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Abstract

Finding corresponding regions in the frames of an image sequence is
important for optical flow computation and motion segmentation. The
problem is difficult because the shape and pattern of regions change
over time by projective transformation and occlusions. In this paper, a
segmentation algorithm which combines optical flow estimation with
color segmentation is proposed. The projective transformation for
each color segment between frames is estimated by iterative weighted
least squares minimization and outlier elimination. Variable weight
adjustment and outlier elimination are developed to exclude occlusion
regions from the minimization process. Robustness of the proposed
algorithm to occlusions is verified in experiments. The color segments
are merged based on motion similarity, and dense optical flow is com-
puted for the merged segments. Motion segmentation is performed
by clustering of estimated transformations. Occlusions are identified
from the estimated motion of the segments.

1 Introduction

Motion segmentation is an important pre-processing step for several applica-
tions in computer vision, such as tracking, action recognition, and compres-
sion of image sequences. The desired segmentation for these applications is a
partitioning of the image into individual moving objects. Since the projective
motion of a moving object is represented by parametric motion model, the



success of motion segmentation depends on the quality of estimation of the
motion model parameters.

The task of computing motion in images is to find correspondences in
the image sequence. The displacement of a point or a region in image is
computed based on the similarity of image patterns. The dense field of dis-
placement vectors is referred as optical flow. One problem in computing
optical flow is ambiguity of correspondences. In general, a unique matching
is not found because of the aperture problem. It means that local information
is not enough to determine the displacement vector, such as in the motion
of a line or in repeated patterns. Another problem is occlusions where cor-
respondence do not exist. On the other hand, occlusions carry information
about the structure of the scene, which is useful for motion segmentation
[10]. In addition to these problems, since the size and shape of an object in
an image is not consistent over time due to the projective transformation,
simple two-dimensional template matching does not produce good optical
flow.

Motion segmentation amounts to splitting the image into regions based on
the motion in the image sequence. Usually, each segment indicates a region in
which the objects’ motion is represented by a common motion model. Since
motion segmentation is based on image motion measurements, there same
problem as the computing optical flow exists. Layer representation [13] is a
popular concept in motion segmentation. The representation of each motion
in the scene is referred as a layer. The motion segmentation task in the layer
representation is to determine the layer descriptions and assign each pixel in
the image sequence to the corresponding layer.

In this paper, an algorithm for computing a parametric motion field uti-
lizing color segmentation technique is proposed, and dense optical flow es-
timation using parametric motion models is used for motion segmentation.
The color segmentation divides images into regions based on the color homo-
geneity. The proposed algorithm integrates color cues with motion cues by
utilizing the color segmentation for motion computation. It is assumed that
each segment obtained by the color segmentation is a projection of a part
of a plane. This assumption is not true in general, however, a small region
in the image is approximately planar. By performing an over-segmentation
at the color segmentation, the assumption most likely holds. Motion pa-
rameters for each segment are computed by segment-based matching taking
the projective transformation and occlusions into account. This is achieved
by iterative weighted least squares error minimization and outlier elimina-



tion that is designed to be robust to occlusions and initial estimates. Layer
descriptions of motion segmentation are determined by clustering segments
after color segments are merged based on similarity of motion. Occlusions
are detected by finding overlaps of merged segments and isolated pixels.

2 Previous Work

2.1 Optical Flow

A brief overview of prior work on the optical flow problem is given here.
Though exhaustive optical flow algorithms are reviewed in several review
papers [2], [11]. There are two popular approaches to compute optical flow.
One is the differential approach, and the other is the parametric approach.

