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Abstract

Video anomaly detection (VAD) – commonly formulated as a multiple-instance learning problem
in a weakly-supervised manner due to its labor-intensive nature – is a challenging problem in video
surveillance where the frames of anomaly need to be localized in an untrimmed video. In this paper,
we first propose to utilize the ViT-encoded visual features from CLIP, in contrast with the conven-
tional C3D or I3D features in the domain, to efficiently extract discriminative representations in the
novel technique. We then model long- and short-range temporal dependencies and nominate the
snippets of interest by leveraging our proposed Temporal Self-Attention (TSA). The ablation study
conducted on each component confirms its effectiveness in the problem, and the extensive experi-
ments show that our proposed CLIP-TSA outperforms the existing state-of-the-art (SOTA) methods
by a large margin on two commonly-used benchmark datasets in the VAD problem (UCF-Crime and
ShanghaiTech Campus). The source code will be made publicly available upon acceptance.

1 Introduction

Video understanding is a growing field and a subject of intense research that requires analysis of both spatial and
temporal information, e.g., action recognition (Pareek & Thakkar, 2021; Vu et al., 2021a;b; Sun et al., 2022; Vu et al.,
2022), action detection (Xu et al., 2020; Zeng et al., 2019; Vo et al., 2021a; Zhang et al., 2022), video captioning (Lei
et al., 2020a; Dai et al., 2019; Yamazaki et al., 2022), video retrieval (Snoek et al., 2009; Gabeur et al., 2020; Wang
et al., 2021; Wray et al., 2021). One of the challenging problems in video understanding is video anomaly detection
(VAD), which is the task of localizing anomalous events in a given video. VAD is an area of research that has several
years of history, and it has been gaining more attraction in recent years (Hasan et al., 2016; Sultani et al., 2018; Wu
& Liu, 2021). Generally, there are three main paradigms in VAD, namely, fully-supervised (Liu & Ma, 2019), unsu-
pervised (Gong et al., 2019; Zaheer et al., 2022), and weakly-supervised (Thakare et al., 2022; Sultani et al., 2018;
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Table 1: Comparison among multiple VAD approaches.
Supervision Normal Abnormal Annotation Approaches

Fully-Supervised ✓ ✓ Frame-Level Liu & Ma (2019)

Weakly-Supervised ✓ ✓ Video-Level

Sultani et al. (2018); Thakare et al. (2022);
Purwanto et al. (2021); Tian et al. (2021);
Zaheer et al. (2020); Sapkota & Yu (2022)

Unsupervised ✓ ✗ ✗

Hasan et al. (2016); Gao et al. (2021)
Wang & Cherian (2019); Lu et al. (2013)

Zaheer et al. (2022); Wu & Liu (2021)

Tian et al., 2021). While it generally yields high performance, the supervised VAD requires fine-grained anomaly
labels (i.e., frame-level normal/abnormal annotations in the training data). However, the problem has traditionally
been difficult to solve in a fully supervised manner due to the labor-expensive nature of data collection. In general,
anomaly detection annotation requires the annotator to localize and label anomalies in a video, or a large set of se-
quential frames. Unfortunately, this is a very strenuous labor for the annotator because, as anomalies can happen at
any moment, almost all of the frames need to be observed carefully, leading to massive time consumption. Because
of its time-consuming and labor-intensive nature, collecting a fully-annotated large-scale dataset is a difficult task for
the supervised VAD. In unsupervised VAD learning, one-class classification (OCC) problem (Zaheer et al., 2020) is
a common approach, in which the model is trained on only normal class samples with the assumption that unseen
abnormal videos have high reconstruction errors. However, the performance of unsupervised VAD is usually poor be-
cause of its lack of prior knowledge of abnormality as well as its inability to capture all normality variations (Chandola
et al., 2009). Compared to both unsupervised and supervised VAD, the weakly-supervised VAD is considered the most
practical approach by many for VAD because of its competitive performance and annotation efficiency by employing
video-level labels to reduce the cost of manual fine-grained annotations (Zaheer et al., 2020; Zhong et al., 2019). The
comparison among various VAD approaches is shown in Table 1.

In the weakly-supervised VAD task, there exist two fundamental problems. First, anomalous-labeled frames tend to
be dominated by normal-labeled frames, as the videos are untrimmed and there is no strict length requirement for
the anomalies in the video. Second, the anomaly may not necessarily stand out against normality. As a result, it
occasionally becomes challenging to localize anomaly snippets. In order to combat the issues, Sultani et al. (2018);
Tian et al. (2021); Wu et al. (2020); Zhang et al. (2019); Zhu & Newsam (2019) have attempted to tackle the problem
in multiple instance learning (MIL) frameworks, which treat a video as a bag containing multiple instances, each
instance being a video snippet. A video is labeled as anomalous if any of its snippets are anomalous, and normal if all
of its snippets are normal. Following the MIL framework, anomalous-labeled videos belong to the positive bag and
normal-labeled videos belong to the negative bag.

