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Abstract

A number of approaches have been proposed in recent
years for social network de-anonymization, utilizing ei-
ther hand crafted tricks or knowledge of graph structure.
We propose a machine learning based approach that does
not assume any prior knowledge of the social graph’s re-
lation with the auxiliary graph. Apart from the generic
degree information feature, we include combination of a
variety of graph node metrics such as PageRank, Signed
Spectral Ranking etc. which help us to generalize and
scale better than the existing approaches. Our innova-
tions are: 1) the ability to handle negative weighted graph
with various newly applied SNG metrics and general-
ized diff expression; 2) two ScoreBoard selection al-
gorithms to ensure robust prediction of node mappings.

1 Introduction

In recent years, more and more public datasets involving
metadata of personal information have been emerging.
These data resources are gathered and shared by the net-
work owners, data holders or research communities for
the purpose of customized advertising, better recommen-
dation and conducting data mining research or contest
[3].

To release the data without violating the privacy of
users, the dataset has to be anonymized. Anonymiza-
tion refers to protecting the privacy of users by remov-
ing the personally identifiable information (PII) such as
names or demographic information. However, mere re-
moval of PIIs is not strong enough in front of an deliber-
ate attacker with auxiliary information of the metadata.
The attacker here wants to recover or recognize the sen-
sitive data that has been removed. This process is called
de-anonymization.

Among all the datasets, we are especially interested
in social network graphs (SNG). The social network
graph consists of nodes and edges and information

associated with each graph and edge. So, existence of
an edge between two nodes can provide information
about the two nodes, the information can be confidential
e.g. sexual orientation. Hence, protecting the personally
identifiable information is of utmost importance. The
recovery of such identity is also called user identification
in social media research [15]. In this project, we are
trying to build a framework to analyze privacy and
anonymity in social networks and a re-identification
algorithm targeting anonymized social networks.
We implement a seedless machine learning model
that generalizes and scales better since we incorporate
multiple features of the nodes in the social graph. This
does not assume any prior knowledge of the mappings
between anonymized social network graph and the
auxiliary graph and hence is more practical to use. With
extensive features of the nodes, we are able to handle
signed and directed graphs along with the undirected
graphs. Another key contribution of our approach is to
introduce the ScoreBoard-family selection algorithms to
make our predictions more stable.

2 Background

2.1 Social Network Graph
A social network graph S= (G,X,Y), where

G = (V, E) is a direct graph with a set of nodes V
and a set of relations/edges based on these nodes
E ⊂V ×V ,

X is a set of attributes depicting information for
each node,

Y is a set of attributes containing information on
each edge.

In a social network, each node is a person and the edge
between two nodes is their relationship. If an attacker



can recognize a node v in the released data, the sensitive
personal information of the node v in X, and the infor-
mation about the relationship of node v and its neighbors
in Y is consequently exposed.

2.2 Anonymization Scheme
Anonymization of SNG is generally done in the follow-
ing 3 schemes:

Clustering-based schemes: In clustering based
schemes, we don’t care about the relation and inter-
play between the nodes and hence, multiple nodes
are grouped together. However, this restricts the po-
tential researches due to the fact that we are ignor-
ing the relation and interplay between the nodes. [4]
introduces one such privacy-preserving scheme.

k-Anonymity based schemes: This scheme en-
sures that a node is distinguishable from k−1 other
nodes. However, it is of little use to protect high-
dimensional datasets and is known to be NP-hard.

Perturbation-based schemes: Certain nodes and
edges are modified so that they are not easily re-
coverable from the raw map. We will adopt this
scheme because neither it aggregates the nodes as
clustering-based does, nor it is too complex.

2.3 Attacking Scheme
Based on whether the attacker has the knowledge of
some identity in the released data, there are two types
of attacking schemes.

Seed-based attacks. Seeds are nodes in the graph
that are known or easily recovered mappings across
public data and auxiliary information with prior
knowledge. The revelation of the neighboring
nodes is propagated iteratively from these seeds [5].

Seedless attacks. Seedless attacks generally use
structural correlation to find mappings. It doesn’t
require the attacker to tune parameters and invent
handcrafting heuristics which are needed for the
seeds. We want to employ this kind of attack by
transferring the problem into a learning task of clas-
sifying a pair of nodes as identical or non-identical.