Differential Approach

In the differential approach, optical flow is computed based on the image
derivatives with respect to position and time. Assuming brightness preser-
vation, the following constrain is derived by truncating second and higher
order terms in the Taylor expansion of the differential of the image intensity
function I (z + dz,y + dy,t + dt) at (z,y,t).

g +g — _g (1)
or' T ort T ot

Here, I is the intensity function I (z,y,t) at a point (x,y) at time ¢, and
the vector (u,v) = (dz/dt,dy/dt) is the pixel’s displacement. This equa-
tion is referred to as brightness constancy constraints. Since the brightness
constancy constrain is underdetermined, it is only possible to compute the
flow vector that is perpendicular to the image edge, which is called the nor-
mal flow. In order to compute the optical flow vector (u,v), an additional
constraint is required. The additional constraint is usually derived from as-
suming smoothness of motion over the image. For example, Lucas-Kanade
algorithm [5] assumes that flow vectors are constant within a certain support
window. Since this method computes the flow based on only information
within the window, the ambiguity of motion due to the aperture problem is
not solved. Instead of using local support, there is another approach where
optical flow is computed by optimizing a global function which is incorporate
with the brightness constancy constraint. Various methods in this category



optimize discontinuity preserving smoothness term as proposed by Horn and
Schunck [8]. Nagel [7] also formulate the problem as a minimization of a
global function with second order derivatives. A problem of the differential
approach is the difficulty of computing accurate numerical differentiation
because of noise, aliasing, or low frame rate.

Parametric Approach

In the parametric approach, image motion is represented by parametric
motion models. Methods categorized as region-based matching [2], model the
motion of a region in an image by its shift d = (d,,d,) in the image. Black
and Jepson [3] proposed a method using variable-order model fitting. They
segment the image into regions of homogenous color and compute coarse
optical flow. Motion model parameters are estimated for each individual
color segment based on the coarse optical flow. A lower order motion model
is first tried to fit coarse optical flow, then a higher order model is applied
if the fitting error decreases. They use the following eight-parameter model,
and use only [ag, as] or [ag, a1, ag, as, a4, as] for the lower order model. These
models correspond to translational and affine motion respectively.

U = ag+aix + asy + agr® + arxy @)
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where the a; are the parameters to describe motion of the region. (u,v)
are the optical flow vectors at the image point (z,y). The eight-parameter
motion models is derived by substituting the planar model ax+ y+v = 1/2
into the infinitesimal projective motion formula [12].
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Here, o, (3, and 7 are parameters of a plane, (u,v)T is the motion vector
on the image, (tx,ty,tz)T is a translation vector, (wx,wy,wz)T is a rotation
vector to describe motion of the plane. (z, y)T is the location on the image.
In the above equations, a normalized camera is assumed so that © = X/Z
and y = Y/Z for the three-dimensional point (X, Y, Z) on the plane. Ji and
Fermiiller [9] show rank constraints on three-dimensional shape parameters of
planar patches in multiple frames that are based on the above motion equa-

tion. Together with color segmentation, accurate three-dimensional motions
of segments are estimated based on the constraint.
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2.2 Motion Segmentation

Motion segmentation of images refers here to partitioning an image into re-
gions of homogenous two-dimensional apparent motion. The basic assump-
tion is that the homogenous apparent motion for each segment is represented
by a different motion model. The motion models approximate the projective
motion of the three-dimensional motion of objects.

Wang and Adelson [13] proposed a motion segmentation algorithm that
represents moving images with sets of overlapping layers. They, first, com-
pute optical flow, then estimate the affine motion parameters for every square
non-overlapping region distributed over the image to fit the optical flow. Af-
ter eliminating unreliable motion models for which the fitting error exceeds
a certain threshold, the motion models are grouped in the affine motion pa-
rameter space by k-means clustering.

The algorithm proposed by Xiao and Shah [14] starts with tracking Harris
corners to generate seed regions with affine motion models. Initial layers
are obtained by expanding the seed regions to neighboring regions in which
motion is represented by the same affine motion. Layers are merged based on
the overlap of layers and number of pixels supporting the same affine motion.
Then, multi-frame layer segmentation is obtained by graph cuts. The energy
function for the graph cuts considers occlusion, and occlusions are identified
by assigning an occlusion label.

Bleyer, Gelautz and Rhemann [4] proposed a color segmentation-based
optical flow computation algorithm and applied it to motion segmentation.
They track feature points and estimate affine motion parameter for each color
segment by least squares error fitting of all correspondences found inside
a segment. Then, layers are extracted by mean-shift clustering in eight-
dimensional space that consists of six parameters of affine motion parameters
and two parameters of the segment center.

