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Abstract

Interpolating noisy or scattered data points is of interest in many applications where gathering
data at specific locations is either impractical or expensive. In particular, in geological and min-
ing applications, where measurements of interest are available only at scattered locations, these
interpolation methods are of special value. One of the popular interpolation methods used in these
situations is cokriging [3, 2]. A special characteristic of cokriging is that it can utilize data of
different nature to model and interpolate a particular attribute [1, 3, 2]. In this paper, we present
the cokriging method and its mathematical derivation. Mainly, we discuss cokriging’s assumptions,
objectives, properties, and implementation.

1 Introduction

In this document we present a popular interpolation method called cokriging [3, 2]. Historically,
this interpolation method has been used in geological and mining applications [5]. This method
is among the basic methods in the field of geostatistics. The term “geostatistics” was first used by
G. Matheron (1962) who defined it as “the application of the formalism of random functions to
the reconnaissance and estimation of natural phenomena” [5]. In order to understand cokriging
interpolation, we must have a good understanding of the mathematical and geostatistical definitions
and properties on which it is based.

Cokriging involves the solution of an optimization problem with an equality constraint. It also
involves calculations of some statistical quantities such as covariance matrices, variograms, etc.
This paper is organized by first reviewing the necessary background material. Section 2 goes over
the mathematics involved in solving an optimization problem with equality constraints. Then,
we go over some statistical definitions and properties in section 3. In section 4, we define what
is meant by kriging and cokriging, how the problem is formalized mathematically, and how it is
solved algorithmically. This paper concludes by explaining why this problem is computationally
expensive as well as introducing existing implementations of cokriging.

*This paper is submitted on December 06, 2004 to Computer Science Department of University of Maryland at
College Park as a scholarly paper to partially satisfy requirements for Masters degree in Fall 2004 academic semester.
Email:nargess@cs.umd.edu.



2 Mathematical Background for Solving Linear Systems

Problem: Let z be a vector in R?, and suppose we would like to minimize a function f subject
to a linear constraint Az = b, where x and b are d-vectors and A is a d X d matrix.

Approach 1: Let Z be a basis for null space of A. Then, it is well known that if Z is a solution
to Ax = b, so is T + Zv, where v is any d-vector. Thus, we can restate our optimization problem
with an equality constraint as an unconstrained optimization problem as follows: min, f(Z + Zv).

Approach 2: Solving this minimization problem is equivalent to solving the Lagrangian equa-
tion, which is defined as follows:

L(z,X) = f(z) = ATe(x),
where

c(x) = Az —b.

Note that we are not minimizing the Lagrangian function. Rather we are finding a saddle point
of this function. We will go over optimality conditions for a solution to our original problem and
the meaning of Lagrange multipliers.

2.1 Optimality Conditions for Functions with Linear Equality Constraint

In terms of the first approach, necessary conditions for optimality are that the reduced gradient
be zero and that the reduced Hessian be positive semidefinite [8]. That is: Z7 7 f(z) = 0 and
ZT 7% f(x)Z is positive semidefinite. ZT <7 f(x) = 0 is also the sufficient condition for optimality.

In terms of the second approach, partial derivatives of the Lagrangian with respect to both z
and A must be zero. That is, first order necessary conditions for optimality are

Vol = wvf(z)—ATX = 0, and
—V)\L = Az —b = 0.

2.2 Meaning of the Lagrange Multipliers

Suppose the solution to the above minimization problem is z*. Also, suppose we have a point &
very close to z* so that ||z* — Z|| < e and AZ = b+ §, where both € and ||d|| are very small.

Then, we can approximate f(Z) using Taylor series expansion.
Note that since AZ = b+ § and Az* = b, we have A(Z — z*) = 4.

f@) = [f(=")+ (@ —2*)Tg(@") + O
= f(z*)+ @ -2 AT+ 0()
= f(z*) 4+ 8"\ +0().
This means that if we perturb b; by d;, then optimal value is changed by ;. Thus, A; is the

change in the optimal objective per unit change in b;. We say that, \; is the sensitivity of f to b;
[8]. For this reason Lagrange multipliers are also called shadow prices or dual variables [8].



