in the genome. A common strategy for handling repeats is to identify and
remove them from the graph prior to the scaffolding process, then re-introduce
them after the contigs have been properly ordered and oriented. Most of the
existing scaffolders use depth of coverage information to classify a contig as a
repeat. For example, Opera [4] and SOPRA [2] filter out as repetitive contigs
with coverage 1.5 and 2.5 times more than average coverage, respectively. The
MIP scaffolder [22] uses high coverage (greater than 2.5 times average) as well as
high degree (≥ 50) of nodes within scaffold graph to determine repeats. Bambus
2 [12] – a scaffolder specifically designed for metagenomic data – uses a notion
of betweenness centrality [1] along with global coverage information to find out
repeats.

Betweenness Centrality

In network analysis, metrics of centrality are used to identify the most important
nodes within a graph. Several metrics to measure centrality have been proposed,
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but in this work, we use betweenness centrality. The betweenness centrality of
a particular node is equal to the number of shortest paths from all nodes to
all others that pass through that node. Intuitively, a node that is frequently
found on paths connecting other nodes is a potential repeat, as along a simple
path all nodes should have roughly the same centrality value. The algorithm
for computing exact centrality [1] takes Θ(mn) time on a graph with m nodes
and n edges. Several solutions were proposed to overcome this computational
cost of computing network centrality, including and exact massively parallel
implementation [16], and an approximate solution based on sampling a subset of
the nodes [6]. Recently, a better parallel approximation algorithm was proposed
by Riondato and Kornaropoulos [21] which uses a strategy for sampling from
among the shortest paths in the graph to compute betweenness centrality. The
size of chosen sample of paths can provide provable bounds on the accuracy of
the centrality value given by the algorithm. The sample size is determined as a
function of an approximation factor ε and the diameter of the graph.

3 Methods

Construction of Scaffold Graph

A scaffold graph is defined as a graph G(V,E), where V is set of all the contigs.
The edges represent links between the contigs inferred from read pairing infor-
mation – if the opposite ends of a read pair map to different contigs we can infer
the possible adjacency of these contigs within the genome. Since most genome
assemblers do not report the location of reads within contigs, we infer this infor-
mation by mapping using bowtie2 [13]. Experimental library size estimates are
often incorrect, and we re-estimate here the distance between the paired reads
from pairs of reads mapped to a same contig. We record the average insert size
l and standard deviation σ(l) within a library. For each pair of contigs we retain
the maximal set of links that are consistent in terms of the implied distance
between the contigs for each implied relative placement of the contigs. Since
contigs can be oriented in forward or reverse direction depending on the ori-
entation implied by mapped mate pairs, there exist 4 possible orientations of
adjacent contigs (forward-forward, forward-reverse, reverse-forward and reverse-
reverse). For each of the possible relative orientation, we need to find a maximal
set of consistent links implying that orientation. This set can be identified in
O(nlogn) time using an algorithm to find maximal clique in an interval graph
[20]. The distance between the contigs implied by the resulting “bundle” of links

has mean l(e) =
∑

l
σ(l)∑ 1

σ(l)2
and standard deviation σ(l) = 1

1
σ(l)2

, as suggested by

Huson et al. [7].

Orienting the Bidirected Scaffold Graph

The scaffold graph derived from the process outlined above is birected [17]. It
can be converted into a directed graph by assigning an orientation to each node,
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reflecting the strand of the DNA molecule that is represented by the correspond-
ing contig. In computational terms, we need to embed a bipartite graph (the two
sets corresponding to the two strands of DNA being reconstructed) within the
scaffold graph. In the general case, such an embedding is not possible without
removing edges in order to break all odd-length cycles in the original graph. Find-
ing such a minimum set of edges is NP-Hard [5]. We use here a greedy heuristic
proposed by Kececioglu and Myers [9] which achieves a 2−approximation and
runs in O(V + E) time.

Repeat Detection Through Betweenness Centrality

We start by calculating centrality values for all the nodes in the graph using
either an exact or approximate centrality algorithm as outlined in the intro-
duction. Let μ be the mean and σ be the standard deviation of the resulting
centrality values. A contig is marked as repeat if its centrality value is greater
than μ+3∗σ. This cutoff criterion is the same as the one used in Bambus 2. We
have also experimented with other definitions of outliers (such as interquartile
range), however the original definition used in Bambus 2 performed better than
the interquartile range cutoff (data not shown).