3 Related Work

3.1 Threat Model
The threat model has been fully developed and discussed
in [11]. In this most widely-used and practical model,
the adversary has access to an auxiliary graph which is

used as the side information to re-identify individuals in
a sanitized graph. The adversary is simulated by sam-
pling overlapping graphs from a large social graph. The
data holders sanitize the graphs prior to publishing them
by removing all identifying information and adding noise
via edge-manipulation. The sampling generates auxiliary
and sanitized graphs from the original graph. The simu-
lation process will be discussed in subsection 4.1.

3.2 De-Anonymization as Classification

A similar seedless machine learning based approach has
been taken in [13] and [12] where random forests ma-
chine learning model have been used for deanonymiza-
tion. The learning task is to classify a pair of nodes se-
lected at random from Gsan and Gaux as identical or non-
identical. A node’s feature vector has been defined using
it’s neighborhood degree distribution. The Neighbors of
a graph node is split into two categories, 1-hop nodes and
2-hop nodes, with the shortest distance between a node
and its 1-hop and 2-hop Neighbors being one and two re-
spectively. The feature vector then consists of quantized
neighborhood degree distribution. Each bin contains the
count of nodes that have degree in a given range.

The model is then trained in the absence of ground
truth data by splitting Gsan and Gaux. For classification,
the node features are extracted from the test data pair and
passed through a random forest classifier with 400 esti-
mators, which assigns probability of being identical to
the node pair.

3.3 Graph Node Metrics

Apart from degree information, we can apply many
graph node metrics from existing social network litera-
ture [7]. A node metric is a function F : V → R that
measures the importance of a node. These metrics can
be applied to nodes in directed, signed weighted graphs.
Here are some metrics we employ in this project:

Fans Minus Freaks (FMF)[8]. It is defined as the
total positive incoming weights minus the total neg-
ative incoming weights.

PageRank (PR). PageRank [2] was originally de-
signed to measure the importance of web pages
given the reference of one page to another. The

2



PageRank of a node u is defined as

PR(u) =
1−δ

|V |
+δ ∑

{v|(v,u)∈E}

PR(v)
|{w|(v,w) ∈ E}|

where δ is the damping factor taken to be 0.85 here.

A modified PageRank value (modPR) of a node v
is PR(v,G+)−PR(v,G−) where G+ is the subgraph
with only positive edges and G− is the subgraph
with only negative edges.

Signed Spectral Ranking (SSR). Built upon
PageRank. SSR [8] is the dominant left eigenvec-
tor of the signed adjacency matrix A of the graph.
Then the SSR for a node can be extracted the corre-
sponding component from the vector.

Signed Eigenvector Centrality (SEC). Similar to
SSR, SEC [1] of a node v can be grabbed from the
vector x that satisfies the equation Ax = λx, where
A is the signed adjacency matrix, λ is the greatest
eigenvalue.

4 Approach

4.1 Public and Auxiliary Data Simulation

For ethical issues, we use freely available and open social
network datasets specifically published for research by
the relevant organizations. We use Enron email exchange
history dataset from Stanford Large Network Dataset
Collection (SNAP) [9], for this project. Enron dataset
has been widely used by previous researchers on de-
anonymization experiments [6], an undirected graph G
with nodes = 36,692 and edges = 183,831. We sample
graph G to generate overlapped G sanitized - Gsan and
G auxillary - Gaux, to simulate the public data and at-
tacker’s auxiliary information respectively. This process
can be illustrated by the following graph [14].

Set the node overlap parameter αV , so for every node
in the original graph, there is a chance αV that the node
will be common in Vsan and Vaux. If it is not, then it will
equally likely appear either in Vsan or Vaux but not both.

Set the edge overlap parameter αE , which indicates
the sanitization done by the releaser, i.e. edge pertur-
bation, as well as the incomplete or error in attacker’s
auxiliary knowledge. For all edges in the original
graph, first project it on Vsan and Vaux respectively and
independently. Then at a chance of 1−αE

1+αE
it will be

deleted in Vsan, at a chance of 1−αE
1+αE

(same probability
but independently) it will be deleted in Vaux.

In the Enron dataset we pick αV = 1 and αE = 0.43 as
in others’ work [6, 12] .