Ogale, Fermiiller and Aloimonos [10] classify motion segmentation prob-
lems into three categories based on motion direction and ordinal depth of
background and object. They reveal the usefulness of occlusions in mo-
tion segmentation when the background and the object are moving in same
direction. They proposed a motion segmentation algorithm to extract inde-
pendently moving object regions using an ordinal depth conflict deduced by
occlusion filling.



3 Segment-based Optical Flow Computation

In this paper, the following algorithm is proposed; the first stage of the algo-
rithm is to segment the first of two consecutive images into regions of homo-
geneous color. Then, the parametric motion for each segment is estimated
taking occlusions into account. Third, the segments of homogeneous motion
are merged, and the motion parameters are recomputed. Then, dense optical
flow is estimated within regions. The estimated parametric motion field is
used for motion segmentation. The overview of the proposed algorithm is
depicted in Figure 1.

| Color Image at time t || Color Image at time t+ At

Compute Image Gradient
at every color channel

Color Segmentation

Each Color Warped by
Segment Region current estimate
Estimate
» Transformation |

Iterative weighted Least

Square Minimization Transformation for
[ — 4 Each Color Segment
| Adjust \+Ne|ghts | | Merging Segments
Estimate Translation Each Merged Segment
Estimate Affine <
Estimate Homography Transformation for
+ Each Merged Segment
| Eliminate Outliers | | DenaslOptcalFion |
7 |
| Motion Segmentation | | Occlusion Detection |

Figure 1: Overview of the proposed algorithm

3.1 Color Segmentation

It is assumed that the motion boundary coincides with the color boundary.
This assumption is disputable. However, here the goal is restricted to com-
puting apparent motion of image patterns. In this sense, the apparent motion
of a rotating sphere in uniform color is zero. Since natural scenes usually have



enough structure, the optical flow field represents a good approximation of
the real motion.

A color segmentation technique is incorporated into the algorithm. Given
two consecutive images, the first image is segmented by color homogeneity.
At the optical flow computation step, it is assumed that each segment is the
projection of a part of a plane. Therefore, an over-segmentation of the image
is preferable to ensure the assumption.

In principle, any color segmentation technique is applicable to the al-
gorithm. The current implementation uses the graph-based segmentation
algorithm proposed by Felzenszwalb and Huttenlocher [6]. The resulting
color segmentation for the ’Mobile Calendar’ image is shown in the Figure 2.
The pixels drawn in the same color belong to the same segment in the figure.

Figure 2: Color Segmentation. (a) The original image. (b) Computed color
segmentation by the algorithm proposed by Felzenszwalb et al [6]

3.2 Segment-based Matching

Under the assumption that every segment is the projection of a part of a
plane, the motion of a segment in the image sequence is represented by
a homography. The motion of the segment is determined by finding the
optimal transformation parameters by which the segmented region in the
current frame is warped to the corresponding region in the previous frame.
The optimal transformation parameters for each segment are defined as the
parameters that minimize the following error between the segmented region



in the previous frame and the warped current frame to the previous frame:

E(m) = Y [Lrac (W (p;m)) — L (p))* (4)
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Here, S is the set of pixels within the segment. I; (p) is the scalar intensity
value of the image at pixel p at time ¢. This is extended to color vectors later.
W (p; m) denotes the warp represented by the transformation parameter vec-
tor m, which warps the point p = (p,, p,) at time ¢ to the corresponding point
at time t 4+ At. Since the error function is nonlinear, the optimal parameters
that minimize the function are not solved analytically. The error is mini-
mized iteratively by estimating incrementally parameter vector dm assuming
the current estimate m is known starting with an initial parameter vector.
The error function is rewritten with the incremental parameters as follow:

E(m+om) = > [Laac(W (pym+om)) — 1 (p)]2 (5)
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The Taylor expansion of Iyya; (W (p;m + dm)) is represented as follows:

Lipae (W (pym 4+ 0m))
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The second term is the partial derivative of the image intensity function with
respect to the transformation parameters. This can be rewritten using image
gradient.

Ol iar (W (p;m)) Ol (W (p;m)) OW (p;m)

= 7
om dp om (7)
For simplicity, %&W is written as VI a; in the equations bellow.