3 Geostatistics Background

3.1 Assumptions

In this section we go over various statistical definitions. In order to do so, assume we are dealing
with two random variables X and Y, such that X can take on the values {z1,...2z,} and Y can
take on the values {y1 ...ym}. Also let

1 n
pe = B0 =13 e and
i=1
1 m
By = E(Y)= Ezyz
i=1
denote the expected values of these variables.

3.2 h-Scatterplots

An h-scatterplot is a graph that shows all possible pairs of data values separated in location by
a certain distance in a particular direction. It is can be used to evaluate the continuity of data
values over a certain distance in a particular direction. If data points at locations separated by h
are similar, then they will plot close to line z = y. As the similarity among the data decreases, the
clouds of points on the h-scatterplot becomes more diffuse. This feature is calculated by a correlation
coefficient. The more similar the pairs of points are, the higher their correlation coefficient.

3.3 Spatial Analysis

When performing geostatistical modelling, some assumptions are usually made about the data.
Some of the main assumptions made are defined below:

o Stationarity Assumption means that the statistics of a random function are invariant under
translation [2, 3, 4].

e Isotropic Assumption means that data statistics are independent of direction. Thus, when
calculating data statistics only the distance between the pairs of data points needs to be taken
into account and not their orientation [2, 3, 4].

o Anisotropic Assumption indicates that variability of data changes as a function of direction.
Thus, for computation of data statistics both the distance and orientation between pairs of
data points needs to be taken into account [2, 3].

e Intrinsic Hypothesis indicates that variance may be unbounded [4].

o Quasi-stationarity implies that stationarity applies to a neighborhood of the data and not to
the entire domain of data [4].



3.4 Covariance

Generally, the covariance between two random variables z; € X and y; € Y is defined as:

Cov(X,)Y) = E[(X —pa))(Y — ]
= E(XY) — pigfiy.

In geostatistics, two random variables z and 2’ of the same distribution are usually location
dependant, that is, they are a function, lets say Z, of their locations. Let us denote these locations
by u and v’ respectively. Thus, z = Z(u) and 2’ = Z(u').

In geostatistics, C(u,u') is a shorthand for Cov(Z(u), Z(u')), where Z(u) and Z(u') are values
of a random function in locations u and u'. The covariance between two random variables Z(u)
and Z(u') is defined as follows:

C(u,u') = Cov(Z(u),Z(

IS
<
e
—_—

The above notation can be confusing if one needs to calculate random variables from different
distributions at locations u and u', and thus one needs to specify random functions which are being
used at each location.

The stationary covariance, C(h), is defined as the covariance between two random variables
Z(u) and Z(u + h), separated in location by vector h:

C(h) = Cov(Z(u+ h), Z(u)) = E(Z(u+ h)Z(u)) — (E(Z(u)))?,Yu,u + h € A.

In other words, C(h), is the covariance between pairs of random variables that are separated
by vector h from each other. Thus, we can also represent C(h) as follows:

1 Y

C(h) = N R ; TilYfi — M_p My

3.5 Variance

Variance is defined for a single random variable. For a variable X, variance is defined as follows:

n

Var(X) = Cov(X,X) = %Z(lvi—ﬂw)z
i=1

E[X _,U:c]Q
= B(X*) -l
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Recall the definition of stationary covariance function C'(h) from 3.4. Notice that when h =0
we have:

C(0) = Cov(Z(u), Z(u)) = Var(Z(u)).

Thus, for a stationary random variable Z(u), we have C(0) = Var(Z(u)).

3.6 Standard Deviation

Standard deviation of a variable is defined as square root of its variance: §(X) = 4/ Var(X).

3.7 Correlation Coefficient

Correlation coefficient, p, is a measure of linear relationship between two variables, or how close
the values come to falling into a straight line. For two variables X and Y we have

Cov(z,y)
PoY) = SE5)

, where 6(z) and §(y) are standard deviations of variable X and Y respectively.

stationary correlation coefficient, p(h), is defined as the correlation coefficient between values
of random function Z at locations uw and u + h:

p(h) = p(Z(u+h),Z(u)) Vu,u -+ h.

3.8 Variogram

Variogram is a measure of calculating spatial variability or dissimilarity between values of a random
variables approximately separated by a vector h. This measure can be used as an alternative to
measure C(h), described above. For a set of points, variogram, or 2y(h), is defined as follows

([1, 3, 2]): .
2’)/(h) = W Z (:IIZ — g;j)Q.

hij=h

e N(h) is number of pairs separated by vector h.
e z; and x; are values of variables at two ends of the vector.

o hij = loc(z;) — loc(zj), where loc(z;) is the location where z; is calculated, and similarly
loc(z;) is the location where z; is measured.