Furthermore, the existing approaches encode the extracted visual content by applying a backbone, e.g., C3D (Ji et al.,
2013), I3D (Carreira & Zisserman, 2017), 2Stream (Simonyan & Zisserman, 2014), which are pre-trained on action
recognition tasks. Different from the action recognition problem, VAD depends on discriminative representations that
clearly represent the events in a scene. Thus, those existing backbones, C3D, I3D, and 2Stream, are not suitable
because of the domain gap (Liu & Ma, 2019). To address such limitation, we leverage the success of the recent
"vision-language" works (Patashnik et al., 2021; Yang & Zou, 2022; Vo et al., 2022; Yamazaki et al., 2023), which
have proved the effectiveness of feature representation learned via Contrastive Language-Image Pre-training (CLIP)
(Radford et al., 2021). CLIP consists of two networks, a vision encoder and a text encoder, which are trained on 400
million text-image pairs collected from a variety of publicly available sources on the Internet. Given a set of words and
an image, CLIP can estimate the semantic similarity between them. We thus leverage CLIP as a visual feature extractor.
Furthermore, the existing MIL-based weakly-supervised VAD approaches are limited in dealing with an arbitrary
number of abnormal snippets in an abnormal video. To address such an issue, we are inspired by the differentiable top-
K operator (Cordonnier et al., 2021) and introduce a novel technique, termed top-κ function, that localizes κ snippets
of interest in the video with differentiable hard attention in the similar MIL setting to demonstrate its effectiveness
and applicability to the traditional, popular setting. Furthermore, we introduce the Temporal Self-Attention (TSA)
Mechanism, which aims to generate the reweighed attention feature by measuring the abnormal degree of snippets.
Our proposed CLIP-TSA follows the MIL framework and consists of three components corresponding to (i) Feature
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Encoding by CLIP; (ii) Modeling snippet coherency in the temporal dimension with our Temporal Self-Attention and
(iii) Localizing anomalous snippets with Difference Maximization Trainer. As the real-world anomalies are diverse, in
order to show the applicability of our proposed method to multiple environments, we run experiments on three different
datasets commonly used for the VAD evaluation: UCF-Crime (Sultani et al., 2018), ShanghaiTech Campus (Liu et al.,
2018), and XD-Violence (Wu et al., 2020). In addition, we conduct an ablation study on the effectiveness of our
proposed method. Throughout the paper, the term abnormal and anomaly will be used interchangeably.

Our contributions are summarized as follows:

• We propose a Temporal Self-Attention (TSA) mechanism that is applicable to the Weakly-Supervised VAD
problems and acquires anomaly likelihood scores for video snippets.

• We leverage CLIP, which uses a ViT as a backbone for visual features, to introduce 1) novel usage of CLIP
features and 2) novel type of contextual representation in analyzing videos consisting of abnormal actions.

• We empirically validate the usefulness of our proposed method by showing that, to the best of our knowl-
edge, it achieves superior performance to all of the current SOTA methods benchmarked on UCF-Crime and
ShanghaiTech Campus datasets under any type of supervision setting. As for the XD dataset, it beats the
performance of all the SOTAs trained without auditory features for a fair comparison.

2 Related Work

2.1 Unsupervised VAD

Unsupervised anomaly detection approaches do not require labeled data during training. In such approaches, the usual
patterns with only normal training samples are first encoded and distinctive encoded patterns are detected as anomalies.
While the early anomaly detection methods (Antić & Ommer, 2011; Basharat et al., 2008; Li et al., 2013; Saligrama &
Chen, 2012; Wu et al., 2010) mainly depend on the handcrafted features, the recent approaches primarily make use of
the merits of deep neural networks (DNNs) (Doshi & Yilmaz, 2020; Hasan et al., 2016; Ionescu et al., 2019; Lu et al.,
2013; Ramachandra et al., 2020; Wang & Cherian, 2019; Zaheer et al., 2022). In such approaches, reconstruction
error is utilized to identify anomalies with the assumption that anomalous events are often reconstructed poorly. For
example, Hasan et al. (2016) used autoencoders as feature extractors to model the subsequent frame and estimated
abnormality by reconstruction error. Later, Wang & Cherian (2019) assumed that anomalous events will cause a big
difference between past and future frames and proposed spatiotemporal autoencoder with combinations of CNNs and
LSTMs (Hochreiter & Schmidhuber, 1997). With a similar assumption on reconstruction errors as an abnormality
recognizer, Feng et al. (2021); Liu et al. (2018); Park et al. (2020) adopted generative networks to synthesize or
predict future frames. Furthermore, Doshi & Yilmaz (2020) proposed a hybrid use of DNNs and statistical kNN (k
nearest neighbor) decision approach for finding video anomalies. Siamese network was employed to detect anomaly
(Ramachandra et al., 2020) by learning a distance function between a pair of video patches.

Historically, the performance of unsupervised anomaly detection problems generally lagged behind that of weakly-
supervised anomaly detection by a large margin because the model in an unsupervised setting significantly lacks the
prior knowledge of anomaly needed for differentiation between normality and anomaly.

2.2 Weakly-supervised VAD

Weakly-supervised VAD methods (Lv et al., 2021; Purwanto et al., 2021; Sapkota & Yu, 2022; Sultani et al., 2018;
Thakare et al., 2022; Tian et al., 2021; Wu et al., 2020; Zaheer et al., 2020; Zhang et al., 2019; Zhong et al., 2019;
Zhu & Newsam, 2019) rely on the video-level labels. In this setup, a normal-labeled video contains all normal events,
whereas an anomaly-labeled video contains both normal and anomalous events without any temporal information
about starting and ending of anomalous events. Weakly-supervised VAD problem has been generally regarded as
an MIL problem (He et al., 2017; Huo et al., 2012; Sultani et al., 2018) as the videos are labeled at bag-level (i.e.,
video-level), with the anomaly-labeled video regarded as a positive bag and the normal-labeled video regarded as a
negative bag. Particularly since Sultani et al. (2018) proposed a weakly-supervised framework to detect anomalies
on UCF-Crime, in which both normal and abnormal samples annotated at video-level are included in both train and
test sets, this research in the weakly-supervised setting has grown and gained significant popularity. Since then, more
weakly-labeled VAD datasets, primarily for use in a weakly-supervised setting, have been introduced (Liu et al., 2018;
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Wu et al., 2020). In such approaches, the feature extractor can be trained or utilized by pre-trained models. While
Zhong et al. (2019); Zhu & Newsam (2019) trained both the feature encoder and classifier simultaneously, Sultani
et al. (2018); Tian et al. (2021); Zhang et al. (2019) utilized pre-trained models such as C3D (Ji et al., 2013), I3D
(Carreira & Zisserman, 2017), 2Stream (Simonyan & Zisserman, 2014), and SlowFast (Feichtenhofer et al., 2019) as
feature extractors and trained the classifier only.