Repeat Detection with an Expanded Feature Set

Centrality is just one of the possible signatures that a node in the graph “tangles”
the graph structure, making it harder to identify a correct genomic reconstruc-
tion. At a high level, one can view centrality to relate to difficulties in ordering
genomic contigs along a chromosome. The orientation procedure outlined above
provides potential insights into contigs that may prevent the correct orientation
of contigs – contigs adjacent to a large number of edges invalidated by the ori-
entation procedure are possible repeats. Other potential signatures we consider
include the degree of graph nodes (highly connected nodes are potential repeats)
as well as abrupt changes in coverage between adjacent nodes. The latter infor-
mation is defined as follows. For each contig we capture the distribution of read
coverage values. We then use a Kolmogorov-Smirnov test [15] to identify pairs of
contigs that have statistically different distributions of coverage values. We flag
all edges that exceed a pre-defined p-value cutoff (in the results presented here
we simply use 0.05). We combine these different measures (contig length, cen-
trality, node degree, fraction of number of edges invalidated by the orientation
routine that are adjacent to a node, fraction of number of edges with abrupt
changes in coverage, and ratio of contig coverage to average coverage) within a
Random Forest classifier [14].

To generate training information for the classifier we aligned the contigs to
an appropriate set of reference genomes using MUMmer [3] dependent on the
data being assembled, and flagged as repetitive all contigs that had more than
one match with greater than 95 % identity over 90 % of the length within the
reference collection.
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4 Results

Dataset and Assembly

To test our methods, we used a synthetic metagenomic community dataset (S1)
by Shakya et al. [23] that was derived from a mixture of cells from 83 organisms
with known genomes. Reads in the datasets were cleaned and trimmed using
Sickle [8]. Assembly was performed using IDBA-UD [19] with default parameters.
The assembly of S1 yielded 47,767 contigs.

Extended Feature Set Improves Repeat Detection

We trained a Random Forest classifier that takes into account the various mea-
sures outlined above as follows. We simulated a low coverage (10x) dataset using
a read simulator provided with the IDBA assembler from the set of 40 genomes
downloaded from NCBI1. We constructed contigs from the simulated reads and
mapped them to reference sequences to identify which contigs are repetitive
(have ambiguous placement in the reference set). We used this information to
train the classifier, then used the resulting classifier to predict repeats within
the synthetic community S1 described above. As can be seen in Fig. 2 the accu-
racy of the classifier based on multiple graph properties is higher than that of
approaches that rely on just coverage as a criterion to classify a contig as a
repeat. Classification of repeats using approximate centrality provides higher
specificity compared to the coverage approach at the cost of slightly lower sensi-
tivity. The Random Forest approach leverages the advantage of high sensitivity
from the coverage approach and high specificity from the centrality approach
along with some additional features to provide better overall classification.

Important Parameters in Determining Repeats

We further explored the features of the data that contribute to the better per-
formance of the classifier. In Fig. 3 we show the contribution of each feature
to the classifier. The length of contigs, factor not usually taken into account
when detecting repeats, appears to have the largest influence. This is perhaps
unsurprising as repeats confuse the assembly process as well, fragmenting the
assembly. In other words, longer contigs are less likely to represent repetitive
sequences. The second most important features is the fraction of edges adjacent
to a contig that indicate an abrupt change in coverage. Contigs with unusual
coverage in comparison to their neighbors can also be reasonably assumed to be
repetitive. Centrality was the third most important factor, as expected. Perhaps
surprising, overall depth of coverage or node degree are not as important as fea-
tures despite these measures being among the most widely used signatures of
“repetitiveness” by existing tools.

1 ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.fna.tar.gz.

ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.fna.tar.gz.
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Fig. 2. Plot for comparison of Random Forest classifier with the coverage and centrality
approach. The red circle in the plot indicates the sensitivity and specificity obtained
by using the Random Forest approach. The black square in the plot indicates the
sensitivity and specificity obtained by using Bambus 2.