Similarly, semivariogram, is defined as half of the average squared difference between two at-
tributes separated by vector h:

1) = g 2 =)

hij=h



We expect spatial variability of values of a random variable, ie. its variogram, to increase as the
distance between locations of those values increase. However, after reaching a certain distance, this
increase in variogram function stops. The distance at which variogram function stops increasing is
called range of variogram, and the value that variogram has at distance equal to range is called the
sill.

The sill value of the variogram is also the variance of the random function [3]. That is, C(0) =
~¥(00). In other words the maximum variability of the random function values whose locations are
far enough from each other is the same as maximum similarity among values of a random function
evaluated at the same location (see 3.8 for more information).

3.8.1 Important Notes

1. Variogram and semivariogram are used interchangeably in practice. In fact, in most cases,
a semivariogram as defined above is calculated, while for convenience it is referred to as
variogram.

2. For a stationary random function variogram is defined as the variance of the increment be-
tween two random variables separated by vector h:

2vy(h) = Var(Z(u+ h) — Z(u)), Vu.

Where Z is a random function taking a location as its parameter.

3.9 Cross-Variograms

The definition of variogram can be extended to the following cross-variogram equation where we
are dealing with values of two random variables from different distributions ([3, 2]).

2yxy(h) = ﬁ > (@i — ) (i — ),
hij=h

where
e N(h) is number of pairs whose locations are separated by vector h.
e z;,9; and z;,y; are values of two variables at two ends of the vector.
o hij = loc(z;) —loc(z;) = loc(y;) —loc(y;) , where loc(z;) is the location where z; is calculated,
and similarly for other values.
3.9.1 Important Notes

1. Similar to semivariograms, we also have notion of semi-cross-variogram, and the same com-
ment mentioned about variograms and semivariograms applies to cross-variograms and semi-
cross-variograms.



2. For a stationary random function cross-variogram is defined as the covariance of the increment
between two random variables separated by vector h:

2y(h) = Cov[(Zi(u) = Zi(u+h)),(Zj(u) — Zj(u+ h))]
= E[(Zi(u) = Zi(u + h))-(Zj(u) = Zj(u +h))], Vi, j;u,

where Z; and Z; are two random functions, each taking a location as their parameter.

3.10 Variogram Modeling

As we will see in section 5, in order to perform cokriging (see 4.1), we need to model variograms.
That is, we need to fit variogram values (see 3.8) as function of distance h to a function which
best fits it. Variograms are usually modelled so that we be able to model pairwise covariances as
a function of distance h. For stationary data, having a variogram model (k) allows us to come
up with a covariance model C(h), as a function of distance, using relation C(h) = C(0) — v(h)
(see proof of this equation in 3.11, 3a). In other words, once we have a model for variogram, the
covariance model for distance h can be calculated by subtracting y(h) from variogram’s sill value.

As we will see in section 4, to perform kriging/cokriging it is important that the involved
covariance matrix C' be positive definite. Thus, only models which will result in positive definite
covariance matrices are considered for modelling variograms. Some of the most frequently used
models are as follows [2, 3]:

e Nugget effect model:

0 if h=0,
v(h) = { 1 otherwise.

Spherical model with range a: This is the mostly used variogram model, where a repre-
sents the range of the variogram. This model is defined as follows:

_ [ 15k —05(2)3 if h<a,
(k) = { 1 otherwise.

Exponential model with practical range a:

1(h) = 1~ exp(— ).

Gaussian model with practical range a: This model is mostly used for extremely con-
tinuous values, and is defined as follows:

2
1(H) = 1~ exp(— ).

Important Note:



3.11

. Practical range a for Gaussian and exponential models is defined as the distance where vari-

ogram reaches 95% of its sill value.

In some geostatistical literature, Gaussian and exponential models are defined without the
factor 3, and thus in those cases variable a would be % of the practical range. [3].

Linear combination of acceptable variogram models is also an acceptable model.

Properties

Above mentioned statistical quantities have several properties which we will go over and show them
in this section [1, 3, 2].

1.

