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Abstract

From coordinating robotic warehouses to managing autonomous vehicle fleets, agents in a Multi-Agent System
(MAS) must understand and predict the interactions of multiple agents within the world. While feature-engineered
World Models (WMs) perform well in controlled environments and learned WMs show promise in single-agent
scenarios, both struggle with complex, high-dimensional multi-agent dynamics. This survey introduces a frame-
work to help practitioners select and implement Multi-Agent World Model (MAWM) approaches based on their
specific multi-agent needs. It provides actionable guidelines while identifying key research challenges in scaling,
distributed consistency, and task-agnostic transfer. The work synthesizes recent advances in MAWMs offering a
roadmap for future research in multi-agent systems.

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 World Modeling Background . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Single-Agent Feature-Engineered Models . . . . . . . . . . . . . . . . . . . 4
2.2 Multi-Agent Feature-Engineered Models . . . . . . . . . . . . . . . . . . . 5
2.3 Single-Agent Latent Models . . . . . . . . . . . . . . . . . . . . . . . 6

3 MAWMs Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Architectures for MAWMs . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Learning Objectives in MAWMs . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Applications of MAWMs. . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Selecting and Implementing MAWMs . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 When to Use MAWMs . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 MAWM Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A Survey Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.1 Survey Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 Related Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.3 Generative AI Usage Statement . . . . . . . . . . . . . . . . . . . . . . 33

B Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction
Multi-Agent Systems (MASs) power numerous applications from autonomous vehicle fleets [47] to multi-robot manip-
ulation [12]. These applications rely on accurate World Models (WMs) [118] to predict and manage the interactions
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between agents, but traditional feature-engineered approaches are limited by human knowledge. Richard Sutton’s
Bitter Lesson [104] teaches readers two things: (1) the world is intractably complex and (2) feature engineering
will inevitably lose to the computational scaling of learning and search. This necessitates the creation of learned
WMs to perform in environments with complex, coupled dynamics, where agents must predict and adapt to each
other’s actions [45]. Recent advancements in single-agent learned WMs [35, 37, 38] offer a compelling alternative by
leveraging data-driven techniques to model these interactions more effectively. However, adapting these single-agent
techniques to MASs requires the development of Multi-Agent World Models (MAWMs) to develop learning objectives
and architectures that account for multiple WMs communicating across a network to collectively solve problems.
This survey is aimed at researchers and practitioners in MASs, particularly those tackling environments with com-
plex, dynamic interactions and looking for improvements in sample efficiency, task performance, generalization, and
more. Readers will gain an in-depth understanding of the latest approaches in learned WMs, practical guidelines for
selecting and implementing these models, and insights into key trade-offs and open challenges in the field.

To motivate the need for multi-agent world models, consider first a simple scenario: two quadcopters must coordinate
to move a single, heavy payload from point A to point B. Even in this setup, the system exhibits complex dynamics:
quadcopter downwash affects neighboring vehicles, communication delays introduce information asymmetries, and
joint lift requires precise synchronization to maintain payload stability. Traditional methods such as single-agent
models or hand-coded swarming rules [92] struggle because they require explicit modeling of these effects, which
is intractable in real-world conditions. Scaling this up to a disaster-response setting—where a fleet of quadcopters
must locate survivors, navigate unstable terrain, and transport medical supplies—further exposes the complexity.
In addition to delicate aerodynamic couplings and tight joint state prediction, each agent sees only local regions
of a cluttered environment, and damaged infrastructure severely limits communication, making centralized control
difficult or impossible. While one might attempt to address these multi-agent dynamics by painstakingly engineering
features—for example, rules encoding how propeller wash or payload configurations affect neighbors—this quickly
becomes infeasible in the face of changing conditions, partial observability, and emergent behaviors. Learned world
models offer a more powerful alternative by discovering implicit couplings directly from data and adapting to new sit-
uations without constant human intervention. They leverage latent representations to capture complex dependencies
among agents, enabling robust performance under partial information and limited connectivity. Although distributed
control strategies remain essential for certain aspects of coordination, their reliance on well-defined system equations
often falls short in disaster scenarios characterized by uncertainty and rapid change, making learned world models a
crucial tool for operating effectively in these challenging environments.

This survey delivers the first in-depth analysis of learned WMs for MASs, presenting an analytical framework that
clarifies when and how to use MAWMs effectively. Through an exploration of the current approaches, it defines the
fundamental trade-offs in multi-agent world modeling, showing how choices in WM design can influence parameters
such as scalability, communication efficiency, and coordination effectiveness. The survey also identifies critical open
challenges, such as scaling models to handle large groups of agents, building task-agnostic representations, maintaining
consistency in distributed settings, and providing agents with formal guarantees. Together, these insights aim to
bridge the gap between research advancements and real-world implementation.

The rest of the paper is organized to guide readers through these ideas. It begins with background on classical and
single-agent WMs, setting the stage for understanding how MAWMs differ (Section 2). MAWMs are introduced
next, along with an analysis framework, which examines various architectural approaches, learning objectives, and
real-world applications of MAWMs (Section 3). The paper teases apart practical insights into the costs and benefits
of different design choices (Section 4). Finally, it concludes by identifying open challenges and offering directions for
future research, with the goal of advancing scalable and reliable MAWMs for complex, real-world systems (Section 5
and Section 6). The appendices contain supplementary material including the survey methodology (Appendix A.1),
related surveys (Appendix A.2), a generative AI usage statement (Appendix A.3), and acronym definitions (Ap-
pendix B).

2 World Modeling Background
Prior to examining MAWMs, it is crucial to understand the foundations of world modeling in general. A World Model
(WM) is a representation of an environment that allows agents to simulate interactions and dynamics to predict and
optimize their behaviors. To do this, WMs must perform two primary functions: 1) learning tractable representations
of system state from observations and 2) predicting the evolution of these representations over time. These functions
are generally split over three major components: an encoder module, a transition module, and a decoder module.
The encoder module maps a history of agent sensors and observations to world states (e.g., Simultaneous Localization
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Figure 1: Architecture of a model-based utility agent with a learned multi-agent world model. The diagram shows:
(1) a learned world model (left) that maintains internal representations of the environment’s state and dynamics,
(2) a communication system that coordinates with other agents, and (3) an execution system (right) that uses this
model for decision-making. The world model contains the current state estimate, how the environment evolves,
the effects of agents’ actions, and utility preferences. The execution system processes this knowledge through: (1)
understanding the current world state, (2) predicting future states after potential actions, (3) evaluating happiness
(utility) in those predicted states, and (4) selecting optimal actions. Two critical feedback loops enable continuous
learning and adaptation: (1) a learning loop that validates whether sensory inputs match the model’s predictions, and
(2) a planning feedback loop that refines actions based on expected outcomes. The agent connects to its environment
through sensors and actuators and to other agents through communications, forming a closed-loop control system.
This architecture enables the agent to simultaneously learn from experience, evaluate plans and actions using its
learned model, and adapt its behavior based on prediction accuracy and achieved utility. Image adapted from Russell
and Norvig [94].

and Mapping (SLAM) camera histories to point clouds [138], observations to latent histories in Recurrent Neural
Networks (RNNs) [44]). The transition module takes the encoded states and uses an action model to predict the
evolution of states over time. The decoder module then takes these predicted states and projects agent outputs (e.g.,
observations or rewards).

While expert-designed models have been used for decades—even before the advent of computers—recent advance-
ments in learning algorithms have shifted the focus toward agents that can learn these representations from data
[35, 37, 116]. Real-world environments are inherently complex and unpredictable [104], and agents are limited by
their finite computational resources. Learned WMs help bridge this gap by enabling agents to reason about and
predict their surroundings—making learning, decision-making, and problem-solving more efficient. Understanding
these foundations is essential for exploring how MASs can leverage learned WMs to address even greater challenges.

As shown in Fig. 2, world modeling research spans two key dimensions—agent count (single vs. multi) and repre-
sentation type (feature-engineered vs. latent)—creating four distinct "quadrants":

1. Single-agent feature-engineered models that leverage expert knowledge (Section 2.1);

2. Multi-agent feature-engineered models that extend expert structures to handle multiple interacting agents
(Section 2.2);

3. Single-agent latent models that learn representations without assumptions (Section 2.3); and

4. Multi-agent latent models - the focus of this survey and covered in subsequent sections.
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Figure 2: Research landscape across world modeling approaches. The quadrants show both research density (blue
shading) and key works in each category. While single-agent approaches and feature-engineered multi-agent ap-
proaches have extensive literature, multi-agent latent world models remain relatively unexplored—motivating this
survey.

The first three quadrants provide essential context and foundations for understanding modern latent MAWMs, which
this section examines prior to the remainder of the paper on learned MAWMs.

2.1 Single-Agent Feature-Engineered Models

Single-agent feature-engineered models represent an early cornerstone in the development of WMs, with roots tracing
back to control theory and expert-designed systems. These models use domain knowledge to craft representations
tailored to particular tasks, enabling accurate predictions, decision-making, and control. In feature-engineered ap-
proaches, the encoder, decoder, and transition model are all expert-designed based on an a priori understanding of
the problem. The encoder typically maps raw observations to predefined state variables (e.g., pose, velocity, world ge-
ometry) based on domain knowledge. The decoder reconstructs observations from these state variables using inverse
transformations or sensor measurement models. Depending on the domain, the transition model often takes the form
of either discrete or continuous differential equations describing system dynamics, such as linear state-space models
for simple systems or nonlinear equations for more complex dynamics. Early approaches often relied on handcrafted
mathematical descriptions of systems, and over time, advancements in control theory and artificial intelligence have
integrated expert insights with data-driven techniques to enhance effectiveness.

State-Space Models The Kalman filter [54] represents a seminal contribution to state-space WMs. It focuses
on estimating system states from noisy sensor measurements and a state-action transition model, and its variants
still endure to this day (e.g., [56]). HMMs [8] are important approaches that provide a probabilistic framework
for modeling sequential data with unobserved (hidden) states that generate observable outputs. While powerful
for sequence modeling, traditional HMMs learn the hidden states but require a known transition and observation
model. SLAM [16] represents a foundational approach to geometric world modeling that enables agents to construct
and maintain spatial representations of unknown environments while simultaneously tracking their position within
them. Classical SLAM systems integrate multiple control-theoretic elements: Kalman filtering for state estimation,
probabilistic models to handle sensor and motion uncertainties, and optimization techniques like bundle adjustment
or pose graph optimization to maintain global consistency. The success of SLAM in robotics and autonomous
systems demonstrates both the power of feature-engineered WMs and their limitations—while effective for geometric
mapping and localization, they typically rely on hand-crafted features and environment assumptions that may not
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generalize to more complex scenarios. While many of the above approaches provide provable guarantees [53], they
have limitations. Many assume highly abstracted models with simplifying assumptions that require a good inductive
bias (e.g., the Kalman filter assumes linearity and Gaussian noise; HMMs require a known state, transition, and
observation model, etc.), limiting their applicability to well-characterized problems (e.g., low-dimensional and known
system models).

