
Centaurus: Characterizing the Energy Efficiency of
Contemporary CPUs for Running Sparse Problems

Anonymous Author(s)

Abstract—Sparse matrix-vector multiplication (SpMV) is a

widely used computational kernel in various applications, ranging

from traditional scientific computing and graph analytics to

modern machine learning applications. Enhancing the efficiency

of SpMV – not just their speed – has become increasingly

important. To this end, with the growth of machine learning

and the rising significance of sparsity within this field, PyTorch,

a well-known machine learning library, provides support for

SpMV. On the other hand, the ARM ISA offers a promising

platform in data centers for executing SpMV operations with

low compute intensity, suitable for CPU capabilities. To further

investigate the performance efficiency of CPU-based platforms

for diverse SpMV kernels, we measure the execution time and

power consumption of a PyTorch-based SpMV implementation

on three contemporary CPUs including an Ampere Altra, an

AMD Epyc, and an Intel Xeon CPU. Demonstrating superior

power efficiency, Ampere’s Altra processor outperforms x86

processors when performing PyTorch SpMV in scenarios with

extremely high sparsity or when power efficiency is prioritized

over execution time.

Index Terms—workload characterization, performance evalu-

ation, instruction set architecture, microarchitecture

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) has been and
continues to be a major computational kernel for applications
such as scientific computing, graph analytics, deep neural
networks, and modern large language models [1]. However,
executing SpMV efficiently remains a challenge for both CPUs
and GPUs today due to the inherent sparsity of the data
structures involved—even with several optimizations proposed
for SpMV in recent years [2]–[10]. SpMV, characterized by
low computational intensity, may benefit more from CPUs,
especially as modern data centers continue to rely on general-
purpose CPUs for day-to-day operations. However, the sparse
structure in SpMV leads to low vectorization, which hampers
efficient computation by the vector units in common consumer
and commercial CPUs [11]–[13].

Challenges related to efficiently running sparse problems in
modern data centers are linked to the growing demand for
efficient computing, particularly in terms of power efficiency.
Power efficiency has historically been crucial for mobile
devices dependent on limited power sources. Today, it is
also a significant concern for data centers as their energy
consumption continues to rise—so much so that companies
like Amazon and Google are now investing in nuclear en-
ergy [14]. Investing in nuclear energy exemplifies one ap-
proach to addressing limited energy: generating more energy.
Another approach to meeting the growing power demands of
data centers is the adoption of more power-efficient hardware.

To this end, many data centers are experimenting with the
use of ARM-based processors [15]. The ARM instruction set
architecture (ISA) has been gaining popularity partly due to
its widespread use in mobile devices and its implementation
in Apple’s laptops [15]. This popularity is also driven by the
reduced complexity of the Reduced Instruction Set Computer
(RISC) architecture and its associated power efficiency [11].

As sparsity and SpMV gain popularity and become key
kernels in applications beyond traditional domains and into
modern machine learning, the software implementations and
libraries supporting them become as important as the hardware
that executes them. PyTorch is a well-known machine learning
library recognized for its flexibility and ease of use [16]. As
a machine learning library, it is capable of performing tasks
that are computationally intensive in sparse matrix-vector mul-
tiplications. Over the past few years, PyTorch has been adding
features to support sparse matrix operations. With its sparse
API still in beta, it continues to incorporate features such as
semi-structured sparsity to further enhance the performance of
sparse operations [17]. Additionally, extensive data has been
collected on the performance and power efficiency of ARM
processors, including in the data center environment [15],
[18]. Some studies have even used the ARM Performance
Library on ARM processors as a baseline for their own SpMV
improvements on CPUs [19]. However, none have examined
PyTorch’s implementation of single and multi-core SpMV on
data center-scale processors to date.

To explore the intersection of power-efficient platforms and
popular libraries for running SpMV, this paper characterizes
the energy efficiency of contemporary CPUs for running
sparse problems (Centaurus). It measures the execution time
and power efficiency of a PyTorch-based SpMV implemen-
tation on the Ampere Altra, AMD Epyc, and Intel Xeon
CPUs across a range of SpMV kernels with varying sparsity
levels. These measurements reveal that the Ampere Altra is
more power efficient than the other processors across every
SpMV kernel in exchange for higher execution times and
that the Ampere Altra is more energy efficient than the other
processors when sparsity is extremely high.

II. CENTAURUS: CONTRIBUTIONS & METHODOLOGY

This paper compares the performance of PyTorch’s SpMV
operation on the Ampere Altra processor [11] against the
AMD Epyc 7313P [12] and Intel Xeon 4216 [13] processors
in terms of execution time and power consumption. This
comparison not only examines the differences between the
Arm and x86 ISAs but also between Arm’s Neoverse N1,

1



AMD’s Zen 3, and Intel’s Cascade Lake microarchitectures.
To make this comparison, this paper varies the number of cores
and the input matrices used by the SpMV operation.

A. Hardware Setup
We target three processors including the Ampere Altra,

AMD Epyc 7313P, and Intel Xeon 4216. Comparison against
two different implementations of the x86 ISA serves to provide
context for the reported metrics of the Ampere Altra processor.
For the sake of fairness, no processors use simultaneous
multithreading (SMT). The Ampere Altra processor is an 80-
core 3.0GHz ARM processor with 128-bit vector units [11].
The AMD Epyc 7313P processor is a 16-core 3.0GHz x86
processor with 256-bit vector units supporting the AVX2
extension [12]. The Intel Xeon 4216 is a 16-core 2.10GHz x86
processor with 512-bit vector units supporting the AVX512
extension [13]. For the sake of comparison and visualization,
the Intel Xeon 4216 processor is limited to only 256-bits of
each vector unit via the AVX2 extension (more details on the
method in Section II-B).