Variance of a random variable created as linear combination of other random variables,
Vi...Vn, is estimated as follows (see [3], p. 216):

Var(z w;V;) = Z Z wiw; Cov(V;Vj),
i=1

i=1 j=1
where w; ... w, are the weights associated with Vi ...V, respectively.
It is trivial to see for variograms and cross-variograms that y(h) = v(—h).

For a stationary random function, we have

(a) v(h) = C(0) = C(h).

Proof:
2y(h) = Var[Z(u+ h) — Z(u)]
— E[Z(u+h) - Z(u)? - [E(Z(u+h) — Z(u))]?
= E[Z(u+h)— Z(u)* - [E( (u+h)) — B (Z(u)]?
= E[Z(u+h) - Z(u) - (by stationarity)

E(Z(u+h)* + E (Z(u )) = 2E(Z(u+ h)Z(u))
2E (Z(u))* — 2E (Z(u + h)Z(u)) <=
v(h) = E(Z(w)* ~E(Z(u+h)Z(u).

We also have:

Note that derivation of second definition for semivariogram requires Z be a stationary
random function. That is, the mean, or expected value of its values are invariant under
transformation of variables passed to it and is always constant.



Ch)

() olh) = G-
Proof: Recall that

N

Cov(Z(u+ h),
Cov(Z(u), Z(u)

Then, we have:

p(Z(u+ h), Z(u))

Cov(Z(u+ h), Z(u))

0(Z(u+ h))d(Z(u))

Cov(Z(u + h), Z(u))
8(Z(u))?

Cov(Z(u + h), Z(u))
Var(Z(u))

_q o2

h .
Proof: Using the property we just proved, we have

()

p(h) =

4 Cokriging

4.1 Definition

Cokriging is defined as multivariate version of kriging. “A method for estimation that minimizes
the variance of the estimation error by taking into consideration the spatial correlation between

the variables of interest and the secondary variables.”

In other words, a function U at location 0 is estimated as a linear combination of both the
variable of interest and the secondary variables. That is, to estimate gy, the estimate of U at

location 0, as mentioned in [3], is given by

~—

(u)), and

Var(Z(u)).

(by stationarity)



4.2

n m
Uy = E a;u; + E bj’l)j.
i=1 j=1

The following holds for above error estimation equation:

® ui,Us,..., U, are primary data at n nearby locations.

® v1,v9,...,VU, are secondary data at m nearby locations.

® ay,a9,...,a, and by, by, ..., by, are cokriging weights which are needed to be found and cal-
culated.

where w

Auxiliary information does not need to be collected at the same data points as the variable
of interest.

Estimation error, R, is calculated as

R:[j()—U():’th,

t:(al,...,an,bl,...,bm,—l), and Zt:(Ul,...,Ui,‘/l,...,Vm,Uo).

Problem
The goal of cokriging is to find weights, vector w’ above, such that:

— Variance of the error is minimized.

— Estimate for Uy be unbiased. That is, we try to have the mean residual or error equal

to 0.

Constraints that are imposed on the system’s cokriging coefficients in order to ensure unbi-
asedness of the interpolant, distinguishes among various types of cokriging methods (see [2],
p. 204, and [3], ch. 17):

1. Swmple Cokriging: No constraints are imposed on the weights. Means of primary and

secondary data are required. Simple cokriging considers that local means are known and
constant through the study area.

. Ordinary Cokriging: Imposes the following two constraints on coefficients: Y " | a; =

1 and E;nzl bj = 0. This method limits the influence of the secondary variables greatly.
As we will see, these conditions indicate that ordinary cokriging considers local means
to be constant but unknown.

. Standardized Ordinary Cokriging: is performed by creating new secondary variables

so that they have the same mean as the primary variables. The constraint is that
coefficients should add up to one: 31, a; + 3772, bj = 1.

In section 4.6 we show how the above conditions on coefficients of the system ensures unbi-
asedness of the interpolant for each type of cokriging.
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4.3 Solution

In this section we illustrate how weight coefficient for a cokriging system is found. In order to do
so, we illustrate solving the ordinary cokriging, and it should be clear how to set up and solve other
varieties of cokriging.