Symbolic World Models Single-agent symbolic WMs form a cornerstone of classical artificial intelligence, pro-
viding structured representations of environments through discrete symbols and logical relationships. These models
typically employ formal languages like Stanford Research Institute Problem Solver (STRIPS) [28] or Planning Do-
main Definition Language (PDDL) [1] to encode states, actions, and transitions, enabling agents to reason about their
environment through symbolic manipulation. Building on classical planning foundations, approaches like Hierarchi-
cal Task Network (HTN) decompose complex goals into manageable subtasks, offering scalable solutions [26]. While
these symbolic approaches excel in domains with clear rules and deterministic outcomes, they often face challenges
in handling uncertainty and continuous state spaces, leading to hybrid approaches that combine symbolic reasoning
with probabilistic methods [52].

Data-Driven Feature-Engineering Approaches As research in Artificial Intelligence (AI) progressed, learned
WMs were developed to tackle increasingly complex, high-dimensional problems through data-driven approaches.
One foundational contribution is Dyna [105], which proposed an integrated framework for planning, learning, and
reactive execution in Reinforcement Learning (RL). Dyna used a learned state-action transition model to generate
"hypothetical" experience, allowing agents to simulate rollouts and improve sample efficiency through planning.
Building on control-theoretic foundations, advancements in adaptive control [79] and system identification [70] have
further improved predictions of system behaviors and have enabled more effective decision-making and control strate-
gies in complex, dynamic environments. Probabilistic Inference for Learning COntrol (PILCO) [20] uses a Gaussian
Process (GP) model to learn system dynamics from data. This synthetic data model aids in training a control policy
and the authors demonstrate its effectiveness on control tasks (e.g., inverted pendulum and cart-pole). However,
while effective for simpler, low-dimensional tasks, PILCO struggles with the challenges of scaling to high-dimensional
problems due to the cubic computational complexity of GPs (O(n3) with respect to the number of dimensions.
However, these approaches’ reliance on explicit state representations prove limiting in high-dimensional, continuous
environments. These limitations underscore the need for more scalable, flexible world modeling, and pave the way
for more modern approaches.

2.2 Multi-Agent Feature-Engineered Models

MASs predominantly rely on multi-agent adaptations of feature-engineered models that encode expert-specified
domain knowledge into explicit state representations and transitions. Multi-agent feature-engineered models are a
natural extension of single agent approaches, but multiple agents increase the complexity significantly, increasing the
probability that domain experts introduce biases, limiting assumptions, or oversimplifications. Similar to single-agent
approaches, the encoder, decoder, and transition models in multi-agent feature-engineered WMs are based on an a
priori understanding of the problem. The encoder must incorporate information from additional agents into the joint
encoded state, and the decoder reconstructs either global observations or local observations across agents. Finally, the
transition model must predict the evolution of the joint state given the joint action across the agents. Understanding
these classical approaches—along with their inherent scalability and adaptability limitations—is crucial to motivating
the transition toward learned MAWMs capable of discovering structure from rich, high-dimensional data.

State-Space Models Multi-agent feature-engineered models enable the calculation of consistent global states from
local observations. The distributed Kalman filter [84] extends single-agent optimal state estimation to multi-agent
systems, enabling each agent to maintain a local WM while sharing information with neighbors. Early approaches
explored sharing state estimates [84], sensor data and covariance [84], and hierarchical communication architectures
[67]. The consensus extended Kalman filter [7] further develops this approach for nonlinear systems, providing the-
oretical stability guarantees under network connectivity and collective observability conditions. Distributed HMMs
provide another approach to decentralized state estimation. Each agent maintains a local probabilistic model and
exchanges messages over communication graphs to form unified state estimates. These systems employ various infor-
mation fusion strategies: exact bookkeeping for precise but computationally expensive tracking, conservative fusion

5



for reliability at the cost of performance, or hybrid approaches like Tamjidi et al.’s integration of Iterative Conser-
vative Fusion (ICF) with consensus methods [107]. Multi-agent SLAM systems exemplify how feature engineering
leverages geometric constraints and sensor characteristics to build joint maps of the environment [138]. Classical
multi-robot SLAM factorizes the joint state into robot poses and landmark positions, applying optimization tools like
bundle adjustment or incremental smoothing to ensure global consistency. Working together in multi-agent SLAM,
agents can perform collaborative pose estimation, collaborative mapping, loop closure, feature extraction and match-
ing, outlier rejection, and system initialization. Despite their effectiveness in structured domains, these approaches
face fundamental challenges in scaling to large teams and dynamic environments. Their reliance on expert-defined
models limits their ability to capture complex real-world dynamics, particularly in scenarios heterogeneous sensors
or complex inter-agent interactions. Finally, Peddemors and Yoneki [88] proposed the integration of the above con-
cepts on a large scale through a distributed WM using probabilistic methods and cooperative sensing, where agents
maintain and share local data through peer-to-peer communication while validating against false information. The
framework employs compositional hierarchies to fuse multi-sensor data in a bottom-up manner, identifying frequent
spatio-temporal patterns to generate higher-level, symbolic knowledge from elementary sensor information.

Symbolic World Models Symbolic approaches to multi-agent world modeling have seen significant development
in cooperative multi-agent planning. A key framework is MA-STRIPS [13], which provides a minimalistic multi-agent
extension of the STRIPS planning model that enables modeling private and public information between agents. Build-
ing on this, several approaches have emerged including hierarchical methods like HTN planning for coordinating agent
teams [18, 106] and distributed versions of classical planners [80]. These symbolic frameworks enable representing
both the individual capabilities of agents and their shared knowledge and coordination requirements. For example, in
cooperative domains, HTN approaches leverage abstraction levels to enhance efficiency in coordinating agents’ plans
[106]. Recent work has focused on developing distributed heuristic functions that can guide multi-agent search [101,
139], enabling better coordination during plan generation. Additionally, other approaches have focused on developing
robust communication protocols [83], allowing them to share critical information during planning while managing
computational overhead. The symbolic nature of these models enables formal analysis of properties like completeness
[108], optimality [82], and privacy preservation [140]. However, these symbolic approaches face significant limitations
in complex real-world settings—they generally assume perfect abstractions, struggle with temporal reasoning, and
have difficulty scaling agents in real-time cooperative planning in dynamic environments [109]

2.3 Single-Agent Latent Models

While feature-engineering methods offered strong theoretical foundations, the emergence of deep learning enabled
simultaneous learning of model encoders, transition models, and decoders from high-dimensional data. In contrast
to approaches that identify parameters within a fixed model structure, latent models focus on learning relevant
representations of the world. The encoder maps observations into a learned latent space that captures relevant
features automatically, often using Neural Networks (NNs) to compress high-dimensional inputs into compact vector
representations. The decoder learns to reconstruct observations from these latent variables, discovering an efficient
compression of the essential dynamics. The transition model operates entirely in this learned space, predicting how
latent states evolve over time without requiring explicit physical equations or domain knowledge. This data-driven
approach enables latent models to handle complex, high-dimensional environments where manually designing models
would be impractical.

Koopman Models An early latent model was the Koopman operator [61]: a transformation that maps a low-
dimensional, non-linear problem into a infinite-dimensional, linear space. This transformation allows the application
of linear control techniques, which are well understood and computationally efficient, to otherwise intractable nonlin-
ear systems. Classical Koopman approaches have been successfully applied to problems in fluid dynamics, robotics,
and control [73, 74], where identifying global, linear representations of complex dynamics enables predictive modeling
and controller design. Modern extensions of Koopman theory incorporate deep learning to handle high-dimensional
data and expand its applicability. NNs are often employed to learn mappings (i.e., "lifting functions") that embed
nonlinear dynamics into approximate finite-dimensional linear spaces. For instance, Li et al. [68] proposed a method
combining deep NNs with Koopman operators, demonstrating success in applications such as flexible objects and
swimming robots.
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Early Latent Models With the early successes of deep learning, authors began applying that to the creation of
learned latent WMs for improved RL and optimal control. Embed to Control (E2C) [116] addresses the challenge of
mapping high-dimensional worlds to a reduced-order model through a Variational AutoEncoder (VAE) framework
that learns image-based reconstructions from forward latent predictions. E2C introduced two key innovations: (1) a
VAE architecture that explicitly constrains the latent space to be locally linear for control, and (2) a Kullback-Leibler
(KL) divergence term that enforces consistency between predicted and encoded states, enabling stable long-term
predictions. The model demonstrated strong empirical performance on visual control tasks including pendulum
swing-up and cart-pole balancing, both establishing an important benchmark for and inspiring subsequent works
(e.g., PlaNet [36] and Dreamer [37]). While similar to E2C, Stochastic Optimal control with LAtent Representations
(SOLAR) differs from other latent WMs by jointly optimizing its representation to make local linear-Gaussian
dynamics models more accurate, rather than focusing on global reconstruction or forward prediction. It employs
a deep Bayesian Linear Dynamical System (LDS) model with a probabilistic graphical model structure to infer
dynamics from data. The model maintains both global dynamics priors and local time-varying linear-Gaussian
dynamics, enabling efficient policy improvement through Linear Quadratic Regulator (LQR) while handling partial
observability through latent state estimation.

Factorized World Models Recent latent WMs employ various state factorizations to capture different aspects of
environment dynamics. By separating representations into meaningful components like deterministic and stochastic
elements [36] or controllable and uncontrollable dynamics [85], these factorizations provide inductive biases that
help models learn more accurately and with fewer samples. First, Hafner et al. [36] introduces a WM based on the
Recurrent State Space Model (RSSM), which factors the latent space into deterministic and stochastic components:

ℓt = (ht, zt) (latent decomposition) (1)
ht+1 = fθ(ht, zt,at) (deterministic transition) (2)
zt+1 ∼ pθ(zt+1|ht+1) (stochastic transition) (3)

This separation allows deep Planning Network (PlaNet) to capture both deterministic system dynamics and stochastic
environmental factors in the transition model. Using the Cross Entropy Method (CEM) for efficient planning in latent
space and a novel latent overshooting objective, PlaNet achieved 200× better sample efficiency than contemporary
model-free approaches on complex continuous control tasks.

Dreamer [37] presents an actor-critic RL agent that learns behaviors entirely by propagating gradients through an
RSSM-based WM. Dreamer directly learns both a policy network and a value network in latent space, optimized
through backpropagation of these value estimates through the WM dynamics. This enables efficient credit assignment
across long horizons while being more computationally tractable than per-timestep CEM optimization. Significant
extensions to the Dreamer architecture progressed from DreamerV2’s discrete latent variables [38] and DreamerV3’s
robustness techniques [40] to Director’s hierarchical policies [39]. These iterations ultimately enable DayDreamer’s
sample-efficient real-world robotic learning of tasks like quadruped locomotion in one hour [119]. Recent work by
Sun et al. [103] highlights that traditional WMs, such as those used in the Dreamer series [37, 38, 40], often struggle
with visual pixel-based inputs containing exogenous or irrelevant noise. Their Hybrid Recurrent State Space Model
(HRSSM) [103] combines a masking strategy with a bisimulation principle to capture task-relevant features while
filtering out irrelevant spatio-temporal details, learning expressive representations in noisy environments.