Although the Ampere Altra and Intel Xeon 4216 processors
are installed in dual-socket systems, only the first socket is
used for both the SpMV operation as well as the collection
of power consumption. Limiting the SpMV operation to one
socket excludes the effect of data transfer between sockets and
allows the metrics to reflect a direct processor-to-processor
comparison. The method through which this is accomplished
is detailed in Section II-B. We also make comparisons between
the processors in terms of core counts. The main three groups
of comparison are single core, 16 core, and maximum core
performance, where maximum core is 16 cores for the AMD
and Intel processors and 80 cores for the Ampere processor
(more details on the method in Section II-B) .

B. Software Setup
In this paper, any given run of “the program” consists of

the following steps:
1) Depending on the given arguments, import or gener-

ate the 32-bit float sparse matrices using SciPy and
NumPy [20], [21].

2) Generate the 32-bit float dense vector in PyTorch [22].
3) Obtain start time using Python’s built-in time module.
4) In a for loop, perform the SpMV operation using

PyTorch’s torch.mm() function [22].
5) Obtain the end time and subtract the start time to obtain

the total time taken by the for loop.
6) Output the time taken and matrix metadata with a stan-

dard data format using Python’s built-in json module.
Both the generated matrix and the vector are randomly

generated before the for loop and do not change between
iterations of the loop. The generated matrix is kept constant be-
tween iterations just as an imported matrix would be. Keeping
the vector constant also prevents random number generation
from being measured alongside the SpMV operation.

To focus on the execution time and power consumption
caused by SpMV operation, it is performed in a for loop

with a variable number of iterations. The number of iterations
is based on having the loop meet a minimum execution time
criterion of 10 seconds. The execution time criterion is meant
to mitigate the overhead of Python itself and let the reported
metrics primarily represent PyTorch’s SpMV operation.

To bring the Intel Xeon 4216 processor closer in
line with the other processors, we install PyTorch
with no support for AVX512 instructions. Running
torch.__config__.show() from within Python
shows that the PERF_WITH_AVX2=1 flag is set and
the PERF_WITH_AVX512=1 flag is not. Additionally,
the Ampere Altra and Intel Xeon 4216 processors are
installed in dual-socket systems. Without consideration,
threads may move between sockets and cause unexpected
variations in the recorded metrics. We prevent this using
numactl --cpunodebind=0 --membind=0, which
binds the program to the first socket.

When using fewer than the maximum cores, we take two
steps to ensure that the correct number of cores are used and
that the same cores are used in every run of the program.
First, we use the torch.set_num_threads() to set the
number of threads, N . Second, we use OMP_PROC_BIND and
OMP_PLACES environment variables to place one thread of
the SpMV on each core and to make OpenMP use the first
N cores. Ampere’s version of PyTorch automatically binds N
threads to the first N cores in the same manner, but we set
the environment variables for all processors regardless.

Running the power collection program on the same pro-
cessor as the program would always affect the program’s
execution in some way. To make sure that it affected the
program in a consistent manner, we use taskset -c 0
to bind the power collection program to the first core of the
processor. Additionally, we measure the execution time metrics
and power metrics in separate runs of the program such that the
execution time metrics are not impacted by power collection.

C. Workloads
The sparse matrices used in the SpMV operation are either

real-world matrices taken from SuiteSparse [23] matrix collec-
tion or synthetic, randomly generated matrices with varying
characteristics. All matrices have the same number of rows
as columns for simplicity and are stored in memory in the
compressed sparse row (CSR) format before being used in
the SpMV operation. The dense vectors used in the SpMV
operation are randomly generated. The variety in workloads
serves two purposes: to examine any potential differences in
performance between real-world and synthetic matrices and to
cover a wide range of sizes and densities.

1) SuiteSparse: We use two collections of SuiteSparse [23]
matrices as follows:

• as-caida is a collection of autonomous system (AS)
relationship graphs from 2004 to 2007, sourced from the
Center for Applied Internet Data Analysis. Each sparse
matrix in this collection maintains the same 31,379 by
31,379 size. However, each matrix has a different density,
ranging from about 0.007% to 0.01% or about 70,000 to

2



107,000 non-zero elements. As there are 122 matrices in
this collection, every tenth matrix is selected from this
collection, bringing the number of used matrices to 12.

• 389000+ is a custom collection of seven sparse ma-
trices obtained from SuiteSparse, ranging in size from
389,874 by 389,874 to 415,863 by 415,863 and ranging
in the amount of non-zero elements from 1,216,334 to
19,173,163. Each of these matrices have varying sparsi-
ties, come from varying kinds of problems, and maintain
a similar overall size. The matrices are detailed in Table I.

2) Synthetic: The synthetic matrices are randomly gener-
ated matrices with varying sizes and densities. The sizes in
terms of number of rows are 5,000, 10,000, 50,000, 100,000,
and 500,000 rows. The densities, the number of non-zero
elements over the total number of elements, are 0.00001,
0.00005, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and
0.5. We pair each size with each density, so the parameters
of the generated matrices are the Cartesian product of every
size and density listed. The exception to this are any size and
density combinations which result in greater than 100,000,000
non-zero elements. As a result, we use 35 synthetic matrices,
ranging from 250 to 100,000,000 non-zero elements.

While the as-caida takes a close examination of a few
smaller matrices and the 389000+ takes a wider examination
of a few larger matrices, the sizes and densities we used for the
synthetic matrices are aimed to encompass both SuiteSparse
collections in terms of size and density.