From above equation, and definition of variance, we have

Var(R) = w'Czw
= Y aia;Cov(Uil) + Y Y bib; Cov(ViV5)
i g T g

+ Zii CO’U(UZV?) - 2iai COU(UZ'UO)
i g %

m
— 2 b;Cov(V;Us) + Cov(Upp).
J

One way of ensuring unbiasedness for our estimation Uy is to require Yo ia;=1and Z;"Zl bj =
0 (we will show why in section 4.6). So now we have an optimization problem with two constraints.
This is where we take advantage of Lagrange multiplies 2. Let our Lagrange multipliers be p; and
p2- Then, we are trying minimize Var(R) subject to two mentioned constraints by solving for
coefficients ay ...an, b1 ... by, u1, 42, where
n m
Var(R) = w'Cyw + 2“1(2 a; — 1) + 2/12(2 b;).
i=1 j=1

The next step is taking partial derivatives of the above equation with respect to all n + m
cokriging variables and the two Lagrange multipliers and setting them to zero. Then, we will get
the following n + m + 2 equations to solve:

Y aiCov(UsUy) + > biCov(Vil) + 1 = Cov(UglU;) (j = 1..n),

i=1 i=1
Zai Cov(U;V;) + Zbi Cov(V;Vj) +p2 = Cov(UpV;) (j =1..m),
i=1 i=1

n

Zai = 1, and
i=1

m

> b o= 0.
i=1



Equivalently:

Cu1u1 Cunul C’ul w1 Cvmul 10 \ ai Cu0u1
Culun Cunun Cvlun Cvmun 10 Ap, Cuoun
Culvl Cunvl 0111111 Cvmvl 01 bl — Cuovl

e .. .. 01 e
Cu1 Um, Cunvm Cv1 Um Cvm Um, 01 bm Cuovm

1 1 0 e 0 00 141 1
0 0 1 1 0 0 2 0
Once the above system of equations is solved, we have necessary coefficients a1, as, ..., an, b1, bo, ..

to estimate function U at location 0.
Note that the above mentioned method works only for point estimation.

4.4 Generalized Cokriging System

One can see that instead of having one set of secondary variables V; ... V,,, we may use multiple
sets of secondary variables. Each additional set of secondary variables W7 ... W will introduce a
new set of coefficients ¢; ... c; and a new lagrange multiplier p,,,.

For the general case where we have s set of variables (as oppose to just 2 sets, one primary and
one secondary), our linear system will be as follows:

(e o) (0)- (%)

Where C is the covariance (or its estimate) matrix of all known variables’ pair, and Cj is the
vector of pairwise covariances between the unknown variable Uy and all other known variables.

i is the vector of all lagrange multipliers pi...pus. F is a vector of matrices I ... I;. Each
matrix I;,i € {1...s} is of size (number of points in i" variable set) xs. All elements in the "
column of I; are one and all other entries are zero.

T is the vector of all coefficients, and I is a column vector of of size s X 1 of all elements under
Cy on the right hand side of the equation. As we will see later, this vector is made of a 1 on top
and all zeros for the rest of entries to insure unbiasedness of our estimator.

4.5 Kriging

Kriging is a special case of cokriging where we estimate value of a variable using values of only one
set of primary variables of points around it. That is, to estimate the value of a random function
U at location 0, ug, using values of U at n other locations (ui,...u,) we need to come up with
coefficients a1, . .. a, such that

n
® 1y = E a;u;, and

=1

12
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e Variance of error is minimized, where error is R = Uy — Uj.

Similarly we have Simple and Ordinary Kriging, depending on whether or not local means are
known and/or constant or not 4.2. Simple kriging does not require any constraints on coefficients
while ordinary kriging requires sum of coefficients to add up to one for insuring unbiasedness (see
4.6 for details).

Thus, for ordinary kriging, the solution mentioned in 4.3 simplifies as follows:

n
Zai COU(UZ'UJ') +ur = COU(U()UJ') (] = 1...n),

i=1
n
Zai = 1.
=1
Equivalently:
Cuiuy -+ Cypuy 1 a1 Cuour
Cuiu,, -+ Cupu, 1 an | | Cupu,
1 1 0 1 1

4.6 TUnbiasedness Condition

For most interpolation methods used in geostatistics, in particular kriging and cokriging, it is often
required that our estimate of a function for a given location be unbiased. Unbiasedness of the
estimator means that expected value of error should be zero. Now we go over details of what this
this condition means mathematically.