2.3 Vision-Language Pre-trained Models

Vision-language pre-trained model (VLPM) aims to learn the semantic correspondence between different modali-
ties (i.e., video and text) by pre-training the model on a large-scale dataset of video/image-text pairs. Specifically, the
model mines the associations between objects or actions in the video and objects or actions in the text. Standard vision-
language tasks include video captioning (Krishna et al., 2017; Pasunuru & Bansal, 2017; Vo et al., 2022; Yamazaki
et al., 2022), text-to-video retrieval (Hendricks et al., 2018; Rohrbach et al., 2015), and video question answering
(Girdhar & Ramanan, 2020; Lei et al., 2020b). Generally, VLPM can be divided into two categories: single-stream
and dual-stream. The former uses a single transformer to model both image/video and text representations in a uni-
fied framework. Both image/video and text embeddings are concatenated into one feature. This category includes
VisualBERT (Li et al., 2019), UNIMO (Li et al., 2020b), OSCAR (Li et al., 2020c) , UNICODER (Li et al., 2020a),
and UNITER (Chen et al., 2020b). The latter one separately encodes image/video and text with a decoupled encoder.
This category includes LXMERT (Tan & Bansal, 2019), ViLBERT (Lu et al., 2019), CLIP (Radford et al., 2021), and
DeCLIP (Li et al., 2021). VisualBERT, ViLBERT, OSCAR, UNICODER, UNITER, and LXMERT use masked token
tasks and are based on Language Modeling, whereas UNIMO, CLIP, and DeCLIP are trained on contrastive learn-
ing. Because of simplicity, flexibility, and low computation cost, we adopt the frozen self-supervised vision-language
model CLIP, a dual-stream architecture and contrastive learning in this paper.

2.4 Attention Mechanism

Attention models have a long history. In 2015, Bahdanau et al. (2015) introduced one of the first soft attention models
capable of attending to all the source words and attempted to solve the machine translation task without the traditional
encoder-decoder models (e.g., RNN, LSTM), which were common approach for the problem at the time (Cho et al.,
2014; Sutskever et al., 2014). Shortly afterward, Xu et al. (2015) introduced a hard stochastic attention mechanism
that is able to compute the relative importance of the source words with respect to the output words, combating
the huge expense of computation required for soft attention. Because hard attention only places attention locally,
the mechanism is generally computationally less expensive than the soft attention mechanism, which observes all
hidden states (Luong et al., 2015). In general, while soft attention models are trainable end-to-end, hard attention
models are not differentiable and require reinforcement learning (Xu et al., 2015). Today, many variations of attention
mechanisms have been introduced. For example, Luong et al. (2015) proposed a local attention mechanism similar
to hard attention, but is differentiable. In 2017, Vaswani et al. (2017) introduced a neural machine translation (NMT)
architecture named Transformer that is designed with only fully connected layers and attention by leveraging the self-
attention mechanism. Recently, Vo et al. (2021b; 2022) inherited the merits from both soft attention models and hard
attention models and proposed adaptive attention models. Despite its original application in NMT, Transformer has
been gaining great attraction, and its usage has expanded widely, including computer vision.

3 Proposed Method

3.1 Problem Setup

In weakly-supervised VAD, videos in the training set are only labeled at video-level. Let there be a set of weakly-
labeled training videos S = {X (k), y(k)}|S|

k=1, where a video X (k) ∈ RNk×W ×H is a sequence of Nk frames that are
W pixels wide and H pixels high, and y(k) = {0, 1} is the video-level label of video X (k) in terms of anomaly (i.e., 1
if the video contains anomaly; 0 otherwise).

Given a video X (k) ∈ RNk×W ×H consisting of Nk frames, i.e., X (k) = {xj}|Nk
j=1, we first divide X (k) into a set of

δ-frame snippets {si}
⌈

Nk
δ

⌉
i=1 . Feature representation of each snippet is extracted by applying a vision-language model

into the middle frame. In this work, CLIP is chosen as a vision-language model; however, it can be substituted by any
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Figure 1: Overall flowchart of our proposed CLIP-TSA in train time. Given a video X consisting of N frames (i.e.,
X = {xj}|Nj ), we first divide into a set of δ-frame snippets {si}T

i . Each δ-frame snippet si is represented by a vision-
language feature fi ∈ Rd. Then, the features F = {fi}T

i , where fi ∈ Rd, are resized into one uniform length T to
allow batch training by following Eq. 1. Our proposed TSA is then applied onto the resized features to obtain anomaly
attention feature F̂ = {f̂i}T

i , where f̂i ∈ Rd. The anomaly attention feature F̂ is used for: 1) producing an anomaly
likelihood score U using the score classifier C; 2) optimizing the model by employing the difference maximization
trainer technique υγ,α using the feature magnitude.

vision-language model as introduced in Section 2.3. Thus, each δ-frame snippet si is represented by a vision-language
feature fi ∈ Rd and the video X (k) is represented by a set of video feature vectors Fk = {fi}|Tk

i=1, where Fk ∈ RTk×d

and Tk is the number snippets of X (k).

CLIP-TSA is trained using a mini-batch; thus, it introduces an issue caused by the difference in video embedding
feature length T between samples in the mini-batch. To address this issue, we normalize video feature length by
following the approach introduced by (Sultani et al., 2018). Given two videos X (1) and X (2), their corresponding
sets of video feature vectors are F1 = {fi}|T1

i=1 and F2 = {fi}|T2
i=1, respectively, where T1 ̸= T2. Following their

paradigm, both F1 and F2 with size T1 and T2 are reshaped into the same size of T with Eq. 1, where ⌊g⌋ = ⌊T1
T ⌋ and

⌊g⌋ = ⌊T2
T ⌋ for videos X (1) and X (2), respectively:

F = {fi′}|Ti′=1 = 1
⌊g⌋

⌊g×i′⌋∑
i=⌊g×(i′−1)⌋

fi (1)

Using this technique, we can handle an arbitrary length of videos, allowing for training the features in batches. How-
ever, in test time, as the videos are evaluated one at a time, the features do not go through the normalization process in
test time. In this paper, we assume that, in training time, the input features F come post-normalized into the uniform
shape in temporal dimension T for batch training.

Our proposed anomaly detection CLIP-TSA’s pipeline is portrayed in Figure 1 with three main components i.e., (i)
Feature Encoding, (ii) Temporal Self Attention (TSA), and (iii) Difference Maximization, which are elaborated in the
following sections.