The term VI a; is the image gradient at the warped point W (p;m) at
time t + At. Assuming that the incremental parameters are enough small to
ignore higher than second order terms in equation (6), the error function is
approximated as follows:

om — Iy (p)| (8)
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The incremental parameters that minimize the error function are solved by
setting the partial derivatives of the approximate error function to zero.

OE(m) _ 55~ [Wtwaw (v m>r
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Here, the H is an approximation of the Hessian of image intensity function
Iisa: (p,m). Then, the current estimate is updated as follows:

m «—m+om (13)

The incremental minimization of the square error function derived above is
known as Newton-Gauss method and has been discussed in the context of
template pattern registration in images [5],[1]. The optimal transformation
parameters represent the estimation of the motion of the segment in image
sequence.

3.3 Robust Transformation Estimation

The method derived in the previous section is modified for better accuracy
and robustness to the initial estimate of transformation parameters and oc-
clusions.



Extension to Color Vectors

First, the error function in equation (4) is extended to deal with color cues.
From point of view of least squares error minimization, p in the error function
is a sampling point for model fitting. By sampling the intensity values in all
three color channels, the error minimization becomes more reliable than using
only gray level.

Em) = Y Y [ (W mm) — I ()] (14)
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Here, I7 (p) represents the intensity value of color channel ¢ at point p at time
t. The incremental transformation parameters for color image are derived by
the same manner as described in the previous section.

RPN L
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Robustness to Initial Parameters

Next a modification is made to overcome the sensitivity to the initial pa-
rameters. Since general projective motion of points on a plane is represented
by a homography transformation, the dimension of the transformation pa-
rameters is eight. A simple experiment shown in Figure 3 reveals that this
eight-dimensional minimization requires a good initial guess, less than two
pixels in translation. In the experiment, the dark region in Figure 3(a) is the
target segment for which the transformation parameters from the target to
the corresponding regions in Figures 3(b)-(e) are estimated. The dark regions
in Figures 3(b)-(e) are horizontally translated with respect to Figure 3(a) by
one to four pixels respectively. The estimated homography transformation
from Figure 3(a) to each of Figures 3(b)-(e) is represented by the green rect-
angle. For the correct transformation, the green rectangle would be aligned
with the boundary of the dark region of Figures 3(b)-(e). The dark region is
drawn with gradation to avoid ambiguity of the transformation. The iterative
error minimization process is started with the identical transformation. The
result shows that the estimation is unstable when the initial transformation
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parameters are more than two pixels in translation from the true transfor-
mation. Even for less than two pixels in translation, the minimization is
not able to reach the global minimum. This phenomenon is explained by
the complexity of the eight-dimensional search, where the algorithm is easily
trapped by a local minimum. On the other hand, when the transformation
is restricted to a translational transformation, the stability of estimation is
significantly improved, even though the translational transformation is a sub-
set of homography transformation as shown in Figures 3(f)-(k). The images
in Figures 3(f)-(k) are copies of the images in Figures 3(b)-(e) respectively.
The optimization successfully reaches the global minimum in all cases in the
experiment. It would be obvious that the two-dimensional search in transla-

(f) () (h) (i)

Figure 3: Demonstration of sensitivity to initial parameters. (a): The ref-
erence image. (b)-(e): The dark region is horizontally translated by one to
four pixels with respect to the reference image, and the green distorted rect-
angle shows the segment boundary warped by the estimated homography
transformation. (f)-(g): Same images as (b)-(e) but the estimation for the
transformation is restricted to translation.

tion for the global minimum of the error function is more robust to the initial
guess than an eight-dimensional search for the homography. However, the
above simple experiments suggest a step by step minimization so that a good
initial guess is obtained for the higher-dimensional search. The minimization
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process is implemented in three steps. First, the translational transformation
is estimated, and then using the estimated transformation as the initial pa-
rameters, an affine transformation is estimated. Finally using the estimated
affine transformation, a homography transformation is estimated. Therefore,
the function W (p;m) is substituted by the following translational, affine and
homography warp step by step.

w M

W (p,m) = ( ]; B ) (17)
)
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The Jacobians that are required for the minimization in equation (15) and
(16) are computed as follows:
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Here, (¢, q,)" = Wi (p;m).