D. Metrics

We report execution time (seconds, s), power consumption
(watts, W), and energy consumption (joules, J). Energy con-
sumption is derived from the measured metrics: the power
consumption and the execution time of the program. The
time and energy consumption metrics are reported per 1,000
iterations (kI) of the SpMV operation. Normalizing for the
number of iterations eliminates the effects of the variable
iterations noted in Section II-B. The result is that time and
energy consumption are relative to the “amount of work
done”, or 1,000 iterations. The exception to this is power
consumption. Watts are defined as joules over seconds or
W = J

s . As the ratio between joules and seconds, the wattage
of the processor stays relatively constant as the number of
iterations increases. This can be seen when substituting in
joules and seconds per 1,000 iterations, or J/kI

s/kI = J
s = W .

Effectively, watts already control for the variable iterations in
the same manner joules and seconds per 1,000 iterations are.

TABLE I
389000+ COLLECTION

Name Rows Non-Zero Elements Density

mario002 389874 2097566 0.00138%
helm2d03 392257 2741935 0.00178%

test1 392908 9447535 0.00612%
language 399130 1216334 0.000764%
marine1 400320 6226538 0.00389%

amazon0312 400727 3200440 0.00199%
msdoor 415863 19173163 0.0111%

1) Execution Time: We measure execution time for the
SpMV operation using Python’s time module and its
time() function. As detailed in Section II-B, we record the
start and end times just before and after the SpMV’s for loop.

2) Power Consumption: We measure power consumption
using the sensors command and the turbostat command
for the Arm processor and the x86 processors, respectively. We
use two different power collection tools because of the lack of
support from turbostat, as an Intel-created tool, for Arm
processors. Moreover, sensors does not output processor
power consumption on x86 processors. Both tools capture the
power consumption of the processor itself and do not capture
the power consumed by other components of the system, such
as memory. The primary difference between sensors and
turbostat is the power consumption output. turbostat
outputs the wattage of the processor for a given program’s
execution. sensors outputs the wattage of the processor at
the time that sensors is run.

To bridge the gap between the outputs of these two pro-
grams, we run sensors at one second intervals to sample
the power consumed during the execution of the program.
Linearly interpolating the data between the samples results in a
power consumption graph which can be treated as a function
f(s) where s is the number of seconds since the program
began execution and f(s) is the sampled wattage at time s.
To accurately average the wattage, the estimated total energy
consumption in joules is calculated and then divided by the
total execution time in seconds. This is equivalent to the mean
of the function f for some interval [a, b], where the integral
is the estimated total energy consumption and b � a is the
total execution time. However, power measurement begins at
0 seconds, therefore a = 0. Additionally, power measurement
ends when the program execution ends, so b = S, S 2 R
where S is the total execution time. Substituting in these values
results in the following equation:

J =

Z b

a
f(s)ds

=

Z S

0
f(s)ds

(1)

As the function f(s) is not a continuous curve, the area
under the curve can instead be obtained with the trapezoid rule
where sampling every second means xk = k, xk�1 = k � 1,
and �xk = 1:

Z S

0
f(s)ds ⇡ ⌃S

k=1
f(xk�1) + f(xk)

2
�xk

= ⌃S
k=1

f(k � 1) + f(k)

2

(2)

As the execution time of the program is not a whole number,
power sampling actually ends before the end of the program
by a variable amount. To account for this, the value of the
last sample, taken at the last whole second, is assumed to
be constant, interpolated to the remaining execution time, and
added to the sampled energy consumption. As a result, S =
bSc+(S�bSc) where S�bSc is the execution time past bSc

3



in excess of a whole number. Then we calculate the estimated
total energy consumption in joules as the following:

J ⇡ (S � bSc) · f(bSc) + ⌃bSc
k=1

f(k � 1) + f(k)

2
(3)

Finally, we obtain the program’s power consumption in watts:

W =
J

S

⇡ 1

S
((S � bSc) · f(bSc) + ⌃bSc

k=1

f(k � 1) + f(k)

2
)

(4)

III. RESULTS & ANALYSES

As mentioned in Section II-D, all of the measured metrics
are per 1,000 iterations (kI) to eliminate the effect of variable
iterations and place the metrics in terms of “amount of work
done”. Any figure that refers to “Max Core” is stating that
the results are obtained using the maximum number of cores
available on the processor as specified in Section II-A. Using
the maximum number of cores availables on the processor
present an opportunity to examine the effect of allowing the
Ampere Altra processor to use 5⇥ more cores than the x86
processors to accomplish the same “amount of work” in terms
of 1,000 iterations. “s/kI” refers to the seconds taken by the
SpMV operation for every 1,000 iterations, “J/kI” refers to the
joules used by the computation for every 1,000 iterations, and
“W” refers to the watts used by the computation. As these
are all measures of execution time, power consumption, and
energy consumption, lower is better.

A. as-caida Collection

Figure 1 compares the Ampere Altra, AMD Epyc 7313P,
and Intel Xeon 4216 processor metrics measured over the
as-caida collection while using a varying number of cores.
The execution time and energy consumption metrics for the
Altra are consistently higher than that of the x86 processors,
while the power consumption is consistently lower. Moreover,
as the core count changes, all metrics for the x86 processors
change while only energy consumption changes for the Altra.

1) Time: Figure 1(a) depicts the behaviors of the execution
time of the SpMV operation as density increases. The Altra
processor has a higher execution time than the x86 processors
for every as-caida matrix measured, increases in execu-
tion time as the density increases much more than the x86
processors, and keeps the execution time constant when the
core count increases unlike the x86 processors. Additionally,
the Xeon processor takes more time than the Epyc across all
densities for the 1-core case, but not the 16-core case.