Building on the base factorization of RSSMs, Pan et al. [85] introduces Iso-Dream, which separates the model into
a three-branch architecture that explicitly separates controllable (ego agent) and non-controllable (other agents)
dynamics through inverse dynamics learning. This separation allows the model to handle complex multi-agent
scenarios like autonomous driving with 30 vehicles without requiring explicit communication, instead learning to
predict other agents’ behaviors through the non-controllable branch. The approach demonstrates that explicit
factorization of agent dynamics can improve both prediction accuracy and control performance. Kipf et al. [59]
introduce a different factorization approach with Contrastively-trained Structured World Models (C-SWMs), which
learn object-oriented latent representations and transitions without pixel-based reconstruction. C-SWMs utilize a
contrastive approach for representation learning in environments with compositional structure. The model structures
each state embedding as a set of object representations and their relations, modeled by a Graph Neural Network
(GNN) [135], allowing objects to be discovered from raw pixel observations without direct supervision as part of
the learning process. The contrastive learning objective enables C-SWMs to focus on task-relevant features while
discarding irrelevant visual details, addressing limitations of reconstruction-based losses.

7



World Models for Planning While WMs demonstrate the promise of zero-shot adaptation to new problems
with online planning, planning in a learned latent space can create error stacking problems [77, 120], requiring
WMs designed for online planning. MuZero [96] integrates a learned latent model with Monte-Carlo Tree Search
(MCTS) [99] to predict only planning-critical quantities (policies, values, rewards), achieving state-of-the-art results
across both board games and Atari environments. Another latent planning approach, Learning Latent Landmarks
for Planning (L3P) [128] leverages a WM to learn and plan latent landmarks in goal space using an A* algorithm,
improving temporally extended reasoning. L3P embeds observations and forms graph nodes through clustering with
edges representing approximate costs between goals, allowing compact latent-space planning through a higher-level
abstraction. Temporal Difference Model Predictive Control (TD-MPC) [43] employs a learned, task-oriented latent
dynamics model for short-horizon Model-Predictive Control (MPC)-based trajectory optimization and a terminal
value function for long-term return estimation. Both models are trained jointly through temporal difference learning,
providing a reward-guided feature space and avoiding the reconstruction of state details. Building on this, Temporal
Difference Model Predictive Control 2 (TD-MPC2) [42] learns versatile WMs from large, uncurated datasets across
multiple domains, introducing architectural improvements (e.g., LayerNorm, Mish activations, SimNorm, discrete
regression, and task embeddings) for improved stability and scaling up to 317M parameters on 80+ tasks. Finally,
Joint Embedded Predictive Architecture (JEPA) [66] is a broad intelligence framework including an energy-based
model for differentiable online planning, enabling both reactive and deliberative behaviors seamlessly.

Generative AI World Models Recent breakthroughs in Generative AI (GenAI) demonstrate increasingly so-
phisticated world understanding of physical dynamics and causal relationships. Imagination with auto-Regression
over an Inner Speech (IRIS) [75] achieves human-level performance on the Atari 100k benchmark in just two hours
of gameplay using a WM with a discrete autoencoder and autoregressive Transformer. Genie [15] advances envi-
ronment generation by learning to create interactive 2D worlds from text or image prompts through unsupervised
learning from internet videos. VideoPoet [60] integrates Large Language Models (LLMs) with masked reconstruction,
enabling improved temporal coherence and physical understanding in generated scenarios. In autonomous driving,
Generative AI for Autonomy-1 (GAIA-1) combines scene understanding with video diffusion for sensor reconstruc-
tion. With 6.5B parameters trained on 4,700 hours of driving, it exhibits scaling laws similar to LLMs. DINO
World Model (DINO-WM) introduces zero-shot visual planning through a pre-trained Vision Transformer (ViT)
architecture for embedding prediction and enabling goal-directed optimization without expert demonstrations. Sora
[14], a text-guided video generation model, demonstrates sophisticated reproduction of complex dynamics through
physically consistent videos, showing a strong grasp of object permanence and cause-effect relationships. While
these developments showcase the potential of language-enhanced compositional reasoning and emergent capabilities
at scale, challenges remain in evaluating physical understanding versus pattern matching [66] and addressing video
quality constraints [15].

3 Multi-Agent World Models (MAWMs) Framework
A Multi-Agent World Model (MAWM) is a multi-agent extension to the single-agent latent WM that enables
agents to reason about, predict, and coordinate in complex environments by maintaining distributed represen-
tations of the world state. Unlike single-agent WMs that abstract multi-agent effects into environmental non-
stationarity/stochasticity [11, 85], MAWMs explicitly factor the impacts on the learned world state into individual
agent contributions. This factorization improves multi-agent planning and acting through enhanced credit assignment
and improved online policy optimization. Similar to their single-agent counterparts, a MAWM is broadly broken
down into encoder, transition, and decoder modules. The encoder maps all agent observations and communications
into a learned latent space that captures relevant features, and the decoder learns to reconstruct observations from
these latent variables. The transition model predicts the evolution of the latent variables as a function of the joint
action of all of the agents. MAWMs are diverse in both structure and application, addressing challenges such as
compressed joint state representations, coupled transition dynamics, and extra-agentic action prediction.

Definition 3.1 (MAWM). A MAWM for N agents is defined as a tuple M = ⟨{Mi}i∈K , G, C⟩, where:

• {Mi}i∈K : Set of K local world models where 1 ≤ K ≤ N each comprising:

– Ωi: Local observation space;
– Ai: Local action space;
– Li: Local latent state space;
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– E i : Ωi × τ i → P (Li): Encoder function mapping observations and history (τ i =
∏
t o
i
t) to distributions

over latent states;

– Di : Li → P (Ωi): Decoder function mapping latent states to distributions over observations;

– T i : Li × Ai → P (Li): Transition function predicting the next latent state distribution given the current
latent state, action, and received messages; and

– Ri : Li ×Ai → R: Reward function predicting rewards given latent states and actions;

• G(V,E): Communication graph defining the information flow; and

• C :
∏
i∈I Li ×G →

∏
i∈I Li: Communication function that updates agent latent states.

Special cases include:

• Centralized Multi-Agent World Model (C-MAWM): Single model with centralized communication (E =
{(i,m), (m, i) | i ∈ I});

• Decentralized Multi-Agent World Model (D-MAWM) — Full Communication: All-to-all connectiv-
ity (E = V × V \ {(i, i) | i ∈ V }); and

• D-MAWM — No Communication: Independent agents (E = ∅)

with the generic D-MAWM with Graph Communication generalizing all of the above:

• D-MAWM — Graph Communication: Arbitrary topology (E ⊆ V × V ).

A systematic analysis of MAWMs requires the examination of three fundamental aspects: (1) architectural design
and communication, (2) learning objectives, and (3) functional applications in MASs. The architectural design
(Section 3.1) determines how WMs are distributed across agents and how information flows between them. Learning
objectives (Section 3.2) shape how these models acquire and maintain representations of the environment and agent
interactions. Finally, the functional applications (Section 3.3) describe how these WMs enhance various aspects of
MAS performance, from reducing environmental sampling to enabling online planning and control.

3.1 Architectures for MAWMs

MAWMs have diverse communication architectures—including both centralized and decentralized approaches—which
define WM structure and the information flow. C-MAWMs employ a singular world model, where each agent com-
municates with the C-MAWM for predictions and updates. In contrast, D-MAWMs distribute multiple WMs across
agents, enabling local estimations and reducing dependence on a centralized controller. Distributed architectures
can be refined by their communication paradigms: no, all-to-all, and graph-based communication topologies. No
communication avoids failure modes due to unreliable or adversarial communication regimes, but they require com-
putation on the agent to perform implicit communication through sensing and Opponent Modeling (OM). All-to-all
communication ensures that each agent has all information to make decisions, but it maximizes bandwidth costs and
eliminates situations where agents communications are range-limited. Finally, graph-based communication regimes
are the most general, encompassing both no communication and all-to-all communication regimes in specific graph
topologies, while being sufficiently expressive to account for more complex cases across arbitrary networks. It is
important to note that some approaches, particularly those employing the Centralized Training, Decentralized Exe-
cution (CTDE) framework in Multi-Agent Reinforcement Learning (MARL), blur the distinction between centralized
and decentralized architectures. In such cases, this work does its best to categorize the work based on where the
world model is used (for example, a CTDE training WM would be centralized [17], but a CTDE planning WM would
be decentralized [111]), understanding that no categorization framework perfectly encompasses all approaches. The
following subsections analyze these architectural approaches in detail, beginning with centralized MAWMs before
examining decentralized variants with increasing levels of communication complexity.
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World Models

Single-Agent
Latent

Feat.-Eng.

Multi-Agent

Feat.-Eng.

Latent

Centralized

Sequence Modeling AMLAPN [86]; MARCO [130]; TIMAR [27];
MA2CL [100]; MACD [17]; TrafficBots [124]

Graph Models SMAWM [81]; VDFD [115]

Decentralized

No Comms.
DSSM [51]; TSM [62]; TESSERACT [72];
HPP [113]; LILI [122]; M-QMIX [57];
MB-MARL [127]

All-to-All Comms.
CoELA [124]; COMBO [125]; IS [58]; MAPO-LSO [50]
ACNN [98]; AORPO [131]; MAMBA [23]; MARIE [132]
MAG [120]; MA-TDMPC [112]; MAZero [69]

Graph Comms. MACI [90]

Figure 3: Taxonomy of World Model Research. The hierarchy organizes approaches by their fundamental architec-
tural choices. The top two levels represent the four quadrants: single-agent feature-enginered models, multi-agent
feature-engineered models, single-agent latent models, and multi-agent latent models. The tree teases apart the
multi-agent latent models branch into decentralized architectures with varying communication patterns (graph-
based, all-to-all, or none) and centralized approaches using either graph models or sequence modeling. Each leaf
node lists key papers in that category.

3.1.1 Centralized Multi-Agent World Models (C-MAWMs)

Centralized Multi-Agent World Models (C-MAWMs) are a natural extension of single-agent WMs by treating multiple
agents as components of a unified system state, where a single, centralized model captures the dynamics of all
agents and their interactions through a singular joint state representation [5, 17, 27, 41, 81, 86, 97, 100, 102,
115, 117, 123, 130]. The centralized architecture enables direct access to all agent observations and actions for
prediction and planning, eliminating communication overhead between models. However, centralized computation
scales exponentially with the number of agents due to the curse of dimensionality in joint action and state spaces
[45], with complexity O(|A|N ) in the joint action space alone. This exponential scaling makes naive C-MAWMs
computationally intractable for large agent populations. Additionally, the centralized architecture creates a single
point of failure, making it ill-suited for scenarios requiring decentralized execution or fault tolerance.

Recent work has focused on making centralized approaches more tractable through various approximations and
structural constraints. Multi-Agent RL with Centralized mOdels and exploration (MARCO) [130] addresses the
NEXP-complete complexity of Decentralized Partially Observable Markov Decision Processs (Dec-POMDPs) [10]
through a centralized approximate model achieving O(poly(|S|, |A|)) sample complexity. By learning a single sta-
tionary model that generalizes across policies, it avoids exploring the exponential joint-policy space. The approach
alternates between model learning and policy optimization within the learned model, while employing a separate
exploration policy trained to maximize both environmental reward and model uncertainty reduction. This targeted
exploration improves data efficiency compared to traditional Dyna-style approaches that rely solely on the current
policy.