Robustness to Outliers

Occlusions cause wrong estimation of the transformation because points
are considered in the minimization that do not have matching points the pre-
vious frame. It is found that another problem in matching happens due to
the color filter. A closer look at the images in Figure 4 shows that have dif-
ferent color patterns even though they are corresponding regions. The cross
mark in the images is drawn in black on a white wall and captured in color
images from different view points. Figures 4(a) and (b) shows different color
patterns. This phenomenon is cased by the color filters by which the color on
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a pixel is reconstructed from neighboring pixels. Due to the filtering, changes
in the color pattern occur, mostly around the edges. The changes in color

(a) (b)

Figure 4: Color pattern changes due to color filter. (a),(b) color images of
same scene, but different view points. A black cross mark is drawn on white
wall in the scene.

pattern cause wrong estimation of the transformation. To overcome these
issues, iterative outlier elimination is incorporated into the transformation
estimation. Once the homography transformation that minimizes the error
function is estimated, outliers in the error histogram are detected by assum-
ing that the error caused by simple noise follows a normal distribution. The
error, here, means each term before taking square in equation (14). That
is the intensity difference at p, I A, (W (p;m)) — If (p). Given the correct
transformation, the difference is basically because of simple noise, and it is
expected to be subject to a Gaussian distribution. However, the differences
caused by other effects, such as occlusions or color filter, are not subject to
the same distribution. In a typical error distribution in the experiments,
about 2% of the samples are grater than three times the standard deviation.
In contrast, the chance is about 0.3% if the noise is subject to a Gaussian
distribution. This indicates that the error is not caused only by simple noise,
but also by other effects. The causes of error are simply categorized into noise
and other effects. Errors caused by noise are inliers, while errors caused by
other effects are outliers in the estimation of the noise distribution. It is
assumed that errors caused by noise are subject to a Gaussian distribution.
Since most of the errors are caused by noise, and outliers lie on the tail of
the distribution, the parameters of Gaussian distribution for the noise are
estimated without the samples lying on its tails. The least median of squares
fitting to the actual histogram of error is used because there is still the pos-
sibility that the outliers lie around the center of the distribution. The fitting
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error for the i-th bin of the histogram is evaluated by the following value E;.

E;, = N/ N (f1,5) — [number of samples within R;] (23)
Ri
Ri = [pu+ioc/n,u+ (i+1)o/n] (24)

Here, N (fi,0) is the Gaussian distribution with mean i and standard devia-
tion . p and o are the mean and standard deviation for all samples, n is the
number of bins of the error histogram. The equation means that the fitting
error is evaluated as the difference between the expected number of samples
within a range R; and the actual number of samples within the range.

Since the chance that the absolute difference from the mean is grater than
three times the standard deviation is less than 0.3%, it is assumed that such
errors are caused by effects other than noise. Points that have such large
error are excluded as outliers, and the minimization process to estimate the
transformation is started over without those points.

Outliers = { P ’ \I;NW (p;m) — Ij (p) — p*

> 30*} (25)

Here, p* and o* are the mean and standard deviation of the estimated Gaus-
sian distribution of the noise that minimizes the median of squares of E;.
The estimation of the transformation and outlier elimination are iterated
until the number of outliers or mean of squared error gets smaller than a
certain threshold. The p* and ¢* are computed for each color channel only
the first time for each segment, and the same parameters are used for later
outlier elimination. Figure 5 is an example to show how the outlier elimi-
nation process works. Given a segment ( for an example, see the green one
in Figure 5(c) ) obtained by color segmentation in the image of the Figure
5(a), the task here is to find the transformation of the segment from the
segment in Figure 5(a) to the corresponding region in the image of Figure
5(b). The true transformation for the segment is identical transformation,
however, a wrong transformation is computed by minimizing the error func-
tion because of occlusions at the right bottom of the segment, where the
neighboring segment moves to upper left. The optical flow for points in the
region is computed by the estimated transformation and shown in Figure
5(d). The flow vectors are color coded as denoted in Figure 5(g). Then,
the intensity difference at each point on the segment at each color channel
between the image of Figure 5(a) and the image of Figure 5(b) warped by
the estimated transformation is computed. For each color channel, outliers
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in the error are identified, and then points causing those extreme errors are
excluded from the segment. The points on the segment after exclusion of
the outliers are shown in Figure 5(e). Most of the occlusions are identified
and excluded. A new transformation is estimated using only the remaining
points. The resulting new transformation for the segment is shown in the
Figure 5(f), which is exactly the same as the ground truth. In this example,
no outliers are found any more in the second outlier elimination.