Comparison of Incorrectly Oriented Pair of Contigs

Beyond testing the simple classification power of different approaches, we also
evaluated the different methods in terms of whether the removal of nodes marked
as repeats makes the scaffolding process more accurate. Specifically, we explored
how different repeat removal strategies affect the contig orientation process. The
scaffold graph for the S1 dataset had 21,950 nodes and 31,059 edges. We removed
the repeats reported by the different methods from this graph and oriented the
resulting graph. We then tracked the accuracy of the results in terms of the
number of edges that imply a different relative orientation of the adjacent nodes
than the correct one, inferred by mapping the contigs to the reference genomes.
Here the relative orientation can either be same if both the contigs on the edge
have same orientation (forward-forward and reverse-reverse) and different if the
contigs on the edge different orientations (forward-reverse and reverse-forward).
The results are shown in Table 1. The centrality based methods and the Random
Forest classifier based methods resulted in lower error rates and retained a higher
percentage of the edges in the original graph than coverage based methods.

Comparison of Runtime with Bambus 2

The results above show that Bambus 2 has, unsurprisingly, a similar level of
accuracy with the approximate centrality approach. We have already mentioned,
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Fig. 3. Importance of features used in Building Random Forest classifier

Table 1. Number of correctly and incorrectly oriented links in scaffold graph using
various repeat removal strategies. The % correct column represents the percentage of
correctly oriented links as a function of the total number of edges in the original scaffold
graph. % wrong column represents the percentage of incorrectly oriented links in the
graph obtained by removing repeats.

Method Correct Wrong % correct % wrong

Bambus 2 12042 867 38.77 % 4.11 %

Approximate betweenness centrality 12336 917 39.71 % 3.94 %

Coverage (MIP, SOPRA) 3840 315 17.49 % 4.72 %

Coverage (Opera) 2007 165 6.46 % 5.62 %

Random forest 12255 807 39.45 % 3.52 %
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however, that Bambus 2 is inefficient on large datasets. To explore the efficiency
of the approximate centrality approach, we used a real metagenomic dataset
(SRX024329 from NCBI) representing sequencing data from the tongue dorsum
of a female patient. Assembly of these reads was performed using IDBA yield-
ing 106,380 contigs in total. The scaffold graph constructed from these contigs
had 112,502 edges. The ‘MarkRepeats’ module of Bambus 2 took almost 2 h to
detect repeats, whereas the approximate betweenness centrality algorithm found
repeats in approximately 5 min, a substantial improvement in speed without a
loss of accuracy as shown above. To compare the runtime with training of Ran-
dom Forest classifier, we trained the classifier on contigs in this dataset. Since we
did not have reference sequences for this dataset, we randomly marked a subset
of contigs as repeats and performed training. It took about 20 min to calculate
features and fit a classifier which was still faster than time taken by Bambus 2.

5 Discussion and Conclusion

Our prior work had introduced the use of network centrality as an approach
for detecting repeats in metagenomic assembly, a setting where coverage-based
approaches are often ineffective. This approach, implemented in the scaffolder
Bambus 2, was, however, inefficient for large datasets, fact that has limited its
use. Here we extend our original approach by incorporating multiple features
of the scaffold graph (including centrality) that may be signatures of repetitive
sequences within a Random Forest classifier. We also show that an approximate
calculation of network centrality based on the random sampling of paths obtains
similar accuracy as the full centrality computation at a fraction of computational
time.

Our results demonstrate that methods that directly capture the effect of
repeats on the assembly graph are more effective at detecting repeats than indi-
rect measures such as depth of coverage, particularly in the context of metage-
nomic assembly. Our new approach improves in both accuracy and efficiency
over existing methods for repeat detection, and we plan to incorporate it within
the MetAMOS metagenomic assembly pipeline as a replacement for the exisiting
code within Bambus 2. We note that the classification accuracy was surprisingly
high despite the fact that the classifier was trained on purely simulated data yet
applied to real dataset. This underscores the robustness of the feature set we
have identified. At the same time the graph features that we have identified as
useful in detecting repeats are just a first step towards a better understanding
of the features of the data that most influence the ability of assembly algorithms
to accurately reconstruct metagenomic sequences. Also classifiers like Random
Forest can be implemented in parallel [18] which can provide significant runtime
speedups for large metagenomic datasets. We plan in future work to further
explore both the feature set and the approaches used to build and train the clas-
sifier to increase accuracy and ultimately improve the quality of metagenomic
reconstructions.
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