4.2 Feature Extraction

For a node v in graph G, denote Feat(v,G) to be the
feature vector of v with respect to G.

To measure the importance of a node in a graph, fol-
lowing are the metrics as introduced in subsection 3.3:
Metrics(v) = {Deg(v), FMF(v), PR(v),

ModPR(v), SSR(v), NR(v), SEC(v),

PolarityRank(v), PolarityRankNN(v)}
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Next, we define the domain of the node v, meaning
nodes with following relations to node v will appear in
the feature vector of node v:
Domain(v) = {ego(v), 1-hop-Neighbors(v),

2-hop-Neighbors(v)}
where ego(v) = {v},
1−hop−Neighbors(v) = {u|(v,u) ∈ E)},
2−hop−Neighbors(v) = {u|(v,w) ∈ E,(w,u) ∈ E}

Then the feature vector of node v, Feat(v), contains
avg{f(u)} for every f ∈ Metric and u ∈ Domain(v),
namely the average of the set of the operator Metrics(v)
applied on each set of Domain(v). So for current metrics
we use, there are 27 features for a node.

4.3 Pairwise Data for Classification
After we have Feat(V1,G1) and Feat(V2,G2), we want
to generate the pairwise dataset either for training or for
testing. So we have to pick a node v1 in V1 and a node
v2 in V2, compare the difference between their feature
vectors and feed this information into the model.

Feature Difference. To write the pair into a line of
training/testing data, we first compute the feature vec-
tor pairs Feat(v1) and Feat(v2), and write the dif-
ference measurement of the pair as a field/attribute.
Say the corresponding fields in the feature pair ( f1 =
Feat[v1][i], f2 = Feat[v2][i]). Intuitively the more
similar f1 and f2, the higher likely the two nodes
are identical. We create the difference function
diff(f1,f2) =

|f1−f2|
max(|f1|,|f2|) based on the Silhouette Co-

efficient used in [12]. Our innovation is out of the fact
that we use negative-value features and this variation
generalizes the difference/similarity measurement to R−.

Finally, there is another attribute, training goal
∈ {0,1} indicating the ground truth of whether this pair
is an identical pair or not, fed into the model.

PairTrain(G1,G2). To generate the training data, for
each node in G1, if it also appears in G2, we write this
positive pair to the training data, as well as In randomly
selected negative cases paired with it to the training data.
This has (1+In) lines; If it does not appear in G2, we pair
it with NIn randomly selected negative cases and write to
the training data. This has (NIn) lines.

This will yield the positive-negative training ratio
αV

αV×In+(1−αV )×NIn
.

Overall, we have 27,586 identical examples (positive
cases) and 1,487,104 non-identical examples (negative
cases), with parameter In = 50 and NIn = 30, this is an
unbalanced dataset, but we is actually more balanced
than that used in [12].

PairTest(G1,G2). To generate the test data, we enu-
merate all possible pairs of G1 and G2. There are
|G1| · |G2| such pairs, each pair will be output in the form
of feature difference. The reason for complete pairing is
that for node mapping, i.e. pick the highest output from
all pairs of v1 to get its mapping node in V2, see subsec-
tion 4.6 for information on node mapping.

4.4 Feasibility Test
In our initial attempt, we tested the feasibility of this
approach by training an ideal model - ground truth is
known. We had 27,586 identical examples (positive
cases) and 1,487,104 non-identical examples (nega-
tive cases). We randomly shuffled and split the data
int 80% train and 20% test. We trained a random
forest classifier with 100 estimators. The precision
for identical pair is 1965

1965+471 = 80.7%. The recall for
identical pair is 1965

1965+3626 = 35.1%. Although we got
an accuracy of 1965+296876

1965+471+3626+296876 = 98.6%, it can
not be regarded as the accuracy of de-anonymization
since we focused too much on the prediction precision
and missed many deanonymizable nodes. The F1 score
is 2·precision·recall

precision+recall = 48.9%. So though our precision
80.7% beats the 41.91% accuracy (same meaning as
our precision) in the paper [12], this is an incomplete
comparison with little persuasiveness due to our low
recall.