Figure 5: An example for outlier elimination. (a) A synthesized reference
image. (b) A copy of the image (a), but the region with red texture is moved
to upper left. (c) Color segmentation of the image (a). Points drawn in
the same color belong to the same segment. (d) Optical flow from image
(a) to (b) computed from the estimated transformation before outliers are
eliminated. The optical flow vector on each point is color coded as shown in
(g). (e) Pixels used to estimate transformation after outliers are eliminated.
(f) Optical flow computed after outliers are eliminated. The white color
codes zero flow.

The outlier detection works well when a relatively good transformation
is estimated in the first iteration. In order to avoid the first estimation from
being affected by occlusion, the error function in equation (14) is weighted
and the weights are adjusted with less weights on points close to the boundary
at the first time of iteration, because the occlusions are most likely close to

15



the boundary. Equation (14) is refined to

Em) = ¥ % w®)[FaWmm)-1m)] (26
PES ce{r,g,b}
Here, w (p) is the weight at point p. Two sets of weights are prepared in
advance for the transformation estimation. Both of them assign lower weights
at points close to boundary of the segment, but the one is smoother, and the
other is steeper and the difference between the highest weight and the lowest
weight is larger.

1
N 14 exp {_Cl (d (p) /dma:p - 02)}

Here, d (p) is the distance from the boundary of the segment at a point p,
and d, ., is the maximum value of d over the segment. ¢; and ¢y are constant
values. A lower value of ¢; is assigned for the smoother weight set, and a
higher value is assigned for the steeper set. The steeper weight set is used
first, and then a smoother weight set is used after outliers are eliminated.

w (p) (27)

3.4 Merging Segments

Segments which have similar transformation are merged. A target segment
is merged with its neighboring segment if the transformation of the neighbor
is similar to the target segment’s transformation. Then, the region of the
target segment is expanded to the neighboring segments that have similar
transformation. Starting with the largest segment, the merging proceeds
iteratively until no segments can be merged. When the segment [ is the target
segment, and the segment k is its neighbor, the similarity of transformations
is measured by the following value s (I, k).

1
S (la k) = 87 Z ‘ (ul7 Ul) - (uk7 Uk) | (28)
T T
wy (ub v, 1) = Hl (.T, Y, 1) (29)
wi (g, v, 1) = Hy (,,1)" (30)

Here, H; and Hj are the matrix representation of the transformation for
segment [ and k respectively. S is the set of points on segment k, and |Sy|
means the number of points on segment k. Merging occurs if the similarity
value is smaller than a certain threshold. Then, the transformation of the
merged segment is recomputed.
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4 Motion Segmentation

After the transformation has been estimated for each merged segment, the
motion segmentation is computed by mean-shift clustering. The space for
the clustering consists of the transformation parameters and the location of
the segment. A cluster represents a layer in the motion segmentation.

Once the parametric motion from the previous frame to the current frame
for each merged segment has been computed, pixels which belong to more
than two segments in the current frame and pixels which do not belong
to any segments are determined. Those pixels are labeled occlusions in the
previous or current frame. The optical flow computed for pixels in occlusions
is meaningless because no corresponding points exist for occlusions.