3.2 Feature Encoding

CLIP (Radford et al., 2021) is an image-text matching model, and it has recently attained remarkable achievements
in various computer vision tasks such as image classification (Cheng et al., 2021), image-text retrieval (Dzabraev
et al., 2021), and image generation (Patashnik et al., 2021). Originally, CLIP is trained to match an image with its
corresponding natural language descriptions. CLIP consists of two independent encoders respectively for visual and
textual features encoding. Given a batch of images and texts, CLIP aims to align their feature in the embedding space
with a contrastive loss during the training process. CLIP is comprehensively trained on 400 million image-text pairs
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Figure 2: Top: Illustration of our proposed TSA mechanism to model coherency between snippets. The TSA mecha-
nism consists of three components corresponding to (i) temporal scorer network ϕs to obtain a relevance score vector
ω; (ii) top-κ score nominator to extract the κ most relevant snippets from a video; (iii) fusion process to combine infor-
mation to provide the model output. The TSA mechanism takes the vision language encoding feature F ∈ RT ×d of T
post-normalized snippets (Eq. 1) of a given video as its input and returns the reweighed attention feature F̂ ∈ RT ×d as
its output. Bottom: Details of top-κ score nominator network, which takes the score vector ω as its input and returns
a stack of soft one-hot vectors V̂ as its output.

collected from the Internet. In this work, we leverage CLIP as a feature extractor to obtain a vision-language scene
feature. Specifically, we choose the middle frame Ii that represents each snippet si. We first encode frame Ii with the
pre-trained Vision Transformer (Dosovitskiy et al., 2021) to extract visual feature If

i . We then project feature If
i onto

the visual projection matrix L, which was pre-trained by CLIP to obtain the image embedding fi = L · If
i . Thus, the

embedding feature Fk of video X , which consists of Tk snippets X = {si}|Tk
i=1, is defined in Eq. 2b. Finally, we apply

the video normalization as in Eq. 1 into the embedding feature to obtain the final embedding feature F as in Eq. 2c.

fi = L · If
i where fi ∈ Rd (2a)

Fk = {fi}|Tk
i=1 where Fk ∈ RTk×d (2b)

F = Norm(Fk) where F ∈ RT ×d (2c)

3.3 Temporal Self-Attention (TSA)

Our proposed TSA mechanism aims to model the coherency between snippets of a video and select the top-κ most
relevant snippets. It contains three modules i.e., (i) temporal scorer network, (ii) top-κ score nominator, and (iii) fusion
network, as visualized in Figure 2 and mathematically explained in Algorithm 1.

In TSA, the vision language feature F ∈ RT ×d (from 3.2 Feature Encoding) is first converted into a score vector
ω ∈ RT ×1 through a temporal scorer network ϕs, i.e., ω = ϕs(F). This network is meant to be shallow; thus,
we choose a multi-layer perceptron (MLP) of 3 layers in this paper. The scores, each of which is representing the
snippet si, are then passed into the top-κ score nominator to extract the κ most relevant snippets from the video. The
top-κ score nominator is implemented by the following two steps. First, the scores ω ∈ RT ×1 are cloned M times
and the cloned score ω̄ ∈ RT ×M is obtained; M represents the number of independent samples of score vector ω to
generate for the empirical mean, which is to be used later for computing the expectation with noise-perturbed features.
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Throughout the paper, we set M to be 100. Second, Gaussian noise G ∈ RT ×M is applied to the stack of M clones
by the following Eq. 3 to produce ω̂ ∈ RT ×M :

ω̂ = G ⊕ ω̄ where ⊕ is an element-wise addition (3)

From the Gaussian-perturbed scores ω̂ ∈ RT ×M , the indices of top-κ snippets are selected based on the score magni-
tude independently across its M dimension to represent the most relevant snippets and are later one-hot encoded into
a matrix V = {Vi}M

i=1, with each Vi ∈ Rκ×T containing a set of one-hot vectors. More specifically, we guide the
network to place the attention on κ magnitudes with the highest values because the Difference Maximization Trainer
(See 3.4) trains the anomalous snippets to have a high value and the normal snippets to have a low value. The matrix
V is then averaged across its M dimension to produce a stack of soft one-hot vectors V̂ ∈ Rκ×T . Through the soft
one-hot encoding mechanism, the higher amount of attention, or weight, is placed near and at the indices of top-κ
scores (e.g., [0, 0, 1, 0]→ [0, 0.03, 0.95, 0.02]). The top-κ score nominator can be summarized by the pseudocode in
Algorithm 2.

Afterwards, the stack of perturbed soft one-hot vectors V̂ ∈ Rκ×T is transformed into Ṽ ∈ Rκ×T ×d by making d
clones of V̂ , and the set of input feature vectors F ∈ RT ×d is transformed into F̃ ∈ Rκ×T ×d by making κ clones
of F . Next, the matrices Ṽ and F̃ , which carry the reweighed information of snippets and represent the input video
features, respectively, are fused together to create a perturbed feature Q ∈ Rκ×T ×d that represents the reweighed
feature magnitudes of snippets based on the previous computations as follows:

Q = Ṽ ⊗ F̃ where ⊗ is an element-wise multiplication (4)

Then, each stack of perturbed feature vectors Q ∈ Rκ×d within the perturbed feature Q = {Qi}T
i=1 is independently

summed up across its dimension κ to combine the magnitude information of Qi into one vector f̂i ∈ Rd. This step
is akin to the process of reversing the previous one-hot encoding procedure by reducing the one dimension previously
expanded for one-hot encoding. The reweighed feature vector, f̂i ∈ Rd, which collectively forms F̂ = {f̂i}|Ti=1,
is collectively obtained as the model output from the TSA mechanism σ to represent an anomaly attention feature
F̂ ∈ RT ×d. The pipeline of TSA is described by the pseudocode in Algorithm 1 and illustrated in Figure 2.