Regarding the Altra’s higher execution time, comparing
the width of the vector units in the processors offers one
explanation. Mentioned in Section II-A, the Altra can use 128-
bit wide vector units while the x86 processors can use up
to 256 bits. Capable of performing computation on twice as
many 32-bit floats at once, the x86 processors can make much
shorter work of the same workload as the Altra. Based on
this explanation, the x86 processors should complete the same
workload in half the execution time of the Altra. However, the

(a) Execution Time per 1,000 Iterations (s/kI) vs. Matrix Density

(b) Energy Consumption per 1,000 Iterations (J/kI) vs. Matrix Density

(c) Power Consumption (W) vs. Matrix Density

Fig. 1. Various Metrics vs. Matrix Density for Different CPUs and Core
Counts measured over the as-caida Collection

Epyc processor takes less than 14%. This can be explained by
a larger number of vector units in addition to having larger
vector units, an idea further explored in Section III-B1.

Regarding the Altra increasing in execution time more
than the x86 processors do as density increases, the previous
explanation may still apply. As density increases, the number
of vector, or SIMD, operations increases. Given a SIMD work-
load, the Altra will take at least twice as long (a = 2x) as the
x86 processors (x) to complete it given their respective vector
unit widths. However, given twice the previous workload, the
x86 processors will only take twice as long (2x) while the
Altra will take four times as long (2a = 2(2x)). Figure 1(a)
depicts this effect at a smaller, more discrete scale.

Regarding the Altra keeping execution time constant as the
number of cores utilized increases, a bottleneck may be present
for the Altra which does not exist for the x86 processors.
One possible bottleneck is in the memory speeds, as the Altra
supports up to 3,200 MHz RAM [11], the Epyc supports
the same [12], and the Intel only supports 2,400 MHz [13].
However, if this were the bottleneck, this would likely affect
the Intel processor more. Moreover, all three processors have
enough L1, L2, and/or L3 cache combined to completely
contain the largest as-caida matrix in CSR. This is because
the CSR format would require at most 31379 + 1 elements
in the offsets array, based on the size of the matrix, and at

4



most 2(106510) elements for the values and indices array
combined [24]. If all integers and floating point values are
32-bit wide, this results in 32(31379+1+2(106510)) bits or
0.9776 megabytes. This can be contained within Altra’s 64 kB
of L1 and and 1 MB L2 cache [11], Epyc’s 128 MB of L3 [12],
and Intel’s 22 MB of cache [25]. Another possible bottleneck
is that the Altra is running up against a maximum per-core
computational limit. However, if this were the bottleneck, the
time would decrease as more cores are used similar to the
x86 processors. Ultimately, it is possible that the overhead
of PyTorch distributing the SpMV operation across multiple
cores offsets any potential reduction in execution time. For the
x86 processors, it follows that the time taken would decrease
drastically as 15 more cores are used simultaneously than in
the 1-core case.

Regarding the difference in the execution time of the
x86 processors in the 1-core case, a high-level explanation
can be offered by the base clock speeds and boost clock
speeds supported by both processors. The Epyc supports a
base clock speed of 3.00 GHz and a boost clock speed of
3.70 GHz [12] while the Intel supports 2.10 GHz and 3.20
GHz [13], respectively. Assuming all else is the same, the
differences in clock speeds are easily capable of explaining the
difference between the processors in the 1-core case. However,
as the AMD Epyc 7313P processor was publicly launched
two years after the Intel Xeon 4216 was, it is also difficult to
suggest that there were no microarchitectural improvements
in that time [12], [13]. This is not an entirely fair one-to-one
comparison, however, as allowing the Xeon access to AVX512
extension’s 512-bit wide vector units would likely serve to
fill the gap between the two processors. This is especially
so since the 512 bits in the Xeon’s vector units are exactly
twice the 256 bits in the Epyc’s vector units, while the Epyc’s
execution times are about half that of the Xeon’s. Regarding
the similarity in the time taken by the x86 processors in the
16-core case, the overhead of splitting the matrix among 16
cores likely outweighed the small amount of time it took each
core on either processor to complete the computation.

2) Energy and Power Consumption: Figure 1(b) depicts the
behaviors of the energy consumed by the processor as the
density of the SpMV matrix increases. Similar to Figure 1(a),
Altra’s energy consumption increase is higher than that of the
x86 processors for every as-caida matrix. This suggests
that the need to spend more time to complete the SpMV
operation is tied to the need to spend more energy for the same
reason. Although this may be clear, this need not necessarily
be the case. Additionally, the similarity in energy consumption
of the x86 processors can be explained as with Section III-A1,
where the time spent moving data outweighs the time spent
on computation so much so that both processors use the same
time and energy to accomplish the SpMV operation.

Unlike Figure 1(a), though, an increase in Altra’s core count
shows a clearer change in the energy consumed. First, as
one core is increased to 16 cores, the energy consumption
is similar, if maybe a bit lower. Then, as 16 cores is increased
to 80, the energy consumption drops. The reason for this drop

can be attributed to strong power efficiency. When 16 cores
is increased to 80 cores, the computation assigned to each
core is spread out. By parallelizing the work, the computation
could complete in a fraction of the time as with the x86
processors in Figure 1(a). Since the amount of time is constant,
however, less energy is consumed to accomplish the same task
in the same amount of time. The reason the effect is more
pronounced when increasing from 16 to 80 cores compared
to when increasing from one to 16 cores is a matter of scale
where an increase from 1 to 16 is less noticeable than an
increase from 1 to 80 – five times the increase.