4.5 Training Without Ground Truth
However the attempt above is an ideal setting and not
the practical scenario. In real world as an attacker, we
dont know any ground truth about the correspondence
between Gsan and Gaux. So, we need to split Gsan into
two overlapped sets to manually create correspondence
as the ground truth of training data. Similarly for Gaux.
The following graph from [14] demonstrates the process.

The attacker wants to split in the same way how Gsan
and Gaux are overlapped from G as much as possible
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(note that he doesn’t know the parameters nor the corre-
spondence). Hence, 1) the attacker needs a good estima-
tion of the overlapping parameter αV between his infor-
mation and the released data. We choose α ′V = 0.5 which
in worst case can differ 0.5 from the real value (αV = 1
from subsection 4.1 so this is the worst case). 2) α ′E = 0.
Edge perturbation is unnecessary to perform again be-
cause the two splits (G′aux,G

′
san),(G

′′
aux,G

′′
san) originally

have perturbed edges across them, which is confirmed
by Sharad1.

4.6 De-Anonymization
After we test the model with PairTest(Gsan,Gaux), we’ll
have a confidence value for each node pair being a true
mapping. i.e. for a node v1 in Gsan, we’ve evaluated the
probability of it pairing to each node in Gaux. In this
prediction array of probability (let’s call it PAP(v1)), if
we just choose max

u∈V2
PAP(v1,u) as the output match, the

result will be unstable because our pair identical-or-not
prediction error is amplified in this process.

Inspired by [10] in de-anonymizing users in Netflix
by picking the most similar users from public records on
IMDB, they came up with a ScoreBoard-RH algorithm,
where they only output the match with highest score if
the second highest score is relatively low. We modify
this algorithm to best fit the property of our prediction
array of probability (PAP). This is so because in [10] ,
ScoreBoard-RH requires that the max score is signifi-
cantly higher than the second score.

ScoreBoard-THR(THR, size). Candidates are pair
matches with certain threshold.

candTHR = {u|PAP(v1,u)> THR}.

If |cand| <= size, match v1 with the one with highest
probability in PAP(v1).

ScoreBoard-ECC(ECC, size). Candidates are pair
matches with certain eccentricity.

candECC = {u|PAP(v1,u)> E[PAP(v1)] ·ECC}.

If |cand| <= size, match v1 with the one with highest
probability in PAP(v1).

1In his email ”Well it is hard to produce exactly similar data, but
given the perturbed datasets splitting graphs to produce training sam-
ples gives you something similar. Please note that perturbing G′aux,
G′san, G′′aux and G′′san would introduce yet another change to their neigh-
bourhood and depending upon the perturbation scheme might lower
node degree too much, which would make them useless. Ideally you
would like a fresh graph and then split it and then perturb each of the
split graphs. Here we try to get close to that by just splitting graphs
which have already been perturbed, namely Gaux and Gsan.”

We use the ScoreBoard-THR(THR, size) and
ScoreBoard-ECC(ECC, size) on the dataset. We
couldn’t achieve that as those PAP score varies little
and the desired match could not outstand. So the
prediction is only made if the high-score-group contains
less than size (a parameter) candidates. For example,
ScoreBoard-THR(THR=0.6, size=10) will only output
the highest match if there are less than ten matches
with score greater than 0.6. Otherwise prediction
will not be made to avoid losing accuracy. Likewise
ScoreBoard-ECC(ECC=5, size=10) will only output the
highest match if there are less than 10 matches with
score greater than 5 times average match score.

5 Multi-Pass Experiment

The idea for node identification is to re-identify high
degree nodes first and use them to identify low degree
nodes. Different from [12] where they use 3-phase seed-
less attack (3PSL) with thresholds t1 = 25, t2 = 9, t3 = 2,
we consider only two passes with the first pass aiming at
nodes with degree in the 5% highest percentile. For each
pass, a specific random forest model is trained.

For simplicity, we define a subgraph function
HighDeg : G→ G containing only the nodes with degree
in 5% highest percentile and their corresponding edges.

5.1 First Pass

As mentioned in subsection 4.5, we train the
first-pass model with training data from graph
G′san, G′aux, G′′san, G′′aux.