Suppose we have a random function V' (z), where z is a location. Assume that for points z; to
T, we know value of function V', and we would like to estimate V' at an unknown location z( as a
linear combination of n known function values so that our estimate be unbiased (this is the case in
kriging).

Let V be our estimate function, R the error associated with our estimate, and vy ...v, be
weights given to each known function value in estimation. Then we have

n
Vi(zg) = ZviV(:vi), and
i=1

R(zo) = V(zo)—V(zo) = D viV(wi) — V(o).
i=1

Unbiasedness condition states

13



FE (Z UZ'V(QJZ') — V(.To)) = 0=
EV)Y vi—-E(V) = 0«

=1
n
E Vi — 1
=1

EV)

This indicates that we need to have Y7 ; v; = 1 to assure unbiasedness of our estimate, and this
is often one of the constraints in optimization problems that we end up solving for our interpolation
methods ([3], p. 285).

It is easy to similarly derive the necessary conditions for ensuring unbiasedness in ordinary
cokriging. In this case, we estimate a random function value as a linear combination of values of
more than one random function at each point. Let our secondary random function be W. Also,
assume we know values of W at points z7 ... z,,. Then,

V(zg) = ZviV(xi) + ZwiW(xi), and
i=1 i=1

A~

R(zg) = V(o) =V(zo) = Y uiV(mi)+ ) wiW(wi) — V(o).
=1 =1

Unbiasedness condition states

E(R(z0)) = 0=

FE (Z UZ'V(QIZ') + Z’sz(.’L‘,) — V(.To)) = <=

E(V)zn:’uz—l-E(W)in:’wz—E(V) = 0=
i=1

) :
Z’Ui -1
=1

=1
m

+EW)> w; = 0.
i=1

E(V)

By requiring > 7 ; v; = 1 and ) ;*, w; = 0 we ensure that the above equation and thus our
unbiasedness condition holds. Similarly, if we use more additional functions in ordinary cokriging,
we need to require sum of coeflicients of values in our linear combination obtained from each
particular additional function to be equal to zero.

14



Standardized cokriging assumes that all random functions used in our estimation process have
the same mean. That is in above equation we have E(V) = E(W). This condition results in
reducing our number of constraints from s to 1, where s is the number of random functions used
in our linear interpolation.

sz—l

+ E( W)ZwZ = 0=
=1

EWV) | vi—1|+EWV)Y w; = 0=
=1 =1
E(V

ZUZ—I-Zw,—l] = 0.

=1

Thus, in standardized cokriging we require
n m
SntSm=t
i=1 i=1

Similarly, if more random functions are involved, we require sum of all coefficients in our linear
combination be one.

4.7 Positive-Definiteness Condition

A requirement for cokriging system to have a solution is that its covariance/variogram matrix, lets
call it K, needs to be positive definite. This is due to two reasons:

1) To insure that the variance of the error of our interpolant is positive ([3], p. 372).
2) To insure invertibility of coefficients in linear system involved [7].

The first part is easy to show. As seen above, the error involved in cokriging result can be
written as follows:

R="U-U =w'Z
Var(R) = w'Czuw.

Requiring Var(R) to be positive is the same as requiring C = C, to be positive-definite:
wtChw > 0.

As we saw, our cokriging linear system is as follows:

(e o) ()= (%)

15



We just showed why in order for variance of error for our interpolation method to be positive
we need matrix C to be positive definite [3]. Next, we will show that how this positive-definiteness
condition insures our cokriging system to have a solution.

We show the second part by proving its contrapositive statement: If the system does not have
a solution, then C not positive definite [7].

Let
C F
G_(ET 0).

If G is not invertible, it means that there exist non-zero U and V such that
C FE Uy [0
ET 0 V) \0)

1. CU+EV =0 = U'CU+UTEV =0

Thus,

(1) and (2) = UTCU =0 = C is not positive definite.

Notice that this positive definiteness condition on C is different from positive definiteness con-
dition for insuring optimality of a minimization/optimization problem. Here we are just insuring
that the coefficient matrix is invertible while in an optimization problem we require Hessian of the
system to be positive definite as described in section 2.

5 Algorithmic Approach
Estimating an unknown variable via kriging/cokriging involves the following steps:

1. Setting up the linear system as mentioned in its most general form in 4.4 satisfying conditions
mentioned in 4.6 and 4.7.