5 Experiments

The robustness of the proposed algorithm was verified by experiments using
synthesized image sequences. A front-parallel plane of 2m width and 2m
height with texture placed at 5m from the camera in the reference frame was
simulated. The image in the reference frame is shown in Figure 6(a). Images
of the plane at target frame were generated as translating and rotating the
plane randomly. In the simulation, the rotation was restricted within the
range of —m/16rad to 7/16rad in each coordinate axis, and the translation
was from —0.5m to 0.5m in each axis. The color segment corresponding to
the plane was obtained in the reference frame. In order to simulate occlu-
sions, another front parallel square plane without texture was placed in front
of the textured plane in the target frame. The size of the non-textured plane
was quarter of the textured plane in the reference frame. The non-textured
plane centered at the upper-left corner of the textured plane in the target
frame. 100 images of the plane with random translation and rotation at tar-
get frame were generated, and the transformations of the image of the plane
from the reference frame to target frames were estimated by the proposed
algorithm. The error of the estimated transformation was evaluated by the
average distance between the four corner points of the estimated transforma-
tion and the ground truth in the target frame. In order to demonstrate the
robustness clear, the same algorithm was applied to the same set of images
without outlier elimination and weight adjustment. The statistics of the re-
sulting error is shown in Table 1. 87% of trials successfully estimated the
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transformation within 1 pixel accuracy. In contrast, 0% of trials had success
with less than 1 pixel error without outlier elimination and weight adjust-
ment. The result shows that the transformation estimation is significantly
improved with the outlier elimination and weight adjustment.

(a) (b)

Figure 6: Verification for robustness. (a) The synthesized reference image
of a textured plane. (b) An example image of the randomly translated and
rotated plane occluded by a non-textured plane.

mean | median | std. dev. cumulative distribution [%)]
[pixel] | [pixel] [pixel] | <0.5|<1.0]|<20|<10.0| <200
opsee 1197 | 051 | 234 | 48 | 87 | 89 | 99 | 100
gorithm
w/ooutliers | 1337 | 1337 | 134 0 0 0 0 100
elimination

Table 1: Verification for robustness. Statistics of average error between true
displacement and the estimated displacement at the four corner points of
the plane in the 100 trials. The proposed algorithm is used to estimate
displacements, but outlier elimination and weight adjustment are turned off
in the second row.

The proposed algorithm was applied to real image sequence. Figures 7(a)
and (b) show two consecutive frames of the image sequence, where the train
and the ball move left, and the calendar moves down as the camera moves left
backward. Figure 7(d) shows dense optical flow computed by the estimated
transformation for each color segment shown in Figure 2(b). Flow vectors
are color coded as denoted in Figure 7(c) The initial color segments were
merged based on similarity of the transformation. Transformations for each
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merged segments were estimated, and optical flow computed by the trans-
formation is shown in Figure 7(e). Although the true motion is not known
in this sequence, the computed dense optical flow seems to be approximat-
ing the scene motion very well. The motion segmentation was computed by
mean-shift clustering. In this experiment, elements (1,3) and (2,3) of the
homography matrix and the center of gravity of each segment were used for
clustering. The resulting layers are shown in Figure 7(f). Pixels drawn in
the same color belong to the same layer in the figure. Occlusions were de-
tected by finding points where more than two merged segments overlapped
or no segment covered. Occlusions are shown in Figure 7(f) in red. Since
the camera was moving left backward in the sequence, the boundary of the
image except right boundary was also detected as occlusion.

06 Conclusion

Utilizing a color segmentation technique, optical flow was computed by es-
timating the transformation of color segments between frames. In order to
find region-based correspondences, a robust transformation estimation algo-
rithm was proposed. The algorithm was based on the Newton-Gauss least
squares minimization, and extended to be accurate and robust to occlusions
and initial estimates. A variable weighting in the minimization and outlier
elimination were developed to avoid wrong estimation due to occlusions. Sig-
nificant improvement in robustness to occlusions was shown in experiments.
The proposed algorithm was demonstrated on a real image sequence and
dense optical flow in high quality has been computed. Motion segmentation
and occlusion detection were performed based on the estimated parametric
motion.
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Figure 7: Real image experiment. (a,b) Two consecutive frames of image
sequence, where the train and the ball move left, and the calendar moves
down as the camera moves left backward. (c) The color code used in (d)
and (e) to show optical flow. (d) The dense optical flow computed by the
estimated transformation for each color segment. (e) The dense optical flow
computed for each merged segment. (f) The motion segmentation. Pixels
of the same color belong to the same layer. (g) Occlusions deduced from
motions of merged segments. Pixels in red are detected as occlusions.
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