Because the model will be tested on nodes in Gsan
and Gaux with degree in the 5% highest percentile i.e.
PairTest(HighDeg(Gsan), HighDeg(Gaux)). We come up
with two training scheme:

Scheme 1: Training with G′san,G
′
aux and G′′san,G

′′
aux :

PairTrain(G′san, G′aux) + PairTrain(G′′san, G′′aux).
Scheme 2: Training with High Degree Nodes in
G′san,G

′
aux and G′′san,G

′′
aux :

PairTrain(HighDeg(G′san), HighDeg(G′aux)) +
PairTrain(HighDeg(G′′san), HighDeg(G

′′
aux)).

The classification Receiver Operating Characteristic
(ROC) curves for the two schemes are as follows:
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(a) ROC curve for scheme 1 (b) ROC curve for scheme 2

The difference between the results of the two schemes
are insignificant. However, we continue the experiment
with scheme 1 since scheme 2 has an added layer of work
to find the highest degree nodes.

Feature ranking. Every feature contributes nearly
equally. The number on the x-axis is divided by 3, if the
remainder is 0 then it’s a metric on ego; if the remainder
is 1 then it’s a metric on 1-hop Neighbors. From the first
few rankings we could see 1-hop features being the most
important features.

After the classification we get PAP(v) for each node
v ∈ Gsan. Then we want to match pairs with high confi-
dence like described in subsection 4.6

The graph below is the result of applying ScoreBoard-
THR with different THR and size.

ScoreBoard-THR(THR,size), with THR ∈
[0..0.8],size ∈ [0..20]. Each colored point is a
feasible solution with such parameters, reaching x-axis
of precision and y-axis of recall

The graph below is the result of applying ScoreBoard-
ECC with different ECC and size.

ScoreBoard-ECC(ECC,size), with ECC being some val-
ues from [1..40],size ∈ [0..20]. Each colored point is
a feasible solution with such parameters, reaching x-axis
of precision and y-axis of recall

As expected, when we traverse different combinations
of parameters, the precision-recall trade-off should show
a graph of negative correlation. From the two figures
above, we can see ScoreBoard-THR gets a better silhou-
ette of the precision-recall trade-off. So we pick the so-
lution (point in the ScoreBoard-THR graph) maximizing
(recall+precision) to continue on the second pass. This
solution will output matches with around 0.5 precision
and 0.075 recall.

5.2 Second Pass
The training data for the second pass also comes from
G′san, G′aux, G′′san, G′′aux.
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But this time for each node v ∈ V ′san ∩ V ′aux, we do
PairTrain(Neighbors(v,G′san), Neighbors(v,G′aux)).
Same goes for G′′san, G′′aux.

The classification Receiver Operating Characteristic
(ROC) curve for the second pass:

One can see that the precision drops dramatically due
to error propagation: If we matched a false pair (u,v)
in the output of first pass match, we will never find a
match in (Neighbors(u),Neighbors(v)) in most cases.

The ScoreBoard-THR and ScoreBoard-ECC for sec-
ond pass are shown below.

(c) ScoreBoard-THR for second pass (d) ScoreBoard-ECC for second pass

Due to the errors of first pass prediction, as well as the
heterogenity of the training/testing data of second pass,
the precision and recall both are very low in the second
pass phase, which means that because of the errors in first
pass prediction, using the nodes re-identified in first pass
phase (higher degree nodes) is not helpful to re-identify
nodes in the second pass.

6 Conclusion

The seedless machine learning model we implemented
generalizes and scales better since we incorporate multi-
ple features of the nodes in the social graph. Also, since
this does not assume any prior knowledge of the map-
pings between anonymized social network graph and the

auxiliary graph, this makes it more practical to use. Fur-
thermore with these extensive features of the nodes, we
are able to handle signed and directed graphs along with
the undirected graphs. Another key contribution of our
approach is to introduce the ScoreBoard-family selection
algorithms to make our predictions more stable.
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List of Abbreviations and Symbols

SNG social network graph
Gsan sanitized data publicly released
Gaux auxiliary data in attacker’s knowledge
Neighbors(v,G)

set of nodes in graph G having an edge
from v, G will be omitted if obvious in con-
text

Feat(v,G) feature vector of node v w.r.t graph G
PAP(v) the arrays of probability output by our

model for a given node v in G1 with every
node in G2

candTHR the set of candidate nodes filtered from
ScoreBoard-THR

candECC the set of candidate nodes filtered from
ScoreBoard-ECC
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