Algorithm 1: TSA mechanism σ to produce
anomaly attention features F̂
Data: Feature F ∈ RT ×d,

Top snippet count κ ∈ R1

Result: Anomaly attention feature F̂
ω ← ϕs(F) // RT ×1

V̂ ← Top-κ Score(M, κ, ω) // Alg.2,Rκ×T

Ṽ ←Make d clones of V̂ // Rκ×T ×d

F̃ ←Make κ clones of F // Rκ×T ×d

Q ← Ṽ ⊗ F̃ // Rκ×T ×d

F̂ ← summation of Q across dim κ // RT ×d

return F̂ // dim:dimension

Algorithm 2: Top-κ Score function
Data: Sample count M ,

Top snippet count κ,
Score vector ω

Result: A stack of soft one-hot vectors V̂
set ω̄ to M clones of ω // RT ×M

set G to Gaussian noise // RT ×M

ω̂ ← G ⊕ ω̄ // RT ×M

U ← indices of top-κ scores
across dim M in ω̂ // Rκ×M

V ← one-hot encode κ in U // Rκ×T ×M

V̂ ← average of V across dim M // Rκ×T

return V̂ // dim:dimension

3.4 Difference Maximization Trainer Learning

Our weakly-supervised VAD model, CLIP-TSA, is set up as an MIL framework, in which the positive bag represents
anomaly and the negative bag denotes normality. Following the paradigm, a video, treated as a bag, is labeled a
positive bag if it contains at least one snippet of anomaly, while it is labeled a negative bag otherwise. Given a mini-
batch of 2 ∗ B videos {X (k)}|2∗B

k=1, each video X (k) is represented by Fk = {fi}|Ti=1 obtained by TSA (Section 3.3).
Let the input mini-batch be represented by Z = {Fk}|2∗B

k ∈ R2∗B×T ×d, where B, T , and d denote the user-input
batch size, normalized time snippet count, and feature dimension, respectively. The actual batch size is dependent on
the user-input batch size, following the equation of 2 ∗ B, because the first half, Z− ∈ RB×T ×d, is loaded with a
set of normal bags, and the second half, Z+ ∈ RB×T ×d, is loaded with a set of abnormal bags in order within the
mini-batch.
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After the mini-batch undergoes the phase of TSA, it outputs a set of reweighed normal attention features Ẑ− =
{F̂k}|Bk=1 and a set of reweighed anomaly attention features Ẑ+ = {F̂k}|2∗B

k=B . The reweighed attention features Ẑ
are then passed into a convolutional network module J composed of dilated convolutions (Yu & Koltun, 2016) and
non-local block (Wang et al., 2018) to model the long- and short-term relationship between snippets based on the
reweighed magnitudes. The resulting stack of convoluted attention features Ž = {F̌k}|2∗B

k , where Ž ∈ R2∗B×T ×d,
is then passed into a shallow MLP-based score classifier network C that converts the features into a set of scores
U ∈ R2∗B×T ×1 to determine the binary anomaly state of feature snippets. The set of scores U is saved as part of a
group of returned variables, for use in loss.

Next, each convoluted attention feature {F̌k}|2∗B
k=1 of the batch Ž undergoes Difference Maximization Trainer (DMT).

Leveraging the top-α instance separation idea employed by Li & Vasconcelos (2015); Sultani et al. (2018), we use
DMT, represented by υγ,α, in this problem to maximize the separation, or difference, between top instances of two
contrasting bags, Ž− and Ž+, by first picking out the top-α snippets from each convoluted attention feature F̌k based
on the feature magnitude. This produces a top-α subset Ḟk ∈ Rα×d for each convoluted attention feature F̌k ∈ RT ×d.
Second, Ḟk is averaged out across top-α snippets to create one feature vector F̈k ∈ Rd that represents the bag. The
procedure is explained by Eq. 5 below:

λγ,α(F̌) = F̈ = max
Ωα(F̌)⊆{f̌i}T

i=1

1
α

∑
f̌i∈Ω(F̌)

f̌i (5)

In the equation, λ is parameterized by γ, which denotes its dependency on the ability of the convolutional network
module J (i.e., representation of F̈ depends on the top-α positive instances selected with respect to J). In addition, α
in Eq. 5 denotes the size of Ω, where Ω represents a subset of α snippets from F̌ . Each representative vector F̈ is then
normalized to produce

...
F ∈ R1.

υγ,α(F̌+, F̌−) = ||λγ,α(F̌+)|| − ||λγ,α(F̌−)|| (6)

The separability is computed as in Eq. 6, where F̌− = {f̌−,i}|Ti represents a negative bag and F̌+ = {f̌+,i}|Ti
represents a positive bag. More specifically, we leverage the theorem below to maximize the separability of the top-α
instances (feature snippets) from each contrasting bag.

Theorem 1 (Li & Vasconcelos, 2015; Tian et al., 2021): Expected Separability. Let E[∥f̌+∥2] ≥ E[∥f̌−∥2], where F̌+
has ϵ ∈ [1, T ] abnormal samples and (T − ϵ) normal samples, F̌− has T normal samples, and T = |F̌+| = |F̌−|. Let
Υγ,α(·) be the random variable from which the separability scores υγ,α(.) of Eq. 6 are drawn.

1. If 0 < α < ϵ, then
0 ≤ E[Υγ,α(F̌+, F̌−)] ≤ E[Υγ,α+1(F̌+, F̌−)] (7)

2. For a finite ϵ, then
lim

α→∞
E[Υγ,α(F̌+, F̌−)] = 0 (8)

In simple terms, the theorem in our setting conveys that, as the number of samples in the top-α snippets of the abnor-
mal video increases – but no greater than ϵ – the separability between the two contrasting bags may be maximized.
However, if it exceeds the number, it becomes difficult as the number of negative (normal) samples starts to dominate
in both negative and positive bags.

Afterward, to compute the loss, a batch of normalized representative features {
...
F normal}|Bk=1 and {

...
F abnormal}|2∗B

k=B

are then measured for margins between each other. A batch of margins is then averaged out and used as part of the net
loss together with the score-based binary cross-entropy loss computed using the score set U .