Sequence Modeling Approaches Most authors using centralized models provide the WM full access to each
agent’s information in the form of a joint observation, action, and/or state. Given the fully-centralized architecture,
many authors take advantage of sequence modeling approaches such as RNNs [30] and Transformers [110] to learn
the optimal communication features to attend to at any given time [27, 86, 100, 124, 132]. For example, Park
et al. [86] propose a model-based MARL method for competitive games using RNN-based actor-critic networks and
deterministic policy gradients. To address non-stationarity due to evolving agents, they introduce a pseudo-WM
to learn auxiliary prediction networks for modeling state transitions, reward functions, and opponent behavior.
Their approach combines CTDE through recurrent layers that enable differentiable communication between agents.
The auxiliary networks promote understanding of environment dynamics and opponent behavior while maintaining
model-free efficiency. Empirical results demonstrate improved stability and performance compared to model-free
approaches across various competitive scenarios. Alternatively Feng et al. [27] and Song et al. [100] handle agent
sequences using transformers to capture inter-agent relationships, leveraging masked self-attention to learn relevant
agent-level representations. Similarly, TrafficBots [124] uses attention mechanisms to query a shared vectorized
context while maintaining individual "personality" encodings, achieving computational efficiency through dot-product
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attention and specialized positional encoding, though its domain-specific design limits broader applicability beyond
autonomous driving.

Graph-Based Approaches When representing multiple agents in centralized settings, GNN models [135] offer
architectural advantages through their inherent ability to model relational structures. Unlike all-to-all approaches
that scale quadratically with the number of agents, GNNs can achieve linear scaling in the number of edges in the
interaction graph. For example, Structured Multi-Agent World Models (SMAWM) [81] use a GNN to create a factor-
ized state representation where each agent is a node and interactions are edges, achieving better parameter efficiency
than all-to-all alternatives. Building on this factorization principle and Iso-Dream’s [85] approach to disentanglement,
Value Decomposition Framework with Disentangled World Model (VDFD) [115] decomposes its graph-based WM
into specialized branches using a Q-Mix-style [91] mixing network and graph convolutions. This modular structure
separates controllable dynamics, passive environmental changes, and static features while maintaining the ability to
perform multi-step latent rollouts for trajectory imagination. While still centralized in its information sharing, this
structured approach demonstrates strong performance on complex tasks with heterogeneous agents.

3.1.2 Decentralized Multi-Agent World Models (D-MAWMs)

D-MAWMs address centralization limitations by decomposing the joint WM into N distributed models, where each
agent i ∈ I maintains its own model, Mi. Each local model processes observations and maintains a latent state that
represents the agent’s understanding of the environment. As discussed in the following sections, this decentralization
has the potential to reduce action space size and sample complexity at the cost of increased computational and
communication complexity. D-MAWMs enable independent decision making in scenarios where centralized control
is impractical due to communication constraints or computational limitations [31].

Decentralized Multi-Agent World Models (D-MAWMs) with No Communication In scenarios where
direct communication between agents is impossible or impractical, D-MAWMs must employ alternative coordination
mechanisms [51, 57, 62, 72, 113, 122, 127]. The literature reveals three primary approaches for achieving coordination
without explicit communication channels.

The first approach employs Opponent Modeling, where agents predict the behavior of other agents through observation
rather than direct communication. For example, Wang et al. [113] demonstrates this in multi-agent rendezvous tasks
where agents infer others’ intentions through their observed trajectories. Indarjo et al. [51] implement this approach
through Deep State Space Models (DSSMs), where each agent maintains predictive models of the actions of other
agents using latent variable models and variational inference. The second approach, stigmergic coordination, enables
agents to react to and influence others implicitly through observable changes in the environment [46]. Xie et al.
[122] extend this concept by introducing a RL framework that learns latent representations of opponent strategies,
enabling agents to not only predict but also actively influence other agents’ policies. Their approach captures
high-level latent strategies from low-level actions and adjusts to changes in these strategies over time, enabling the
ego agent to influence and guide the opponent’s policy effectively. This enables coordination (or manipulation)
through anticipation rather than explicit message passing. The third approach leverages learned emergence through
CTDE, where agents develop implicit coordination protocols during centralized training that transfer to decentralized
execution. Kim et al. [57] demonstrates how Masked reconstruction task with QMIX (M-QMIX) learns such protocols,
allowing agents to coordinate without runtime communication by sharing information during the training phase.
Continuing this concept, Venugopal et al. [111] use model factorization approaches to enable this emergence. Multi-
Agent Bi-Level world model (MABL) introduces hierarchical factorization to separate global and agent-specific
information:

zg,it ∼ qψ(z
g,i
t |st, za,it , hg,it ) (global state) (4)

za,it ∼ qψ(z
a,i
t |oit, h

a,i
t ) (agent state) (5)

where zg,it represents agent i’s global state and za,it represents its local state at time t. This structure enables
coordination by learning local policies that implicitly encode global information learned during training, thereby
enabling enhanced, communication-less emergent behaviors.

While these communication-free approaches eliminate bandwidth and latency constraints, they face several challenges.
Firstly, this creates increased computational complexity from maintaining predictive models of other agents [21],
which can suffer from non-stationarity issues. When predictive models are not used, this puts the burden on the
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training process and implies higher sample complexity during training [22, 77] to learn effective implicit coordination.
Lack of communication at inference time can potentially reduce coordination effectiveness in highly dynamic or
adversarial scenarios where agent behavior prediction becomes unreliable.

Decentralized Multi-Agent World Models (D-MAWMs) with All-to-All Communication Fully con-
nected communication architectures address the limitations of communication-free approaches by enabling direct
information sharing between all agents [23, 58, 69, 98, 112, 120, 124, 125, 131, 133]. Adding explicit communication
to the reasoning process allows agents to share their local observations, intentions, and learned models, potentially
leading to more coherent and effective collective behavior. In these architectures, each agent can transmit messages
to every other agent, enabling the exchange of local observations, intentions, and model predictions. This explicit
communication theoretically approaches the performance of centralized systems while maintaining the fault tolerance
of decentralized architectures. However, this assumes exponential action scaling and the communication overhead
scales quadratically with the number of agents.

Transformer architectures [110] have emerged as a dominant approach for implementing these all-to-all communica-
tion schemes [23, 50, 69, 112, 120]. For example, Multi-Agent Model-Based Approach (MAMBA) [23], Models as
AGents (MAG) [120], Multi-Agent Temporal Difference MPC (MA-TDMPC) [112], Multi-Agent Policy Optimiza-
tion with Latent Space Optimization (MAPO-LSO) [50], and Multi-Agent auto-Regressive Imagination for Efficient
learning (MARIE) [132] all employ self-attention mechanisms to weight message importance between agents, with
each maintaining local WMs that merge agent messages into a coherent world state through transformer-based com-
munication layers1. While transformer-based approaches demonstrate effectiveness in coordinating agent behaviors,
they introduce two key limitations. First, the transformer communication layers may not map efficiently to real-world
communication constraints and protocols. Workarounds can be implemented by performing all-to-all communica-
tion and replicating the transformer calculations on each agent, leading to computational inefficiencies. Second, the
quadratic compute scaling of attention mechanisms compounds the inherent scaling challenges of all-to-all commu-
nication, creating bottlenecks in large-scale deployments (e.g., [19]). These limitations have motivated research into
structured communication approaches, such as the graph-based architectures discussed in the following section.

Decentralized Multi-Agent World Models (D-MAWMs) with Graph-Based Communication Graph-
based communication architectures generalize previous approaches by representing communication topologies as
graphs where vertices represent agents and edges define permitted communication channels [7, 90, 107], thereby sub-
suming both no-communication and all-to-all communication paradigms. More importantly, it enables representation
of realistic communication constraints where agents communicate only with neighbors within communications range
or through specific network structures. Other benefits include modeling multi-hop message propagation between non-
adjacent agents through intermediate nodes, and time-varying edges can model dynamic network topologies where
communication links change based on agent proximity or environmental conditions. Pretorius et al. [90] leverage
graph-based communication through differentiable message passing networks for sharing predicted future trajectories
generated by their WMs to enhance coordination. A rich messages structure is learned that enables coordination by
encoding both current states and predicted futures. Through experiments on digit prediction and invisible navigation
tasks, they showed that communicating imagined futures significantly enhanced multi-agent coordination compared
to model-free approaches.

While graph-based communication offers significant flexibility, it introduces three key challenges. First, additional
algorithmic complexity is required to operate effectively in complex communication topologies [50]. Second, multi-hop
communication introduces latency proportional to path length, potentially degrading coordination in time-sensitive
scenarios. This also creates conditions where multiple messages must be encoded in each message, creating latent
bottlenecks at central nodes [3]. Third, dynamic graph structures require mechanisms to handle topology changes
without disrupting ongoing coordination. Addressing these challenges while maintaining the advantages of graph-
based communication remains an active area of research.

1Note, MAMBA [23] and its derivatives (e.g., MAPO-LSO [50]) can implement graph-based communication through transformer
attention mechanisms masked by the adjacency matrix of the communication graph. This masking ensures attention follows the graph
structure while leveraging transformer efficiency for message computation. Unfortunately, this masking approach still exhibits O(n2)
compute scaling, and therefore does not take full advantage of the primary benefits of graph-based representations.
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MAWM
Learning Objectives

Value/Reward

Reward
AMLAPN [86]; MBOM [123]; MARCO [130]; MACD [17];
MABL [111]; LILI [122]; MAMBA [23]; MAZero [69];
MARIE [132]; MACI [90]

Value MA2CL [100]; LILI [122]; MAZero [69]

Long-Horizon MA-TDMPC [112]

Uncertainty Aware MAMBPO [117]; MAPO-LSO [50]

Reconstruction-based

Observation Reconstruction
MARCO [130]; COMBO [125]; MBDS [121]; MABL [111];
MACD [17]; VDFD [115]; DSSM [51]; MACD [17];
HPP [113]; MACI [90]; IS [58]

State Reconstruction LILI [122]

Multi-Step Error MAG [120]; TSM [62]

Multi-Agent Reconstruction ACNN [98]; MAMBA [23]

Dynamics

State Dynamics H-MARL [97]; MARCO [130]; MBOM [123]
AMLAPN [86]; HPP [113]; AMLAPN [86]; DSSM [51];

Latent Dynamics MACD [17]; VDFD [115]; MAZero [69]; MARIE [132];
MA-TDMPC [112]; MBDS [121]

Self-Supervised TIMAR [27]; MAPO-LSO [50]

Contrastive/Projective
Contrastive TIMAR [27]; MA2CL [100]; MAPO-LSO [50]

Projective M-QMIX [57]

Figure 4: Taxonomy of Learning Objectives in World Models. The hierarchy categorizes approaches by their fun-
damental learning mechanisms. Reconstruction-based approaches focus on reproducing observations or messages.
Value/reward methods emphasize predicting future returns, either directly or through counterfactual reasoning. La-
tent dynamics approaches model state transitions at different scales (global, local, or factored). Contrastive and
projective methods learn representations through comparison or prediction tasks.

3.2 Learning Objectives in Multi-Agent World Models (MAWMs)

MAWMs employ several distinct learning objectives to acquire and maintain world representations, and they play
a crucial role in defining the capabilities and performance of MAWMs. For task-specific WMs, reward prediction
objectives encourage the model to focus on task-relevant features. Another common objective is direct reconstruction
of world states or observations through an auto-encoder framework. While straightforward, this approach can be
computationally inefficient by reconstructing irrelevant environmental features. Latent dynamics learning avoids
reconstruction by focusing on capturing state transitions in a compressed representation space. Other methods
include contrastive approaches, which learn by minimizing the distance between similar states while maximizing
it between dissimilar ones, and projective approaches, which predict relationships between similar or corrupted
observations in the latent space. In practice, multiple objectives are often combined to achieve better performance.
The following section explores these categories of learning objectives used in MAWMs, their principles, advantages,
and limitations.