Figure 1(c) depicts the behaviors of the power consumed
by the processor as the density increases. Unlike Figures 1(a)
and 1(b), the Altra is clearly and consistently below the
x86 processors. Unlike the Altra, the x86 processors increase
in power consumption as the core count increases, opposite
their behavior in Figures 1(a) and 1(b). Finally, all three
processors stay at a relatively constant power consumption
across all densities. The relatively low power consumption
exhibited by the Altra processor is likely an example of the
power efficiency touted by Ampere [11]. This power efficiency
comes at a cost, however. In exchange for keeping power
consumption low, more time is spent on the SpMV operation.
The longer time spent on computation means that although
power consumption is relatively low, energy consumption is
relatively high compared to the x86 processors.

The x86 processors increase in power consumption as the
core count increases due to using more cores to accomplish the
same amount of work. This alone is nothing of note were it not
for the Altra processor which does not exhibit this increase.
When moving from one core to 16 cores, and even from 16
cores to 80 cores, the power consumption remains about the
same. A plausible explanation involves the Altra processor’s
baseline power consumption. Assuming all of the Altra’s cores
are powered equally at all times, then the difference in power
consumption between one core doing all of the computation
and 80 cores doing one-eightieth of the work would be
minimal. This contrasts with the x86 processors, which can
achieve better overall power consumption by reducing the
power consumption of idle cores and only ramping up overall
power consumption when those idle cores are made to perform
part of the SpMV operation. The x86 processors could avoid
this increase in power consumption by following in the Altra’s
footsteps, but would use far more energy idly powering 16
cores than the Altra would actively powering 80 cores.

The constant power consumption exhibited by all processors
at all core counts is due to a relatively small scale as the
as-caida matrices vary little in density and not at all in
size. The following Sections III-B and III-D address this by
examining, respectively, a different set of larger matrices and
a superset of both smaller and larger matrices than both the
as-caida and 389000+ collections.

B. 389000+ Collection
Figure 2 compares the three processor metrics measured

over the custom 389000+ collection while using a varying

5



(a) Execution Time per 1,000 Iterations (s/kI) vs. Matrix Density

(b) Energy Consumption per 1,000 Iterations (J/kI) vs. Matrix Density

(c) Power Consumption (W) vs. Matrix Density

Fig. 2. Various Metrics vs. Matrix Density for Different CPUs and Core
Counts measured over the 389000+ Collection

number of cores. Similar to Figure 1, the time and energy
consumption metrics for the Altra tend to be higher than
that of the x86 processors, while the power consumption
tends to be lower. However, there are a few key differences,
namely some areas where the Altra’s metrics overlap with
the x86 processors and an upward curve not previously seen
in Figure 1. The main reason for these differences are the
difference between the two SuiteSparse collections: matrix
size. While the density range remained about the same, the
increased size of the 389000+ matrices means their matrices
have at least 10 times the amount of non-zero elements as
the as-caida matrices—from at most 106,510 non-zero
elements to at minimum 1,216,334 non-zero elements.

1) Time: Figure 2(a) depicts the behaviors of the time
taken by the SpMV operation as density increases. The Altra
processor continues to take more time per 1,000 iterations than
the x86 processors for every matrix except when examining
across core counts, continues to increase in execution time
more than the x86 processors except when using 16 cores,
and no longer keeps the execution time constant when the core
count increases. Additionally, the x86 processors continue to
maintain the same behaviors detailed in Section III-A1.

The Altra processor maintains its relatively high execution
time compared to the x86 processors in much the same way
as in Figure 1(a). This follows the vector unit explanation

in Section III-A1 such that this is a hardware limit that the
Altra cannot overcome as the density or number of non-
zero elements increases regardless of core counts. There is
a sort of exception to this, however, when comparing across
core counts as opposed to purely within core counts. When
comparing the Altra’s execution time in the 16-core case to
the x86 processors’ execution time in the 1-core case, the Altra
finds itself in between the x86 processors. Not only did the
Altra have an execution time between the x86 processors, it
manages to follow the same curve that the x86 processors
do. This suggests that, for the 389000+ collection, the Altra
processor’s SpMV operation using 16 cores is in some way
equivalent to the x86 processors’ SpMV operation using 1
core. Assuming all else is equivalent and knowing that the
Altra has two 128-bit vector units per core [11], this estimates
that the x86 processors have around 32 vector units per core.
However, this number is fairly high and moreso suggests that
there exists other reasons for the difference in performance
beyond the vector units themselves.

The Altra processor continues to increase in execution
time more than the x86 processors, once again following the
explanation offered in Section III-A1, which holds up well
when considering the consistency with which the 16-core Altra
execution time follows the single-core x86 processor execution
times as density increases. Thus, we suggest that the positive
curve in execution time as density increases is caused by the
limited throughput of the vector units.

Unlike Figure 1(a), a noticeable change in the behavior of
the Altra processor’s execution time is the difference across
core counts. Before, the execution time is about the same
when increasing the number of cores. Now, when increasing
from one core to 16, the execution time drops. Then, when
increasing from 16 cores to 80, the execution time jumps
up. This is perhaps surprising until considering the possible
overheads involved. Every core must be assigned a division
of the SpMV operation in every iteration. It is possible that
the time spent by PyTorch dividing up the matrix alongside
the active use of more cores with minimal work per core is
less time efficient than having PyTorch divide up the matrix
into larger chunks and distribute them among fewer cores
with an optimal amount of work, especially if PyTorch has
to accumulate the results from every core before starting the
next iteration of the computation.

As previously mentioned, the x86 processors maintain the
same behaviors detailed in Section III-A1 and shown in Fig-
ure 1(a) wherein the Epyc is lower than the Xeon in the 1-core
case and both achieve a similar execution time in the 16-core
case. Again, the overhead of splitting the SpMV operation up
across multiple cores likely outweighs the minimal execution
time of the operation on each core.