3.5 Inference

In test time, the video feature vectorsF that have been extracted with CLIP do not undergo the normalization process to
be reshaped into the common size of T because each feature is evaluated at a time. When Fk ∈ RTk×d is input into the
model in test time, the featureFk undergoes the proposed TSA process to produce the reweighed attention features F̂k.
They are then passed into the convolutional network module J , followed by the MLP-based score classifier network
C, to acquire a set of scores U ∈ RTk×1. Each score {ui}|Tk

i within this set of scores U represents the anomaly
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likelihood of the snippet at the corresponding index and carries a value between 0 and 1. Each score ui is rounded
to produce a set of binary scores U ′ = {u′

i}|Tk
i . When the binary score u′ is 1, the snippet at the corresponding

index is deemed to be anomalous; whereas, when the score is 0, the snippet at the corresponding index is assumed
to be normal. Lastly, each binary score in U ′ is repeated δ times, preserving the original order, to reproduce a vector
Û = {ûi}|δ∗Tk

i with the common frame length as the video X (k), for use in evaluation against the ground truth labels
as in Eq. 9 below. The remainder frames Nk − δ ∗ Tk are either discarded or padded with the final label of the video.

û[δ∗i:δ∗(i+1)] = u′
i (9)

4 Experimental Results

4.1 Datasets and Metrics

UCF-Crime Dataset (Sultani et al., 2018) contains 1,900 untrimmed video clips encompassing 13 different anomalies
and normal activities. The types of anomalies in the videos include abuse, arrest, arson, assault, burglary, explosion,
fighting, road accident, robbery, shooting, shoplifting, stealing, and vandalism. Each of the real-world surveillance
videos, totaling 128 hours in length, has been weakly annotated at video-level as anomalous or normal. The dataset
comes pre-split into a train set of 800/810 normal/anomalous videos; a test set of 150/140 normal/anomalous videos.

ShanghaiTech Campus Dataset (Liu et al., 2018) contains 317,398 frames of video clips encompassing the scenes
of multiple areas in ShanghaiTech Campus. The dataset cumulatively covers 13 scenes, in which 300,308 frames
represent normal events and the remaining 17,090 frames comprise 130 distinct anomalous events. The dataset is split
into a train set of 330 videos (274,515 frames) and a test set of 107 videos (42,883 frames), captured at 480×856
pixels. The train set contains only normal videos, while the test set contains a mix of normal and anomalous videos,
where the anomalies in the test set are annotated at pixel-level.

XD-Violence Dataset (Wu et al., 2020) contains 217 hours of 4,754 untrimmed videos encompassing six different
anomalies and normal activities. The anomalous actions in the dataset include abuse, car accident, explosion, fighting,
riot, and shooting. The train set contains video-level annotations, while the test set contains frame-level annotations
(i.e., rough from-and-to frame locations of each anomaly, not to exceed three, in a video). The dataset is split into a
train set of 3,954 videos, where 1,905 of them are anomalous, and a test set of 800 videos, where 500 are anomalous.

Metrics: Similar to other work (Hasan et al., 2016; Sultani et al., 2018; Tian et al., 2021; Wu & Liu, 2021; Wu
et al., 2020; Zhong et al., 2019), UCF-Crime and Shanghai datasets are evaluated using AUC@ROC and XD-Violence
dataset is evaluated using AUC@PR. AUC@ROC refers to the area under the receiver operating characteristics curve,
whereas AUC@PR refers to the area under the precision-recall curve.

4.2 Implementation Details

In training time, we follow Sultani et al. (2018); Tian et al. (2021) and divide each video in the batch into 32 video
snippets, (i.e., T is set as 32 in train time), using Eq. 1. For all datasets, we follow the aforementioned steps to
preprocess videos with the snippet length set to δ = 16. The scorer network θs in Section 3.3 is defined as an MLP of
three layers of 512, 256, and 1 units. The hidden layer is followed by a ReLU activation function, and the final layer is
followed by a sigmoid function to produce a value between 0 and 1. To extract the linguistic scene elements features
of the scene, we employ CLIP (Radford et al., 2021) that was pre-trained on a large-scale dataset of 400M image-text
pairs crawled from the Internet. Thus, d is set as 512 for all experiments. We set M as 100 for Gaussian noise in
Eq. 3. In addition, we choose 0.7 (70%), 0.7 (70%), and 0.9 (90%) for r in UCF-Crime, ShanghaiTech Campus, and
XD-Violence datasets, respectively, for the best performance, where r denotes the number of snippets in a feature to
place attention onto using TSA in a proportionate, relative figure rather to later compute κ in a hard number:

κ = ⌊T × r⌋ (10)

Our CLIP-TSA is trained in an end-to-end manner and implemented using PyTorch. We use the Adam optimizer
(Kingma & Ba, 2015) with a weight decay of 0.005 and a batch size of 16 for 4,000 (UCF-Crime), 35,000 (Shang-
haiTech Campus), and 4,000 (XD-Violence) epochs. The learning rate is set to 0.001 for all datasets.
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Table 2: Performance comparisons (AUC@ROC) between the SOTA methods and our method on UCF-Crime dataset
(Sultani et al., 2018). They are grouped into the unsupervised, supervised, and weakly-supervised methods in order.

Sup. Method Venue Feature AUC@ROC ↑

U
n-

Hasan et al. (2016) CVPR‘16 - 50.60
Lu et al. (2013) ICCV‘13 C3D 65.51
BODS (Wang & Cherian, 2019) ICCV‘19 I3D 68.26
GODS (Wang & Cherian, 2019) ICCV‘19 I3D 70.46
GCL (Zaheer et al., 2022) CVPR‘22 ResNext 71.04

Fu
lly

-

Liu & Ma (2019) MM‘19 NLN 82.0

W
ea

kl
y-

GCLW S (Zaheer et al., 2022) CVPR‘21 ResNext 79.84
GCN (Zhong et al., 2019) CVPR‘19 TSN 82.12
WSAL (Lv et al., 2021) TIP‘21 TSN 85.38
Purwanto et al. (2021) ICCV‘21 TRN 85.00
Thakare et al. (2022) ExpSys‘22 C3D+I3D 84.48
Sultani et al. (2018) CVPR‘18