3.2.1 Value and Reward Prediction

Value and reward prediction objectives focus on the model’s ability to anticipate future rewards or estimate the
value of states and actions [17, 23, 50, 69, 86, 90, 97, 100, 111, 112, 122, 123, 130, 132, 133]. These objectives are
particularly useful in RL contexts, where the ultimate goal is to maximize cumulative rewards, and the theoretical
results show improved learning rates in reward-aware cases [127]. Generic reward or value prediction losses can be
formulated as:

Lreward = E(oit,a
i
t,r

i
t)∼D

[(
rit −Rθ(E(oit), ait)

)2] (reward loss) (6)

Lvalue = E(oit,a
i
t,r

i
t)∼D

(t+H−1∑
k=t

γkrik + γHVθ(E(oit+H))− Vθ(E(oit))

)2
 (value loss) (7)

where oit is agent i’s observation at time t, ait is agent i’s action, rit is the reward received by agent i, r̂(E(oit), ait) is
the predicted reward from the world model, Vθ is the learned value function, and D is the dataset of experiences.

Value and reward prediction objectives have the advantage of directly aligning the WM with the goal of maximizing

13



performance in RL tasks. However, they may lead to models that are overly specialized to specific reward structures,
potentially limiting generalization to new tasks or environments. For example, Egorov and Shpilman [23] argue
that reward-agnostic communication through WMs naturally describes the environment state, while goal-oriented
protocols focus on task-specific information exchange. They draw the connection to representation versus acquisition
theories in language development [24], where each have their advantages.

Long-Horizon Value Prediction Hansen et al. [43] introduce TD-MPC, which combines a learned terminal value
function Vθ with short-horizon planning to estimate returns beyond the horizon H:

J i(τ i1:H) =

H∑
t=1

rit + γHVθ(E(oiH)) (long-horizon opt.) (8)

In addition to creating reward-informed latent features, this approach allows the WM to make predictions beyond
the immediate planning horizon, enhancing long-term decision-making, a limit of MPC approaches. TD-MPC2 [42]
expands on this by integrating normalization and architectural innovations that enable stable learning across diverse
domains, scaling effectively to a 317M parameter model trained on uncurated multi-domain datasets.

Uncertainty-Aware Reward Modeling Others take an uncertainty-aware approach to reward modeling. By
predicting rewards through an ensemble (e.g., Multi-Agent Model-Based Policy Optimization (MAMBPO) [117]) or
Monte Carlo dropout (e.g., MAPO-LSO [50]), WMs can estimate uncertainty and generate less biased synthetic data
for training, improving sample efficiency. Ablation studies [50] demonstrate that accurate reward modeling is crucial
for effective WM learning.

3.2.2 Reconstruction-based Objectives

Reconstruction-based objectives focus on the model’s ability to accurately reproduce the observed state of the
environment, including the states of all agents [17, 23, 35–40, 51, 58, 68, 85, 90, 98, 105, 111, 113, 115, 116,
121, 122, 125, 128, 129, 133]. This approach is fundamental in ensuring that the WM captures the essential features
of the environment and agent interactions. A typical reconstruction loss for a WM can be formalized as:

Lrecon = E(oit)∼D
[
∥D(E(oit))− oit∥22

]
(reconstruction loss) (9)

where ôit is the predicted observation, oit is the true observation, and is the dataset D of observation trajectories
sampled from Ω. However, traditional metrics such as mean squared error equally weigh all observation dimensions,
forcing models to use capacity on task-irrelevant features [103].

Multi-Agent Reconstruction Objectives Multiple authors extend reconstruction objectives to multi-agent
settings through masked-agent attention modules, enabling inter-predictive learning between agents’ states [50, 98].
Shang et al. processes unlabeled individual agent observations through a shared NN and learned attention to perform
masked observation reconstruction. Similarly, MAPO-LSO employs MA-Self-Predictive Learning (MA-SPL) where
masked reconstruction is used to learn agent representations through contrastive learning [50]. Additionally, MAWMs
face non-stationarity in the reconstructions as other agents update their behaviors [130].

Multi-Step Reconstruction Error One challenge with learned models is that local prediction errors can prop-
agate over time, leading to large global errors in multi-step rollouts. Krupnik et al. [62] address this by learning
patterns across entire sequences of agent behaviors rather than just predicting the next state. Their method uses a
Conditional Variational AutoEncoder (CVAE) architecture that first learns to encode observed sequences of agent
behaviors into a compact representation. Then, it learns to decode these patterns back into plausible future se-
quences of agent actions and observations. By training on complete sequences rather than individual transitions, the
model better maintains consistency over time and reduces accumulation of small errors that plague single-step ap-
proaches. This enables generation of realistic, coherent trajectories that respect both immediate physical constraints
and longer-term behavior patterns. Wu et al. [120] take an alternate approach through their MAG framework, which
treats local models as decision-making agents and current policies as environment dynamics. Rather than simply
minimizing one-step prediction errors, MAG treats the WM as a policy, enabling local models to consider multi-step
mutual effects by MPC planning the predictions using rollouts. Using random-sampling shooting, each local model
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selects predictions that minimize the accumulated errors across the ensemble. The authors prove that minimizing
accumulated model errors provides stronger performance guarantees, and they demonstrate the value of treating
model learning as a multi-agent optimization problem to minimize accumulated prediction errors.

3.2.3 Dynamics Learning

Dynamics learning objectives focus on capturing the underlying dynamics of the environment and agent interactions
in a compact latent space [17, 27, 38–40, 42, 43, 50, 51, 62, 68, 69, 85, 86, 97, 112, 115, 120, 121, 128, 129, 133]. This
approach avoids complex reconstructive objectives through the creation of an efficient latent space in which state
transitions can be predicted based on their actions and still be reward-/task-agnostic. A typical latent dynamics
learning objective can be formulated as:

Ldynamics = E(oit,a
i
t,o

i
t+1)∼D

[
∥Tθ(E(oit), ait)− E(oit+1)∥22

]
(dynamics loss) (10)

where E is the observation encoder and Tθ is the learned dynamics function.

Self-Supervised Dynamics Learning This objective encourages the WM to learn latent state evolution without
explicit labels on the data. For example, Feng et al. [27] propose Transition-Informed Multi-Agent Representations
(TIMAR), which uses a joint transition model to learn latent dynamics through a self-supervised, masked learning
approach. The results demonstrate superior performance and data efficiency against MARL benchmarks, and it
also improved the robustness and generalization of Transformer-based MARL algorithms such as Multi-Agent Trans-
former (MAT). Huh and Mohapatra [50] introduce MAPO-LSO, which combines multi-agent transition dynamics
reconstruction MA-Transition Dynamics Reconstruction (MA-TDR) and self-predictive learning MA-SPL in a uni-
fied learning framework. MA-TDR uses recurrent modeling and predictive representation learning to ground latent
states in environment dynamics, while MA-SPL ensures that latent states can predict future states through masked
reconstruction, forward dynamics modeling, and inverse dynamics modeling. Unique to MAPO-LSO, Huh and Mo-
hapatra also perform the inverse dynamics learning to predict the action taken given two latent states ℓt and ℓt+1

The approach demonstrates significant improvements in sample efficiency (+285.7%) and convergence (+35.68%)
across diverse multi-agent tasks when integrated with MARL algorithm baselines.

3.2.4 Contrastive and Projective Learning

Contrastive and projective learning objectives offer powerful approaches to representation learning by capturing
meaningful patterns in states or trajectories without relying on full state reconstruction or explicit reward signals
[37, 50, 57, 100]. While both contrastive and projective learning aim to learn meaningful representations, they differ
in their approach: contrastive learning explicitly maximizes similarity between related samples while minimizing sim-
ilarity between unrelated ones, whereas projective learning learns representations by predicting missing or corrupted
information.

Contrastive Objectives In multi-agent settings, contrastive learning can be used to capture both temporal
relationships and inter-agent dependencies by carefully choosing example/counterexamples pairs and the loss function.
For example, Song et al. [100] propose Multi-Agent Masked Attentive Contrastive Learning (MA2CL), which uses
the following contrastive loss to reconstruct masked agent observations in latent space:

Lcontra =
∑
i∈I

− log
exp(ω(E i(oit), E i(oit+1)))∑
j∈I exp(ω(E i(oit), Ej(o

j
t )))

(contrastive loss) (11)

where ω(·, ·) is an arbitrary measure of similarity between latent states. This approach enhances agent-level contextual
information, improving performance in cooperative tasks. Feng et al. [27] propose TIMAR, which uses a joint
transition model to learn effective representations for MARL. The model treats individual observations as a masked
sequence of global state contexts and processes them through a transformer-based architecture. TIMAR adapts
the Bootstrap Your Own Latent space (BYOL) [32] loss comparing the outputs of the joint transition model with
target encoder representations, enabling both temporal and agent-level consistency without requiring pixel-based
reconstruction. Limitations of contrastive learning include requiring careful selection of positive and negative pairs
[63], and the number of negative samples is exponential in the dimensionality of the problem [66]—both significant
problems in complex multi-agent setups.
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Projective Objectives Projective learning, on the other hand, aims to make the representations consistent by
predicting related representations from one another. These related representations can be from two differing obser-
vations, observations of multiple modalities, or corrupted/masked observations. This helps in learning features that
remain invariant across different views or partial inputs. For example, M-QMIX [57] uses a predictive loss:

Lproj = E(oit,a
i
t,o

i
t+1)∼D

[
∥P(Eθ(õit))− Eθ(oit)∥22

]
(projective loss) (12)

where õt represents a corrupted observation (e.g., masked agent observations) and P is a projection function that
attempts to predict the true latent representation. This objective encourages the model to learn a latent space
in which states are predictable from various perspectives. M-QMIX [57] addresses sample efficiency in MARL by
incorporating a masked reconstruction task into Q-Mix’s architecture [91]. Using a BYOL-style [32] approach, M-
QMIX applies random feature masking to agent observations and learns to reconstruct full observations, enabling
more efficient representation learning. Empirical results on the StarCraft Multi-Agent Challenge (SMAC) benchmark
[95] highlighting the benefits of auxiliary self-supervised learning tasks in MARL, demonstrating superior performance
in 8 out of 11 test scenarios while using only half the training samples. Limitations of projective learning include
representation collapse [66] and sensitivity to how corruption is applied to inputs [126].

3.3 Applications of Multi-Agent World Models (MAWMs)

The learning objectives discussed above enable MAWMs to serve multiple practical purposes in MASs, which are
analyzed in this section. The first is the alleviation of costly environmental interactions through the generation of
synthetic data through an approximate WM. The next is improving both temporal and agent-based credit assignment
calculations. Additionally, WMs can improve learned policy features in two main ways: 1) direct input: using WM
features as policy inputs or 2) loss augmentation: adding WM terms to the loss function. This second approach,
especially in model-free settings, often functions as a pseudo-WM since it blends modeling with policy learning. In
an alternative to learning methods above, MAWMs can also be used to perform online planning or control through
the learned model, often using the differentiable nature of the neural representation. Finally, Opponent Modeling
WMs can be used to predict the actions and effects of other agents. As with the above, many approaches leverage
WMs for multiple different tasks, aiming to maximize the utility of the additional computational effort.