C. Energy and Power Consumption
Figure 2(b) depicts the behaviors of the energy consumed

by the processor as density increases. Similarly to Figures 2(a)
and 1(a), Altra’s energy consumption and energy consumption
increase is higher than that of the x86 processors for every

6



389000+ matrix. This once again suggests that the need to
spend more time to complete the SpMV operation is tied to the
need to spend more energy for the same reason. This is not
one-to-one, however, as Figure 2(c) shows that the ratio of
energy consumption to execution time increases as the core
count increases. Moreover, the energy consumption of the
1-core and 80-core cases are similar, despite the execution
times differing. Additionally, the energy consumption of the
x86 processors no longer line up in Figure 2(b) as they
did in Figure 1(b). These differences likely existed before in
Figure 1(b) but are now made apparent as the larger matrices
means time spent moving data no longer outweighs the time
spent on computation. This is so much so that the Xeon
processor visibly consumes more energy to accomplish the
same task as the Epyc processor.

As with Figure 2(a), the energy consumption drops from the
1-core case to the 16-core case but rises again from the 16-
core case to the 80-core case. Assuming power consumption
between these core counts is constant, then this would be
directly attributable to the increased execution time caused
by the overheads of PyTorch and using more cores simultane-
ously. Figure 2(c), however, shows that this assumption cannot
be made as the power consumption increases with the core
count. As the number of cores used increases, the overhead of
splitting the SpMV operation across cores and the overhead
of powering more cores to accomplish a diminishing portion
of the computation begins to outweigh the benefits of doing
so in both time and energy consumption. So much so that the
energy consumption of the 80-core case is almost as high as
the energy consumption of the 1-core case.

Figure 1(c) depicts the behaviors of the power consumed
by the processor as density increases. Once again, the Altra is
consistently below the x86 processors when comparing within
core counts. Both the Altra and x86 processors increase in
power consumption as the core count increases, opposite their
behavior in Figure 1(c). As a result, the Altra is no longer
consistently below the x86 processors when comparing across
core counts. Finally, all three processors no longer stay at a
relatively constant power consumption across all densities.

The relatively low power consumption exhibited by the
Altra processor is likely another example of the power effi-
ciency touted by Ampere [11]. As a result, when comparing
within core counts, the Altra’s power consumption is still
well below that of the x86 processors in much the same
way as Figure 1(c). Unlike Figure 1(c), though, the power
consumption of the Altra with different core counts visibly in-
creases. This suggests that the “constant” power consumption
in Section III-A2 is the result of smaller sparse matrices. The
explanation offered previously, that the difference in power
consumption between one core doing all of the computation
and 80 cores doing one-eightieth of the work is minimal,
no longer holds as the work divided among the cores has
increased. The idea, however, still holds as Figure 2(c) depicts
the Altra’s power consumption difference when one core does
all of the work, 16 cores each do one-sixteenth of the work,
and 80 cores each do one-eightieth. Even when increasing the

Altra’s core count from one to 80, the difference in power
consumption is minimal compared to when increasing the
x86 processor core counts from one to 16. This supports the
explanation offered in Section III-A2 where the x86 processors
achieve better power efficiency at low utilization by reducing
the power used by underutilized cores.

The power consumption exhibited by all processors at all
core counts is no longer constant as with Figure 1(c). As we
concluded in Section III-A2, the constant power consump-
tion is due to the relatively small scale of the as-caida
collection. Although the range in density for the 389000+
collection is similar, the range in size is quite different and
the number of non-zero elements for the smallest matrix in the
latter collection is over 10 times that of the largest matrix in
the former collection. However, a larger picture can be painted
with the generation and use of even smaller and even larger
matrices as Section III-D.

D. Synthetic Matrices

The synthetic matrices are unlike the SuiteSparse matrices
in that they are randomly generated according to a wide
variety of sizes and densities up to a limit of 100,000,000
non-zero elements. Being synthetic, the numbers and their
positions within the matrix are much unlike the real-world
SuiteSparse matrices. Despite this, Figures 4, 5, and 6 depict
similar patterns to that of Figures 1 and 2. Additionally, being
generated with a wide variety of sizes and densities, the
Figures 4, 5, and 6 depict execution time, energy consumption,
and power consumption for a much wider range of matrix
sizes, densities, and number of non-zero elements than the
SuiteSparse collections depicted. As a result of varying both
size and density, the volume of information is difficult to
parse without being split into a separate figure for each core
count, Figure 4 for the 1-core case, Figure 5 for the 16-core
case, and Figure 6 for the maximum-core case. For each of
these figures, the x-axis is scaled logarithmically. For only the
execution time and energy consumption, the y-axis is scaled
logarithmically. The legend for these figures is separated into
Figure 3 due to its size.

There is one behavior that is unique to the synthetic matrices
due to its ability to vary matrix sizes: depicted behaviors in all
metrics tend to reappear at lower densities and higher sizes.
The shared aspect of both density and matrix size is the num-
ber of non-zero elements. The relationship between the number
of non-zero elements and the reported metrics is visualized in
Figure 7, where energy consumption is placed over the number
of non-zero elements. We prefer visualizations using density
instead of number of non-zero elements for the sake of clarity.

Fig. 3. Legend for Various Metrics vs. Matrix Density for Different CPUs
and Matrix Rows measured over Synthetic Matrices

7



(a) Execution Time per 1,000 Iterations (s/kI) vs. Matrix Density

(b) Energy Consumption per 1,000 Iterations (J/kI) vs. Matrix Density

(c) Power Consumption (W) vs. Matrix Density

Fig. 4. Various Metrics vs. Matrix Density for Different CPUs and Matrix
Rows measured over Synthetic Matrices, 1 Core

Some behaviors in the data that continue to appear when
comparing Figures 1 and 2 to Figures 4, 5, and 6. The
Altra processor continues to have both higher execution time
and higher energy consumption than the x86 processors for
every size, density, and core count. The Altra processor also
continues to have low power consumption compared to the x86
processors for every size, density, and core count. For all these
broad similarities, however, there are also notable differences
due to the increased context of larger and smaller matrix sizes
and densities. As a result, some explanations of the behavior
continue to apply while others gain additional qualifications.