C3D

75.41
Zhang et al. (2019) ICIP‘19 78.70
GCN (Zhong et al., 2019) CVPR‘19 81.08
CLAWS (Zaheer et al., 2020) ECCV‘20 83.03
RTFM (Tian et al., 2021) ICCV‘21 83.28

Ours: CLIP-TSA† 83.94
Sultani et al. (2018) CVPR‘18

I3D

77.92
Wu et al. (2020) ECCV‘20 82.44
DAM (Majhi et al., 2021) AVSS‘21 82.67
BN-SVP (Sapkota & Yu, 2022) CVPR‘22 83.39
RTFM (Tian et al., 2021) ICCV‘21 84.30
Wu & Liu (2021) TIP‘21 84.89

Ours: CLIP-TSA‡ 84.66
Ours: CLIP-TSA CLIP 87.58

4.3 Performance Comparison

Besides CLIP-TSA, which is conducted on vision-language feature CLIP and our temporal attention mechanism TSA,
we also test CLIP-TSA on other common features, i.e., C3D (Ji et al., 2013) and I3D (Carreira & Zisserman, 2017),
to fairly compare CLIP-TSA with other existing approaches. Thus, we report the performance of the CLIP-TSA and
its variants in this section as follows:

• CLIP-TSA†: replacement of CLIP feature with C3D (Ji et al., 2013) feature (TSA Preserved)
• CLIP-TSA‡: replacement of CLIP feature with I3D (Carreira & Zisserman, 2017) feature (TSA Preserved)
• CLIP-TSA: utilization of the CLIP feature and the temporal attention mechanism TSA

Table 2 shows the frame-level AUC@ROC results of SOTA models that we have found to the best of our ability on the
UCF-Crime dataset. Based on the table, first, it is apparent that unsupervised methods generally provide an inferior
performance. Second, it can be observed that the performance of our method, CLIP-TSA, stands out against other
SOTA methods by a large margin in any type of supervision setting. Compared to the current best-performing model,
i.e., Lv et al. (2021), our CLIP-TSA holds 2.2% better performance when evaluated with the same metric. Furthermore,
on the same feature, our CLIP-TSA† yields better performance than the current SOTA on C3D by 0.66%, and CLIP-
TSA‡ obtains very competitive scores on I3D.

Similarly, Table 3 shows the frame-level AUC@ROC results of SOTA models on the ShanghaiTech Campus dataset.
In the table, it can be seen that our model outperforms all of the previous SOTA methods reported in the table.
Empirically, it shows that, on the same feature, CLIP-TSA† beats BN-SVP (Sapkota & Yu, 2022), the current SOTA
on C3D, by 1.19%, and CLIP-TSA‡ outperforms Wu & Liu (2021), the current SOTA on I3D, by 0.5%. Furthermore,
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Table 3: Performance comparisons (AUC@ROC) between the SOTA methods and our method on ShanghaiTech Cam-
pus dataset (Liu et al., 2018). The first group is unsupervised methods, and the rest are weakly-supervised methods.
Sultani et al. (2018)* is retrained with I3D features as it was previously not evaluated on ShanghaiTech Campus.

Sup. Method Venue Feature AUC@ROC ↑

U
n-

Hasan et al. (2016) CVPR‘16 - 60.85
Gao et al. (2021) ICCV‘19 - 71.20
Yu et al. (2020) MM‘20 - 74.48
GCLP T (Zaheer et al., 2022) CVPR‘21 ResNext 78.93

W
ea

kl
y-

GCN (Zhong et al., 2019) CVPR‘19 TSN 84.44
GCLW S (Zaheer et al., 2022) CVPR‘21 ResNext 86.21
Purwanto et al. (2021) ICCV‘21 TRN 96.85
GCN (Zhong et al., 2019) CVPR‘19

C3D

76.44
Zhang et al. (2019) ICIP‘19 82.50
CLAWS (Zaheer et al., 2020) ECCV‘20 89.67
RTFM (Tian et al., 2021) ICCV‘21 91.57
BN-SVP (Sapkota & Yu, 2022) CVPR‘22 96.00

Ours: CLIP-TSA† 97.19
Sultani et al. (2018)* CVPR‘18 85.33
DAM (Majhi et al., 2021) AVSS‘21

I3D
88.22

AR-Net (Wan et al., 2020) ICME‘20 91.24
RTFM (Tian et al., 2021) ICCV‘21 97.21
Wu & Liu (2021) TIP‘21 97.48

Ours: CLIP-TSA‡ 97.98
Ours: CLIP-TSA CLIP 98.32

Table 4: Performance comparisons (AUC@PR) between the SOTA methods and our method on XD-Violence
dataset (Wu et al., 2020). The first group is an unsupervised method, and the other group is weakly-supervised
methods. V and A represent visual and audio features, respectively.

Sup. Modality Method Venue Feature AUC@PR ↑
Un- – OCSVM (Schölkopf et al., 1999) NeurIPS‘00 – 27.25

Hasan et al. (2016) CVPR‘16 – 30.77

W
ea

kl
y-

Vision
& Audio

Wu & Liu (2021) TIP‘21 I3D(V) + VGGish(A) 75.90
Wu et al. (2020) ECCV‘20 I3D(V) + VGGish(A) 78.64
Pang et al. (2021) ICASSP‘21 I3D(V) + VGGish(A) 81.69
MACIL-SD (Yu et al., 2022) MM‘22 I3D(V) + VGGish(A) 83.40
DDL (Pu & Wu, 2022) ICCECE‘22 I3D(V) + VGGish(A) 83.54

Vision

Sultani et al. (2018) CVPR‘18 C3D(V) 73.20
RTFM (Tian et al., 2021) ICCV‘21 C3D(V) 75.89

Ours: CLIP-TSA† C3D(V) 77.66
RTFM (Tian et al., 2021) ICCV‘21 I3D(V) 77.81

Ours: CLIP-TSA‡ I3D(V) 78.19
Ours: CLIP-TSA CLIP(V) 82.19

CLIP-TSA yields superior performance to that of Wu & Liu (2021), the current best-performing model, by 0.84% with
the end-to-end training scheme.