3.3.1 Synthetic Data Generation

Many real-world multi-agent scenarios present significant barriers to data collection, including hardware costs, safety
concerns, and time constraints. MAWMs can address this challenge through WM-generated synthetic training data
[37, 105]. A WM generates synthetic trajectories by predicting next states and rewards from current observations and
actions. While this synthetic data introduces computational cost and model bias [117], it enables rapid exploration
of the state space at a fraction of real-world data collection cost. The effectiveness depends heavily on trajectory
quality [75], measured through metrics like model prediction error [120] ϵs = E(s,a)∼D[∥ŝt+1 − st+1∥22], transition
distribution shift [130] ϵT = DKL(Treal∥Tsynth), or return gap [112] ϵJ = |J(π) − JP̂ (π)|, where ϵs is the error in
states, ϵT is the difference between transition probability distributions, and ϵJ is the difference in task-dependent
performance based on the model errors.

Improved Synthetic Data Building on Dreamer V2 [38], MAMBA [23] learns environment dynamics in latent
space using attention-based communication [110] to predict the next state based on agents’ actions and current
states of the model. Starting an initial state sampled from the replay buffer, synthetic data is generated based
on current policies of the agents in order to deploy on-policy learning algorithms in the latent space. To ensure
independence among local models, MAMBA maximizes the mutual information between an agent’s latent state
and its previous action (LMI = − ln pθ(a

i
t−1|hit, zit)). Multi-Agent Counterfactual Dreamer (MACD) [17] focuses on

generating synthetic trajectories for counterfactual advantage calculations for estimating an agent’s contributions.
Using the synthetic data, the architecture demonstrates superior training stability and cooperation performance
across SMAC [95] and Multi-Agent MuJoCo (MA-MuJuCo) [65] benchmarks compared to both model-free and
model-based baselines.

Factorized MAWMs Recognizing that the world contains both controllable and uncontrollable factors, Wang and
Meger [115] takes a different approach through VDFD, which decomposes its WM into static (state-conditioned),
controllable (action-conditioned), and stochastic branches for synthetic trajectory generation. Using VAEs and value-
based training, VDFD generates data without requiring domain knowledge, and shows effectiveness on the standard
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Synthetic Data

Direct Generation MAMBA [23]; MACD [17]; MARCO [130];
Subramanian et al. [102]

Factorized VDFD [115]; MABL [111]

Uncertainty-Aware MAMBPO [117]; AORPO [131]; CPS [5]; MAG [120]

Other MBOM [123]

Credit Assignment
Advantage Estimation MACD [17]; H-MARL [97]; M-PPO [41]

Transition-Based TESSERACT [72]; CPS [5]

Policy Features

Improved Features VDFD [115]; AMLAPN [86]; MACD [17]; DSSM [51];
LILI [122]; MARIE [132]; MAPO-LSO [50]

Self-Supervised TIMAR [27]; MA2CL [100]; M-QMIX [57]

Communication-Aware MAMBA [23]; ACNN [98]; IS [58]; MACI [90]

Hierarchical MABL [111]

Planning-Based MAG [120]; MA-TDMPC [112]; MAZero [69]

Online Planning

MPC MA-TDMPC [112]; TSM [62]

MCTS MAZero [69]

LLM/LVM CoELA [124]; COMBO [125]

Other MAG [120]; IS [58]; MACI [90]; MBOM [123]

Opponent Modeling Opponent Modeling DSSM [51]; LILI [122]; AORPO [131]; MBOM [123]

Figure 5: Applications of Multi-Agent World Models. Synthetic data generation methods create additional training
examples through model rollouts or counterfactual scenarios. Credit assignment applications leverage world mod-
els to better attribute contributions in multi-agent settings. Policy feature extraction approaches learn improved
representations for decision-making. Planning and control applications use world models for online decision-making
through various methods including MPC, MCTS, and emerging LLM approaches. Opponent modeling applications
use world models to predict the actions and effects of other agents.

SMAC benchmarks [95]. Venugopal et al. [111] design MABL specifically for the CTDE setting, where a global WM
is used during training for synthetic data generation, and a local WM is used for efficient online action selection.
The model generates synthetic trajectories by first computing latent states through the representation model and
then using the transition model to predict future states ẑa,it+1 and ẑg,it+1. These trajectories incorporate both global
coordination information and local agent dynamics, leading to more effective learning.

Uncertainty-Aware Data Generation Uncertainty-aware modeling is an effective approach to guide synthetic
data generation, which—by accounting for the confidence in the transition or reward models—both improves sample
efficiency and prevents model bias. Key strategies include driving data collection toward high-variance regions
through penalizing uncertain areas, switch to real environments when needed, or actively focusing on states and
actions most likely to yield better models [131]. For example, MAMBPO [117] uses an ensemble of stochastic networks
to generate synthetic training data, training the network as a maximum likelihood estimator for next observation
and rewards. MAMBPO interleaves 10% of real data to avoid overfitting, and this approach achieves significantly
1.7-3.7x better sample efficiency over model-free baselines. Building on this, MARCO [130] employs a dedicated
exploration policy shaped by the variance of a learned model. Instead of Dyna-style [105] approaches which relying
solely on the current policy for data collection, it targets states and actions where uncertainty is highest, leading to
polynomial sample complexity bounds and 12-20x better sample efficiency compared to model-free baselines.

In multi-agent environments, uncertainty can also come from imperfect knowledge of the other agents. Techniques
like Adaptive Opponent-wise Rollout Policy Optimization (AORPO) [131] integrate OM with ensemble-based dy-
namic predictions. By adapting rollout lengths based on model confidence in each opponent’s behavior, the method
maximizes informative synthetic data generation while curbing model bias, scaling well to complex scenarios. Finally,
rather than just quantifying the error, further gains come from multi-step planning to minimize said error. Lever-
aging Dreamer V2 [38] and MAMBA [23], MAG [120] treats local models as RL decision-makers using the current
agent policy as “transition dynamics.” By predicting multiple steps ahead, it generates more useful synthetic data by
minimizing the compounding error over multiple timesteps.
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3.3.2 Credit Assignment

The fundamental challenge of RL is that of credit assignment: identifying and rewarding the actions over time
responsible for success. This problem is further complicated in a multi-agent setting because there are now two
dimensions to the credit assignment problem—credit assignment over time and credit assignment over agents. WMs
enable precise credit assignment in MASs through counterfactual advantage calculations [17, 41, 69] and transition
modeling [5, 97].

Advantage Estimation By accurately calculating the advantage, one can understand the benefits of various ac-
tions relative to the optimal policy. For example, MACD [17] generates counterfactual trajectories directly through
its world model, enabling precise reward allocation and addressing non-stationarity through continuous policy eval-
uation. The approach estimates agent contributions by comparing expected returns with and without each agent’s
chosen actions using the WM to simulate counterfactual scenarios. The authors theoretically prove that this coun-
terfactual policy update maximizes the multi-agent learning objective. MACD’s advantage estimation demonstrates
empirical results on SMAC [95] and MA-MuJuCo [65], due to improved synthetic data quality and credit assign-
ment. In contrast, Han et al. [41] propose Model-Based Credit Assignment (MBCA), a cooperative Multi-Agent
PPO (M-PPO) framework that uses WMs to estimate coalition values for credit assignment. By calculating agent
i’s contribution through a semi-value, it enables more accurate credit assignment by leveraging the WM to evaluate
counterfactual contributions across different agent groupings. Empirical results show that agent-specific advantage
functions based on semivalues consistently outperform shared global advantage functions in both sample efficiency
and final performance. Han et al. demonstrate that the Banzhaf value provides more stable performance than the
Shapley value, while both outperform simpler leave-one-out estimation approaches. MAZero [69] enhances credit
assignment advantage estimation and the Advantage-Weighted Policy Optimization (AWPO) loss function. This
advantage calculation is used by MAZero during MCTS planning to assign credit effectively to branches of the search
tree for both exploration and exploitation, particularly in large action spaces where traditional methods struggle.

Transition Knowledge Understanding the transition probabilities can improve training through effective, tran-
sition-informed temporal difference calculations. Sessa et al. [97] propose Hallucinated Multi-Agent Reinforcement
Learning (H-MARL), a sample-efficient MARL algorithm that constructs high-probability confidence intervals around
the unknown transition model. Similar to the Upper Confidence-bound for Trees (UCT) algorithm, H-MARL uses
an optimistic hallucinated game to solve the multi-agent equilibria calculations for credit assignment and temporal-
difference backpropagation. This approach offers the first guarantees for continuous state and action spaces, ensuring
sample-efficient convergence to the equilibria of the underlying Markov game. Bargiacchi et al. [5] propose Coop-
erative Prioritized Sweeping (CPS) for sample-efficient learning as a generalization the prioritized sweeping (PS)
algorithm [78] from single-agent to multi-agent environments. CPS leverages domain knowledge about problem
structure through Dynamic Decision Networks (DDNs) to determine which state-action pairs most need updates.
The key innovation is using coordination graphs to compute priorities for subsets of joint state-action pairs, avoiding
the curse of dimensionality. CPS maintains a priority queue where each pair’s priority represents how impactful an
update will be to the value function. By factoring priorities across DDN parent sets, CPS can prioritize updates even
in environments with hundreds of agents. The authors demonstrate that CPS achieves near optimal performance
while outperforming baseline approaches Q-Mix [91] in sample efficiency. Other approaches include Tensorised Actors
(TESSERACT) [72], which represents value functions as low-rank tensors (with modes corresponding to different
agents’ action spaces) to mitigate the exponential growth of the action space. They further extend this approach
to a model-based version that uses tensor factorization to estimate the underlying Markov Decision Process (MDP)
transitions and rewards, thereby providing an efficient way to improve temporal difference learning and credit as-
signment.

3.3.3 Policy Feature Extraction

The fundamental challenge in feature-engineered approaches is which features to use. MAWMs avoid this challenge
by learning optimal latent features that capture both individual agent dynamics and inter-agent relationships while
remaining computationally tractable. Policy feature extraction accomplishes this through two primary methods:
1) using the features online as policy inputs (e.g., π(at|ot) = π(at|E(ot))) or 2) augmenting loss functions with
WM-based terms to improve features by enforcing modeling consistency (e.g., Lpolicy = Ltask + λLmodel). Both of
these approaches tend to blur the line of a traditional world model, and if used in model-free environments, can
be categorized as a pseudo-WM (e.g., [86]). This section examines key approaches to policy feature extraction in
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MAWMs, including self-supervised objectives, communication-aware representations, planning-based features, and
hierarchical representations.