1) Execution Time: The higher execution time of the Altra
processor compared to the x86 processors can be attributed to
the same explanations offered in Sections III-A1 and III-B1
where the width of the vector units causes a significant
difference in computational throughput. A difference which
becomes more visible as density increased. This difference
is still present in the center of Figures 4(a), 5(a), and 6(a),
especially for the 5,000 row synthetic matrix when density is
below 0.1. As the density increases, however, the difference
diminishes as the execution time of the x86 processors begins
to increase at the same rate as that of the Altra processor. In
fact, the difference almost appears constant at higher sizes and
densities. The diminishing of this difference is slowed by the
use of more cores, but still diminishes at higher densities. This
suggests that there is a point at which the vector units widths

(a) Execution Time per 1,000 Iterations (s/kI) vs. Matrix Density

(b) Energy Consumption per 1,000 Iterations (J/kI) vs. Matrix Density

(c) Power Consumption (W) vs. Matrix Density

Fig. 5. Various Metrics vs. Matrix Density for Different CPUs and Matrix
Rows measured over Synthetic Matrices, 16 Core

bottleneck begins to be outweighed by a different bottleneck,
memory. This diminishing occurs when the matrix no longer
fits in any processor’s cache. Considering the 100,000 row
matrix with a density of 0.01, the amount of data required in
the CSR format would be 32(10000+1+2(1000002 ·0.01)) =
6400320032 bits or about 800 MB. This does not fit within
any processor’s cache, meaning their speed of computation is
entirely limited by the speed at which data can be read from
memory.

2) Energy and Power Consumption: The higher energy
consumption of the Altra processor compared to the x86
processors can be attributed to the same explanations offered
in Sections III-A2 and III-C, which is that energy consumption
is tied to execution time. It is for this reason that the energy
consumption of the x86 processors begin to increase at the
same rate as that of the Altra processor and is why the
aforementioned bottleneck also affects energy consumption.

As with Figures 1(c) and 2(c), Figures 4(c), 5(c), and 6(c)
depict the Altra processor as being the lowest in power con-
sumption for all sizes and densities of synthetic matrices. With
this, we conclude that the Altra processor is consistently the
most power efficient processor for PyTorch’s SpMV operation
on one or more cores. However, in most cases, this comes at
the cost of increased execution time and energy consumption.
However, at very low densities in both Figure 4(b) and
Figure 5(b), it is possible to see some SpMV operations where

8



(a) Execution Time per 1,000 Iterations (s/kI) vs. Matrix Density

(b) Energy Consumption per 1,000 Iterations (J/kI) vs. Matrix Density

(c) Power Consumption (W) vs. Matrix Density

Fig. 6. Various Metrics vs. Matrix Density for Different CPUs and Matrix
Rows measured over Synthetic Matrices, Max Core

Fig. 7. Energy Consumption vs. Matrix Number of Non-Zeros for Different
CPUs and Matrix Rows measured over Synthetic Matrices, 1 Core

the Altra processor is at or below the x86 processors in energy
consumption. Although not depicted in previous figures, this
behavior follows the explanations in Sections III-A2 and III-C
regarding the Altra processor’s efficient power consumption.

The impact on energy consumption caused by small work-
loads is so small for the Altra compared to the x86 processors
that the main driver of the Altra’s energy consumption is
the amount of time it takes to complete the computation.
This is not the case for the x86 processors whose main
driver of energy consumption is powering the cores assigned
to part of the computation. Another way to examine this
behavior is from the perspective of power consumption. The
power consumption for all processors is constant save for

high amounts of non-zero elements. If power consumption
is constant, then energy consumption equals execution time
(J = W ·s). In that case, the Altra, with its consistently lower
power consumption W , is capable of attaining a lower energy
consumption J when execution time s is low. The reason the
x86 processors have higher energy consumption despite their
lower execution time is depicted in Figures 1(c) and 2(c) as
well as between Figures 4(c) and 5(c): the power consumption
of the x86 processors is both higher and increases more with
core count than that of the Altra. In short, when execution time
is low, the execution time advantage of the x86 processors
is offset by their increased power consumption. We conclude
that when execution time is sufficiently low, such as when the
SpMV operation is relatively lightweight, the Altra is more
energy efficient. To achieve a relatively lightweight SpMV
operation, the matrix either has to be extremely dense, and
thus not sparse, or the matrix has to be large with an extremely
high sparsity.

Regarding the decrease in power consumption at high
amounts of non-zero values, the power consumption reflects a
shift in the ratio between energy consumption and execution
time. As the workload grows, the speed of computation
does not increase as quickly as the energy consumed by the
processor does. One explanation for why this may be the
case is the same memory bottleneck as with execution time,
meaning the speed of computation is again limited by the
speed at which data can be read from memory. As a result, the
power consumption drops slightly as more energy is spent on
moving data than actual computation. This explains why this
decrease in power consumption is not present in Figure 4(c):
the computational throughput of one core is not higher than
the throughput of memory.