2. Solving the linear system for coefficients.

3. Evaluating the estimation for the unknown variable.

The main task in first step is coming up with matrices C and Cj as mentioned in 4.4 since other
components of the system are well defined in 4.4. Elements of C are pairwise covariances between
random variables for which we have only one value. That is, we know values of a primary variable
at n points (u1,...u,), and we are treating each of these values as an instant of a random variable
Ui. Thus, C;; means we are looking for covariance between two random variables U; and U; that
generated values u; and u; at ith and j* points respectively. But how do we go about calculating
covariances between two random variables for each of which we only have one value?

16



Here is where variograms come into picture when performing cokriging/kriging. Variograms
between pairwise variables are function of distances between the two particular samples and values
of random variables at those samples.

Notice that for a stationary random variable, once we know the variogram between variables at
a pair of points separated by distance h in location, it is easy to calculate their pairwise covariance
as well (see 3.11, 3a).

Also, one can transform anisotropic data to one which is isotropic (stationary) [2, 3]. Thus, once
we know how to estimate covariances from variograms as a function of distance between locations
where measurements were taken for stationary data, we can do the same for anisotropic data as
well.

Usually variograms are modelled as a function of distance between points , and so are the
covariances. After fitting various possible models to calculated variograms, the best one which gives
the least error is picked and used to model the pairwise variograms. Having a general variogram
function y(h), we can obtain a covariance function C(h) using equation in 3.11, 3a).

At this point, we have a modelled variogram and covariance, y(h) and C(h) as a function of
distance between two samples of random variables. Then, matrices C and C0 in 4.4 are generated
as follows: for every element c;; in C' or C0, calculate distance h;; between point labelled i and the
one labelled j. Then simply calculate ¢;; = C(h;;).

In addition to just calculating matrix C, we need to make sure that it is positive definite (see
4.7). Instead of checking for this condition every time a model is picked, we limit our selection of
variogram models to only those functions which will lead to a positive definite matrix C' (see 3.10).

Also, it is important that the model we choose for our variogram be bounded so that we be
able to calculate C(h) given y(h) for a given distance h using equation in 3.11, 3a.

Note that matrix C' in 4.4, whose elements are represented as c;;, is different from modelled
covariance function C(h).

Now that we are done with first step, and have our linear system set up, we need to solve it to
obtain coefficients. There are variety of well-known methods for solving a linear system of equations
[8], and once the solution to the system in 4.4 is known, evaluating the unknown variable is just a
matter of substituting values and calculating 4y as mentioned in 4.1.

6 Computational Challenges
As we discussed in this paper, estimating an unknown value using cokriging/kriging requires us to:

1. Set up the linear system which needs to be solved (see 4.4). This includes the problem of
fitting values of random functions involved to best possible variogram model that will result
in a positive definite covariance matrix for the linear system we need to solve.

2. Solve the linear system.

3. Evaluate the unknown value as the linear combination of known values. (see 4.1)

While the above steps involve a lot of computations in themselves for estimation of any one
unknown value, they are well known and relatively easily solvable math problems (fitting data,
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solving a system, evaluating a function). What really makes cokriging/kriging computationally
expensive and inefficient is that:

1. After doing the above steps to estimate an unknown value at location i, we cannot use the
results (coefficients needed for evaluation step obtained from solving the linear system) to
estimate another unknown value at location let’s say j. That is, we need to repeat all the
above mentioned three steps (see 5 for details) every time we want to estimate a new value.

2. Size of matrices involved in our linear system is usually very large for applications that
kriging/cokriging is used for. This makes variogram modelling and solving the linear systems
involved very slow.

7 Past Work

The following implementations of cokriging are mostly used among users of this method:.

1. Fortran Implementation: This is the code written by Deutsch and Journal for GSLIB
library [1], and has support for both kriging and cokriging. See [1] and
http://ekofisk.stanford.edu/SCRFweb/GSLIB/gslibhlp.html, for more information.

2. Matlab Implementation: This code has support for cokriging [6].

8 Conclusion

In this paper we showed what is meant by cokriging in general and kriging in particular. We
went over terminologies and mathematical properties and methods involved in these interpolation
methods. We showed how this interpolation technique is formalized mathematically and solved
algorithmically. We also went over computational issues involved and introduced references to
available implementations of these two methods.
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