Self-Supervised Features One common approach to learning these latent space representations in MAWMs is
through self-supervised masking techniques. These approaches vary in how they apply masking: at the observation
level, the agent level, or the global state level. Feng et al. [27] employs global state masking in TIMAR, processing
individual observations as masked sequences of the complete state to learn inter-agent relationships through self-
attention. These features are then used to generate predictions via joint transition models, demonstrating improved
consistency and efficiency in cooperative MARL benchmarks. At the agent level, MA2CL [100] reconstructs masked
agent observations using attention and contrastive learning, specifically addressing the challenge of partial, correlated
observations in MARL. This enhances the utilization of agent-level contextual information. M-QMIX [57] takes a
different approach by incorporating feature-level masking into Q-Mix’s architecture [91], allowing agents to learn
more robust representations by predicting masked features from their environmental interactions.

Communication-Aware Representations Effective and informative policy features can also be generated
through efficient communication protocols. As discussed above, a common approach to this is through the use
of attention mechanisms [110] to learn and attend to the important features of messages. Egorov and Shpilman
[23] leverage transformers to process the internal states of agents to include critical information from other agents’
latent representations. Similarly, Shang et al. [98] investigate the benefits of an object-centric pseudo-WM through
an agent-centric attention module with explicit connections across agents and an unsupervised predictive objective
to predict future agent states. Another approach combines forward-lookahead planning with attention-based com-
pression. Multiple works develop communicated features from generate imagined trajectories using learned models
of environment dynamics and the actions of other agents [58, 90]. In these approaches, agents plan out imagined
trajectories using learned models of environment dynamics and the actions of other agents. These trajectories are
compressed into messages using attention mechanisms [58] or RNNs [90], allowing agents to share relevant information
efficiently.

Hierarchical Representations Hierarchical representations enable multi-scale feature extraction, addressing the
challenge of capturing local behavior and global patterns [39]. MABL [111] exemplifies this through its bi-level
architecture (see Eqs. (4) and (5)). This separation enables efficient centralized training with synthetic data while
maintaining decentralized execution. The learned features benefit from latent information in the global latent space.
Empirical results on challenging environments like SMAC [95] demonstrate that these features enable more sample-
efficient policy learning compared to centralized and decentralized baselines.

3.3.4 Online Planning and Control

Online planning and control is a key application of MAWMs, where learned models enable agents to predict and
optimize their actions in real time while accounting for the behavior of other agents [115, 123]. Notably, leveraging
a WM for online planning allows agents to solve novel problems in zero or few-shot scenarios without retraining
[134]. However, the exponential growth of joint action spaces with increasing agent count imposes significant com-
putational challenges [49], which are partially mitigated by disentangled [62, 112] and decentralized architectures
[98]. Key challenges in multi-agent online planning and control include: (1) partial observability, which complicates
state estimation and plan validity [125]; (2) the impact of model accuracy, where prediction errors accumulate over
timesteps [62, 77, 120]; and (3) poor scalability of communication and synchronization costs with increasing agent
counts [121]. Planning approaches in this domain can be categorized into four primary paradigms: (1) MPC methods
that optimize action sequences over finite horizons; (2) MCTS-based techniques that use learned WMs for enhanced
rollouts; (3) hybrid approaches combining LLMs with traditional planning frameworks; and (4) other specialized
techniques tailored to specific multi-agent scenarios.

MPC Planners Recent work demonstrates the effectiveness of MAWMs with receding horizon MPC planners [58,
62, 69, 112, 113, 120, 121, 124, 125, 133]. For example, MA-TDMPC [112] combines model-based predictions with
learned Q-functions to estimate trajectory values during planning (see Eq. (8) above). Unlike conventional MPC
methods that optimize locally, MA-TDMPC employs a global communication attention network to coordinate before
solving for optimal trajectories in latent space using CEM [93]. Krupnik et al. [62] investigate both cross-gradient
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and mutual information factorization techniques for disentangled VAEs to both capture agent interactions and allow
for separate optimization of each agent’s behavior via Temporal Segment Models (TSMs). This disentangling ap-
proach mitigates the error accumulation typical in model-based RL by learning distributions of multi-step trajectory
segments, and it simplifies the action space complexity by abstracting away other agents into the latent space. In
addition to traditional action optimization, others use MPC to monitor and correct unsafe behaviors. Xiao et al.
[121] proposes Model-Based Dynamic Shielding (MBDS), a decentralized MARL framework that uses distributed
Linear Temporal Logic (LTL)-based shields to balance scalability and coordination overhead, employing a look-ahead
method for real-time synthesis and a WM learning procedure for minimal external knowledge.

MCTS Planners Although MCTS has shown success in world-wide single agent models such as MuZero [96], its
application to MAWMs remains limited due to the exponential growth of the joint action space [49]. MAZero [69]
adapts MCTS for MAWM planning by using the WM for both state transitions and value estimation during tree
search. The approach introduces two key innovations. First, Optimistic Search Lambda (OS(λ)) uses the learned WM
to generate trajectories, combining Monte Carlo returns with optimistic value estimates. Second, AWPO guides the
tree expansion by weighting actions based on their predicted advantages from the WM. This focuses tree expansion on
promising regions of the joint action space, partially mitigating the exponential complexity of multi-agent planning.
While MAZero demonstrates the potential of MCTS in MAWMs, combining tree search with WMs in multi-agent
settings remains an active area of research.

LLM and Large Vision Model (LVM) Planners With the rise of large generative models, other authors lever-
age them for online MAWM planning. Cooperative Embodied Language Agent (CoELA) [124] presents a cognitive-
inspired modular framework that uses LLMs for perception, memory, communication, and planning. CoELA demon-
strated strong performance on cooperative transport tasks through efficient communication and coordination between
agents. Similarly, Compositional wOrld Model-based emBOdied (COMBO) [125] introduces a compositional WM
that explicitly factors multi-agent dynamics through score-based diffusion models. This compositional structure
enables accurate simulation of arbitrary numbers of agents while maintaining computational efficiency. The model
employs a two-stage training process with agent-dependent loss scaling to improve multi-agent interaction model-
ing. To handle partial observability, COMBO uses diffusion models to estimate complete world states from multiple
egocentric views.

Other Planners Several approaches leverage planning in novel ways beyond traditional receding-horizon control.
MAG [120] embeds MPC within the WM itself, using it to optimize multi-step predictions rather than directly
planning actions. This separation of prediction and control planning reduces compounding errors in multi-agent
scenarios. Rather than planning directly, Intention Sharing (IS) [58] and Pretorius et al. [90] both propose model-
based communication approaches, where agents employ online planning to generate and communicate compressed
representations of predicted trajectories using learned WMs. Planning also can be used to enhance offline training
processes. Model-Based Opponent Modeling (MBOM) [123] employs offline planning to estimate opponent learning
dynamics, improving policy updates through more accurate OM. Similarly, VDFD [115] uses planning-derived fea-
tures to enhance its Q-Mix-based value function [91], providing more stable training through improved state-value
estimation.

3.3.5 Opponent Modeling

Finally, some authors use their MAWMs for other learning tasks, such as Opponent Modeling (OM) [2]. In multi-agent
settings, model-based approaches increase in accuracy if the opponents’ actions are known, motivating approaches
from OM, which attempt to infer opponents’ joint policies from observations. Motivated by this, Indarjo et al.
[51] propose a formulation of DSSMs in MASs. These models represent environment dynamics from an individual
agent’s perspective, predicting other agents’ actions using latent variable models and variational inference. Xie et al.
[122] introduce a RL-based framework for learning latent policy representations, helping the ego agent understand
and influence the future strategy of the other agent. It captures high-level latent strategies from low-level actions,
adapting over time to guide the opponent’s policy towards co-adaptation. Zhang et al. [131] introduce AORPO, a
decentralized model-based RL method to address sample complexity by combining dynamics models and opponent
models to simulate interactions AORPO uses an ensemble of probabilistic dynamics models and Gaussian opponent
policy models. Its key innovation is an adaptive opponent-wise rollout scheme in which the rollout length for each
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opponent is computed as based on the policy and the prediction error of opponent j’s model. This allows more
accurate opponent models to be used for longer rollouts while limiting the influence of less accurate models.

4 Selecting and Implementing MAWMs
Whether to use a MAWM and which type to use is heavily dependent on the challenges of the specific application
domain. This section provides a systematic framework for making these decisions, beginning with an analysis of
when MAWMs are appropriate and proceeding to detailed architectural choices that affect implementation success.
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Figure 6: MAWM Selection Framework: A hierarchical taxonomy generated from a dataset of 37 papers using
a decision tree classifier. Papers were characterized across 13 capability dimensions and organized to maximize
information gain at each split. The resulting tree of depth 6 provides a guide for selecting MAWM implementations
based on system requirements, with papers clustered by their demonstrated capabilities. Each node should read as
"Is it good for X" with the "Yes" branch going up and the "No" branch going down.

4.1 When to Use MAWMs

Not all applications are suitable for MAWMs. For example, scenarios with fully observable, low-dimensional state
spaces and well-understood dynamics are better served by traditional control approaches. For instance, formation
control of wheeled robots on flat terrain can be effectively handled by simple potential field methods [9]. As such,
the decision to implement a MAWM requires systematic evaluation of the costs and benefits of MAWMs.
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4.1.1 MAWM Benefits

MAWMs offer several key advantages over alternative approaches, particularly in scenarios requiring sample efficiency,
coordination, or task generalization:

• Improved Sample Efficiency: In applications where samples are costly to collect, MAWMs significantly
reduce the need for environment interaction during training (e.g, MAMBPO 1.7-3.7x reduction [117] or MARCO
polynomial sample complexity [130]).

• Improved Training: MAWMs can also improve the use of training samples through improved credit assign-
ment and better utilization of limited sample data.

• Improved Online Performance: MAWMs enable better coordination through better policy features which
captures essential multi-agent dynamics, or online planning for long-horizon reward optimization that accounts
for other agents’ potential actions (e.g., MAZero [69]).

• Task Generalization: Having an understanding of the dynamics of the world allows traditional RL agents to
move beyond reactive policies and to plan out solutions to novel problems, without training (e.g., MA-TDMPC
[112]).

4.1.2 MAWM Costs

Implementing MAWMs introduces several types of overhead that must be considered:

• Computational Requirements: When compared to model-free baselines, a learned WM increases the online
requirements (both compute and memory) required to find solutions.

• Prediction Accuracy: Learned models will have accuracy limitations in underexplored areas of the state-
action space. This can induce instabilities in the training and/or online performance.

• Model Validation and Interpretation: Whereas feature-engineered models have human-interpretable fea-
tures, this is not the case in learned models, providing validation challenges.

4.1.3 Selection Criteria

If the problem requires improved sample efficiency, training, online performance, or task generalization, then a
MAWM may be a good solution, and vice versa. Alternatively, if it is compute constrained or is safety-critical
requiring stringent accuracy requirements or formal verification, MAWMs may not be a good solution. In the case
that the benefits above do not outweigh the costs, model-free approaches or feature-engineered models may be an
ideal solution.