Lastly, Table 4 shows the frame-level AUC@PR results of SOTA models on the XD-Violence dataset, which is the
most recently released dataset of the three. From the table, it can be seen that ours outperforms all SOTA models on
various visual features as well as some models that leveraged both visual and auditory features. More specifically, it
has left a remarkable margin of 1.77%, 0.38%, and 4.38% on C3D, I3D, and CLIP, respectively.

Our hypothesis for relatively small performance improvement on the ShanghaiTech Campus dataset compared to
UCF-Crime and XD-Violence is that optimality has already been achieved in the ShanghaiTech Campus dataset as it
is already yielding very high, near-100% scores by SOTA models. As a result, we believe that it is much more difficult
to pull up its score in comparison to the remaining two datasets, with problems potentially being noise or subjective,
frame-level human label errors.
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Figure 3: r-adjusted performance comparison chart. Local best denotes the best score yielded when tests were run
with r set to the corresponding value in the x-axis. Global best denotes the best score achieved across all r. The
experiments were conducted at 10 different intervals of 0.1, starting from r = 0.1.

4.4 Ablation Study

In this section, we conduct two ablations studies to analyze hyperparameter r in Eq. 10 and the effectiveness of the
proposed TSA mechanism.

Hyperparameter Study First, we run the experiments with our CLIP-TSA model under the same setting as in Sec-
tion 4.2, but using various r. More specifically, r will be set to steps of 0.1 from 0.1 to 1.0 (i.e., {0.1, ..., 0.9, 1.0}).

To ensure the reported performance is generalized enough, we run the model five times each. The performance of
the model at each r for each dataset is shown in Figure 3. According to the figure, the value of r where the model
performs at optimal level differs for each. For example, UCF-Crime yields 87.6% AUC@ROC when r is set to 0.7,
ShanghaiTech Campus obtains 98.3% AUC@ROC at r ∈ [0.3, 0.7], and XD-Violence gets 82.2 AUC@PR at r = 0.9.

0

50

100

150

Abu
se

Arre
st

Arso
n

Ass
au

lt

Burg
lar

y

Exp
los

ion

Figh
tin

g

Roa
dA

cc
ide

nts

Rob
be

ry

Sho
oti

ng

Sho
pli

ftin
g

Stea
lin

g

Van
da

lis
m

UCF-Crime 

Tra in Test

0

225

450

Figh
tin

g

Sho
oti

ng Riot

Abu
se

Exp
los

ion

Car 
Acc

ide
nt

XD-Violence 

Tra in Test

Figure 4: Per-anomaly class distribution of UCF-Crime (left) and XD-
Violence (right) datasets on train and test sets.

To understand why the optimal value of
r is changing from dataset to dataset,
we collect two pieces of information:
1) data distribution of UCF-Crime (1,900
videos with 13 types of anomalies), Shang-
haiTech Campus (317,398 videos with
130 anomaly events), and XD-Violence
(4,754 videos with 6 types of anomalies)
datasets; 2) frame-level anomaly-to-all ratio
( #ofAnomaly

#ofAnomaly+#ofNormal ) of their test sets,
which are 0.1819, 0.4247, and 0.4977, re-
spectively. The ShanghaiTech Campus is
a big-scale data with a comparatively large
number of anomaly events, so we assume
that the model is able to be generalized enough, and the values of r ∈ [0.3, 0.7] are around the anomalous-to-all
ratio. However, UCF-Crime and XD-Violence have imbalanced anomaly category distributions as shown in Figure 4.
Furthermore, the important features for making the correct decision are not limited to anomalous snippets, but also
include some normal snippets as well, especially as part of computation for loss, in which both the magnitudes for top
anomalous snippets and normal snippets are factored in. Thus, the best values of r in UCF-Crime and XD-Violence
datasets are not aligned around anomalous-to-all ratios.

Effectiveness of TSA mechanism In order to investigate the effectiveness of TSA, we conduct the experiments in
two cases with and without TSA on the same vision-language feature on UCF-Crime, ShanghaiTech Campus, and
XD-Violence datasets. Both experiments are sharing the same configuration settings with five different seeds, five
different batch sizes (4, 8, 16, 32, 64), and three different learning rates (0.01, 0.001, 0.0001).

Table 5 reports the best performance of both CLIP-TSA and baseline model (w/o TSA) on three separate datasets.
From the table, it can be observed that CLIP-TSA outperforms the baseline on all three when it is compared to the
same dataset. Moreover, comparing Table 5 with Tables 2-4, we observe that the best-performing baseline model for
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Table 5: Ablation study of TSA on UCF-Crime, ShanghaiTech Campus, and XD-Violence Datasets, using the corre-
sponding metric for each. The best score is bolded, the runner-up is underlined, and the improved score after the TSA
is italicized.

Feature TSA UCF-Crime ShanghaiTech XD-Violence
(AUC@ROC ↑) (AUC@ROC ↑) (AUC@PR ↑)

C3D ✗ 82.59 96.73 76.84
C3D ✓ 83.94 97.19 77.66
I3D ✗ 83.25 96.39 77.74
I3D ✓ 84.66 97.98 78.19
ViT ✗ 86.29 98.18 80.43
ViT ✓ 87.58 98.32 82.19

each dataset is shown to yield a higher score than the SOTA models for the respective dataset. That implies the strength
and efficiency of vision-language in VAD.

5 Conclusion

This paper presents CLIP-TSA, an effective end-to-end weakly-supervised VAD framework. Specifically, we proposed
the novel TSA mechanism that maximizes attention on a subset of features while minimizing attention on noise and
showed its applicability to the weakly-supervised VAD problem. We also applied TSA to CLIP-extracted features to
demonstrate its efficacy in Visual Language features and exploited visual language features in the weakly-supervised
VAD problem. We also empirically validate the excellence of our model on the three popular VAD datasets by com-
paring ours against the SOTAs.

Future investigations might aim for better techniques to incorporate both temporal and spatial information as well as
handle imbalanced data with less annotation. Techniques for attention such as (Li et al., 2022) and self-supervised
learning (Caron et al., 2021; Chen et al., 2020a) are also potential extensions for performance improvement.
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