IV. CONCLUSION

In this paper, we characterized the energy efficiency of con-
temporary CPUs for running sparse problems by comparing
the execution time and power efficiency of PyTorch’s SpMV
operation on the Ampere Altra, AMD Epyc 7313P, and Intel
Xeon 4216 processors across a range of sparse matrices. With
every matrix, we found that the Ampere Altra is more power
efficient than the AMD Epyc and Intel Xeon processors, even
when the Ampere Altra uses 5⇥ as many cores. In exchange
for this power efficiency, we found that the Ampere Altra
either has equivalent or worse execution times than the x86
processors with every matrix. These execution times means
the Ampere Altra generally spends more energy completing
the same SpMV operation as the x86 processors except for
when the SpMV operation has extremely high sparsity. We
also found that, for large SpMV operations, the difference
in execution time between the Ampere Altra and the x86
processors becomes nearly constant, making the Ampere Altra
a very powerful alternative when power efficiency is prioritized
over execution time.

9



REFERENCES

[1] J. Kang, S. Choi, E. Lee, and J. Sim, “Spdram: Efficient in-dram ac-
celeration of sparse matrix-vector multiplication,” IEEE Access, vol. 12,
pp. 176 009–176 021, 2024.

[2] C. Li, T. Xia, W. Zhao, N. Zheng, and P. Ren, “Spv8: Pursuing optimal
vectorization and regular computation pattern in spmv,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC), 2021, pp. 661–666.

[3] S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, “Speeding
up spmv for power-law graph analytics by enhancing locality & vec-
torization,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.

[4] H. Zhao, T. Xia, C. Li, W. Zhao, N. Zheng, and P. Ren, “Exploring better
speculation and data locality in sparse matrix-vector multiplication on
intel xeon,” in 2020 IEEE 38th International Conference on Computer
Design (ICCD). IEEE, 2020, pp. 601–609.

[5] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proceedings of the 29th
ACM on International Conference on Supercomputing, 2015, pp. 339–
350.

[6] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang, “Cvr:
Efficient vectorization of spmv on x86 processors,” in Proceedings of the
2018 International Symposium on Code Generation and Optimization,
2018, pp. 149–162.

[7] W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huyng, X. Li, and
R. S. M. Goh, “Optimizing and auto-tuning scale-free sparse matrix-
vector multiplication on intel xeon phi,” in 2015 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). IEEE,
2015, pp. 136–145.

[8] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiplication on modern processors with wide simd units,” SIAM
Journal on Scientific Computing, vol. 36, no. 5, pp. C401–C423, 2014.

[9] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” in
Proceedings of the 27th international ACM conference on International
conference on supercomputing, 2013, pp. 273–282.

[10] H. Bian, J. Huang, R. Dong, L. Liu, and X. Wang, “Csr2: a new format
for simd-accelerated spmv,” in 2020 20th IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGRID). IEEE,
2020, pp. 350–359.

[11] “Ampere Altra Family Product Brief.” [Online]. Available:
https://amperecomputing.com/briefs/ampere-altra-family-product-brief

[12] “AMD EPYC™ 7313P.” [Online]. Available:
https://www.amd.com/en/products/processors/server/epyc/7003-
series/amd-epyc-7313p.html

[13] “Intel® Xeon® Silver 4216 Processor.” [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/193394/intel-
xeon-silver-4216-processor-22m-cache-2-10-ghz/specifications.html

[14] “Amazon, Google make dueling nuclear investments to
power data centers with clean energy,” Oct. 2024.
[Online]. Available: https://apnews.com/article/climate-data-centers-
amazon-google-nuclear-energy-e404d52241f965e056a7c53e88abc91a

[15] N. A. Simakov, R. L. Deleon, J. P. White, M. D. Jones, T. R.
Furlani, E. Siegmann, and R. J. Harrison, “Are we ready for
broader adoption of arm in the hpc community: Performance and
energy efficiency analysis of benchmarks and applications executed
on high-end arm systems,” in Proceedings of the HPC Asia 2023
Workshops, ser. HPCAsia ’23 Workshops. New York, NY, USA:
Association for Computing Machinery, 2023, p. 78–86. [Online].
Available: https://doi.org/10.1145/3581576.3581618

[16] D. Lu and S. Liu, “Real time performance evaluation of deep learning
algorithms in image recognition under the pytorch framework,” in 2024
International Conference on Intelligent Algorithms for Computational
Intelligence Systems (IACIS), 2024, pp. 1–6.

[17] “Accelerating Neural Network Training with Semi-
Structured (2:4) Sparsity,” Jun. 2024. [Online]. Available:
https://pytorch.org/blog/accelerating-neural-network-training/

[18] J. Hruska, “The final ISA showdown: Is ARM, x86, or MIPS
intrinsically more power efficient?” Aug. 2014. [Online]. Available:
https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/the-final-isa-showdown-is-arm-x86-or-mips-
intrinsically-more-power-efficient

[19] L. Wang, H. Jia, L. Xu, C. Wei, K. Li, X. Jiang, and Y. Zhang, “Vnec: A
vectorized non-empty column format for spmv on cpus,” in 2024 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2024, pp. 14–25.

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[21] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[22] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia,
W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng,
J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar,
L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk,
B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi,
H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang,
X. Zhao, K. Zhou, R. Zou, A. Mathews, G. Chanan, P. Wu, and
S. Chintala, “Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation.” [Online].
Available: https://pytorch.org/assets/pytorch2-2.pdf

[23] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Dec. 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[24] B. Asgari, R. Hadidi, J. Dierberger, C. Steinichen, A. Marfatia, and
H. Kim, “Copernicus: Characterizing the performance implications of
compression formats used in sparse workloads,” in 2021 IEEE Inter-
national Symposium on Workload Characterization (IISWC), 2021, pp.
1–12.

[25] “Second Generation Intel® Xeon® Scal-
able Processors.” [Online]. Available:
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/2nd-
gen-xeon-scalable-processors-brief.html

10