4.2 MAWM Selection

Once the decision to use a MAWM is made, selecting the architecture requires careful consideration of system re-
quirements and constraints. This section provides Fig. 6, a decision tree that guides a practitioner through series
of heuristics based on problem attributes to the right class of MAWMs. The decision tree is derived from a sys-
tematic analysis of the 37 surveyed approaches across 13 key dimensions: communication overhead, computational
efficiency, sample efficiency, observation robustness, generalization capability, fault tolerance, latency requirements,
high-dimensional data handling, improved coordination, improved training, stochastic environments, and partial ob-
servability. Each approach was manually coded against these dimensions based on demonstrated capabilities in the
literature. The tree structure was then optimized using the Gini impurity criterion [89] to maximize information
gain at each split, resulting in the presented hierarchy for MAWM selection. Starting with bandwidth limita-
tions/algorithmic communication overhead, each path through the tree represents a different set of key requirements,
leading to relevant implementations. For example, in scenarios with strict communication overhead constraints and
stochastic environments, but where computational and sample efficiency are priorities, approaches like MACD [17]
(when latency is important) or MABL [111] (when latency is less critical) provide suitable solutions. Alternatively,
in environments without communication constraints but requiring computational efficiency under partial observ-
ability, MAPO-LSO [50] (when fault tolerance is needed) or MAMBA [23] (when fault tolerance is not needed and
generalization is the priority) offer effective approaches.
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The root node of "Communications Overhead" suggests this is the most important factor in choosing a MAWM
approach, directing to either a C-MAWM or a D-MAWM with no communications when communications are con-
strained and a D-MAWM with either all-to-all or graph-based communications when bandwidth is available. The
tree reveals a fundamental tension between observation robustness and computational efficiency. Given a need for
communication efficiency, observation robustness is a critical distinguishing characteristic, with roughly equal papers
focusing on robust approaches (e.g., value/reward [86, 97, 130] or contrastive/projective approaches [27, 100]) and
those focusing on non-robust approaches (e.g., reconstruction [17, 51, 111, 113, 121, 122]). Alternatively, papers
that do not require efficient communications overhead are better divided by their requirement for computational
efficiency: MAMBA [23] and MAPO-LSO [50] provide good computational efficiency, whereas approaches like MA-
TDMPC [112] and MAZero [69] eschew efficiency for other parameters line improved online performance.

The depth of the tree (6) and the distribution of papers across leaves demonstrates that no approach excels across
all dimensions, suggesting practitioners must carefully weigh these competing concerns based on the specific use
case. Most papers address specific combinations of requirements (e.g., "sample efficiency + stochastic environments
+ generalization") rather than providing universal solutions, indicating significant future work as discussed in the
following section.

5 Future Directions
The analysis of existing MAWMs reveals that—despite significant advances in architectures and learning approaches—
key limitations persist. Addressing these challenges defines critical research directions for advancing multi-agent world
modeling capabilities.

Model Scalability and Computational Complexity MAWMs face fundamental scalability challenges in both
model size and agent count, with computational requirements scaling as O(|A|N ) in centralized architectures [45].
While approaches like tensor factorization [72] and approximate models [130] reduce this complexity, they introduce
accuracy trade-offs that compound over time [120]. Graph-based architectures [50, 81] offer promise through explicit
connectivity modeling, though distributed consistency remains challenging. Recent work establishes power-law scaling
relationships between model size, data, and performance [42, 87], but these findings are limited to single-agent
scenarios. Hierarchical approaches across state [111], agent [133], and temporal [39] dimensions show potential for
balancing fine-grained interactions with high-level dynamics, though integrating these abstractions effectively remains
an open challenge.

Task-Agnostic vs Task-Specific Modeling While WMs enable zero-shot generalization to new tasks, many
MAWMs remain task-specific through their focus on reward prediction [117]. This limits their flexibility across
objectives and environments. Recent work like M-QMIX [57] demonstrates the potential of task-agnostic approaches
that separate environment dynamics from reward structures. However, this separation introduces objective mismatch
challenges [64], where improved prediction accuracy may not translate to better task performance. Additionally,
MAWMs face challenges in generalizing across differing agent conditions, particularly those involving varying numbers
of agents or diverse interactions [41], though approaches using dynamic architectures (e.g., GNNs [50, 81]) show
promise. Future work must balance trade-offs between task-specific performance and general applicability while
maintaining robustness to changing conditions.

Distributed Modeling Challenges D-MAWMs face challenges in maintaining consistency, especially in partially
observable environments with limited communication [90]. Ensuring that individual agents’ WMs remain synchro-
nized and coherent with the true environment state—while accounting for the actions and observations of other
agents—is a significant challenge. Existing approaches rely heavily on transformers [110] to maintain consistency
across latent states [23], which may be difficult to adapt to distributed and real-world applications. Future research
should explore efficient and realistic methods for model synchronization and consistency maintenance in decentralized
settings, particularly in models that exchange latent representations.

Formal Verification and Interpretability One of the benefits of using feature-engineered WMs is the ability to
apply formal methods for performance and safety guarantees [4, 6, 25]. For example, Xiao et al. [121] demonstrate
how LTL specifications can be used to create dynamic shields that monitor and correct unsafe behaviors in MAWMs.
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However, extending formal guarantees to learned MAWMs—particularly in safety-critical multi-agent scenarios like
autonomous driving and multi-robot systems—remains an open challenge due to the black-box nature of NNs, given
that verification of a generic NN is NP-Complete [55]. Additionally, the latent nature of representations makes it
challenging to interpret the learned dynamics against human domain knowledge, requiring re-encoding of the latent
space into human-readable observations to validate WM predictions [39].

Generative Models in MAWMs The integration of LLMs with WMs opens new possibilities for flexible
MASs. CoELA [124] demonstrates improved human-AI cooperation through natural language communication, while
COMBO [125] uses LLMs for coordinating multiple agents through compositional WMs. These approaches sug-
gest language models could enhance multi-agent coordination by providing natural interfaces for planning and task
specification. In addition, recent advances in generative modeling—such as Sora for video generation [14], Genie
for interactive environments [15], or Neural Radiance Fields (NeRF) for observation reconstructions [76]—indicate
potential paths for enhancing MAWMs with more sophisticated visual and interactive capabilities.

Real-World Applications Transitioning MAWMs from simulation to physical systems introduces significant chal-
lenges, as demonstrated by recent robotics applications. DayDreamer [119] achieved impressive sample efficiency—
learning quadruped locomotion in 1 hour without simulation—but highlighted difficulties with sensor noise and
environmental variability. Similarly, autonomous driving applications like GAIA-1 [48] emphasize the safety-critical
nature of prediction errors in dynamic multi-agent environments. Beyond technical challenges, human interaction
introduces additional complexity, though LLM approaches like CoELA [124] show promise in improving trust and
task completion through natural communication. Future work must address robust learning from noisy data, partial
observability in physical systems, formal safety guarantees, and scalable deployment while maintaining practical
computational constraints.

6 Contributions
This survey provides a comprehensive framework for categorizing and comparing MAWMs based on their architec-
tures, learning objectives, and applications, highlighting trade-offs between computational scalability, communication
overhead, and coordination effectiveness. Guidelines are provided for selecting communication architectures, tailor-
ing learning objectives to task specificity, and selecting applications for MAWMs. It identifies critical challenges like
exponential complexity in centralized architectures, consistency maintenance in decentralized settings with partial
observability, and sample efficiency limitations. The survey outlines research directions, such as hierarchical archi-
tectures for complexity management, self-supervised learning for sample efficiency, and techniques for distributed
consistency, offering both theoretical foundations and insights for advancing scalable and robust MAWMs in real-
world systems.
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A Survey Details

A.1 Survey Approach

This survey employed a systematic methodology to explore the landscape of MAWMs. Searches were conducted
on Google, Google Scholar, and arXiv using targeted terms such as "Decentralized World Models," "Centralized
World Models," "Multi-Agent World Models," "Collaborative World Models," and "Model-Based Multi-Agent Re-
inforcement Learning." To ensure comprehensiveness, a bi-directional citation analysis was performed, tracing both
references cited within relevant works and subsequent studies that cited these sources. To capture the evolution
of ideas, the survey intentionally spanned a wide temporal scope, extending to the early foundational studies. A
taxonomy of MAWMs was developed to classify studies based on their characteristics and contributions, providing
a structured comparison framework. The comprehensive process facilitated the identification of foundational works,
significant advancements, and emerging trends. This approach not only highlights the historical progression of the
field but also reveals gaps and opportunities for future research, offering a complete and well-rounded perspective on
MAWMs.

A.2 Related Surveys

This survey provides the first comprehensive examination of MAWMs. While Wang et al. [114] provides a review of
model-based MARL methods, it has a much more limited scope, rather than this work’s broader framework for world
modeling. While Luo et al. [71] includes a brief section on model-based MARL, it does not provide a comprehensive
framework, nor does it fully address the broader challenges of multi-agent world modeling. Guan et al. [34] examines
world models in autonomous driving but focuses on single-vehicle driving scenario generation, planning and control,
environmental modeling, and trajectory prediction, rather than multi-agent coordination. Other surveys examine
aspects of MARL [33, 136] and model-based RL [77], but none specifically address decentralized architectures and
multi-agent world modeling. Finally, Zhu et al. [137] explores world models primarily through the lens of LVMs as
implicit world models, with only limited discussion of multi-agent scenarios.

A.3 Generative AI Usage Statement

This manuscript was developed with assistance from ChatGPT (4o, o1-mini, and o1) and Claude (version Sonnet
3.5). Claude was used in the following ways:

• Initial generation of Tikz/Forest diagram syntax, with significant author modification on the semantics;

• Drafting and editing suggestions for clarity, conciseness, and technical accuracy; and

• Basic copy-editing suggestions for grammar, formatting, and consistent style.

All generated content was thoroughly reviewed, verified, and edited by the authors to ensure accuracy and originality.
Key technical contributions, analyses, and conclusions represent the authors’ novel intellectual work. The complete
chat logs and prompts are available upon request.
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ACNN Agent-Centric Neural Network. 10, 13, 17

AI Artificial Intelligence. 5
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CVAE Conditional Variational AutoEncoder. 14
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LDS Linear Dynamical System. 7
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LVM Large Vision Model. 17, 20, 33
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MA-SPL MA-Self-Predictive Learning. 14, 15
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MAG Models as AGents. 10, 12–14, 17, 20

MAMBA Multi-Agent Model-Based Approach. 4, 10, 12, 13, 16, 17, 22, 23

MAMBPO Multi-Agent Model-Based Policy Optimization. 13, 14, 17, 22

MAPO-LSO Multi-Agent Policy Optimization with Latent Space Optimization. 10, 12–15, 17, 22, 23

MARCO Multi-Agent RL with Centralized mOdels and exploration. 10, 13, 17, 22

MARIE Multi-Agent auto-Regressive Imagination for Efficient learning. 10, 12, 13, 17

MARL Multi-Agent Reinforcement Learning. 9, 10, 15, 16, 18–20, 33

MAS Multi-Agent System. 1–3, 5, 9, 16, 18, 20, 24
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MDP Markov Decision Process. 18
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NeRF Neural Radiance Fields. 24
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OM Opponent Modeling. 9, 11, 16, 17, 20

PDDL Planning Domain Definition Language. 5
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Q-Mix Q-Mix. 11, 16, 18–20
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RSSM Recurrent State Space Model. 7
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SMAC StarCraft Multi-Agent Challenge. 16–19

SMAWM Structured Multi-Agent World Models. 10, 11
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STRIPS Stanford Research Institute Problem Solver. 5

TD-MPC Temporal Difference Model Predictive Control. 4, 8, 14
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TIMAR Transition-Informed Multi-Agent Representations. 10, 13, 15, 17, 19
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VAE Variational AutoEncoder. 7, 16, 20
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WM World Model. 1–20, 22–24
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