
A Combination of Decision Trees and Instance-Based Learning
Master’s Scholarly Paper

Peter Fontana, pfontana@cs.umd.edu
March 21, 2008

Abstract

People are interested in developing a machine learning algorithm that works well in all
situations. I proposed and studied a machine learning algorithm that combines two widely used
algorithms: decision trees and instance-based learning. I combine these algorithms by using the
decision trees to determine the relevant attributes and then running the noise-resistant instance-
based learning algorithm with only the attributes used in the decision tree. After using decision
tree algorithms and instance-based learning algorithms from WEKA and data from the UCI
Machine Learning Repository to test the combined algorithm, I concluded that this combination
of the two algorithms did not produce a better algorithm. [3,6,9] My belief for this is that the
attributes that one algorithm feels are relevant are likely different from the attributes that the
other algorithm feels is relevant.

Introduction

Generating a Machine Learning algorithm that performs well in general is an open
problem. Currently, there does not exist a general-purpose Machine Learning algorithm that
performs well in all situations. However, many algorithms perform well in many situations, each
with their own strengths and weaknesses. Two of these widely used and well-developed Machine
Learning algorithms are instance-based learning, developed by Aha, Kibler and Albert, [2] and
decision trees, initially developed by Quinlan [8] [4,7].

While both are powerful and effective machine learning tools, both have their
weaknesses. Instance-based learning is poor at recognizing and dealing with irrelevant attributes
[4,8], and decision trees are not very resistant to noise, even after pruning the tree. However,
since decision trees select nodes based on how well certain attributes separate instances and
ignore attributes that do not distinguish the data very much [7], decision trees are good at dealing
with irrelevant attributes. In addition, as stated in Mitchell [7], Instance-based learning is good at
dealing with noise. [7]

One method to deal with this, as described by Aha [1] involves augmenting an instance-
based algorithm by giving weights to the attributes and having the algorithm learn the feature
weights, and then using the weighted features when computing the similarity between two
instances. It would handle irrelevant attributes by giving them low weights. [1]

Also, people have considered combining learning algorithms together. Domingos [4]
cites this approach as multi-strategy learning. [4] One such combination is Lazy Decision Trees,
where decision trees are constructed in a lazy fashion, using an instance-based approach to form
a unique decision tree for each instance [5].

I predicted that combining these two algorithms together would result in a better, more
general-purpose Machine Learning algorithm. I predicted that I could use a decision tree to
determine which attributes were relevant and then use instance-based learning that only
considered the attributes used in the decision tree to classify in a noise-resistant way, with

2

improved performance. This specific combination of decision trees and instance-based learning
has not been done before. My hypothesis is that the learning algorithm that uses instance-based
learning on only the attributes selected by the decision tree will perform better in general
compared to the decision tree alone and compared to the instance-based learner alone. This is
because I predict that this algorithm will combine the ability of the decision tree to ignore
irrelevant attributes with the noise-resistance of the instance-based learner.

Methods

To test my hypothesis, I utilized an implementation of C4.5 Decision Trees, both with
pruned and unpruned decision trees, (WEKA’s (Waikato Environment for Knowledge Analysis)
J4.8) and an implementation of the IB1 Instance-based learner with 1-nearest neighbor (WEKA’s
IB1) and with 3-nearest neighbor (WEKA’s IBK with the nearest parameter set to 3) [6,9]. First,
I obtained various data sets from the UCI (University of California at Irvine) Machine Learning
Repository such that the class variable was a nominal attribute. [3] I then randomly partitioned
the data into a 75% training set and a 25% test set. I then with each data set, ran it on WEKA’s
IB1 and WEKA’s IB1 3-Nearest Neighbor (WEKA’s IBK with the nearest neighbor set to 3) and
on WEKA’s decision tree algorithm (J4.8) using both its pruned and unpruned decision trees
(J4.8 produces an unpruned tree by setting the unpruned parameter to true) [6,9]. For each run I
recorded the percent of examples of the test set classified correctly.

Then, I took the decision trees tested by WEKA, and implemented a Java program that
took a WEKA decision tree (saved in an individual file) and the corresponding .arff file (the file
format that WEKA uses to store and read data from), and made a new .arff file that contained the
original data but with only the attributes that were used in the decision tree (and the class
attribute). [6,9] This algorithm considered an attribute relevant if it was looked at anywhere in
the decision tree when it made a decision. Even if only some of the possible values for the
attribute were considered, the algorithm would still use all the values of the attribute. For
example, if there was an attribute Color, and the only node with Color in the decision tree
was whether Color == Blue or Color != Blue, the algorithm would still store the exact
value of Color for all of the data instances. I ran this algorithm using the pruned decision tree
and the unpruned decision tree and on the training data files and the test data files, producing 4
.arff files per data set. This way I used the same training and test set partitions for all tests with
the same data set. I then ran IB1 (both the 1-nearest neighbor version and the 3-nearest neighbor
version) on these revised data sets, and recorded the results. The data tables and charts plotting
the data results are in the Results section of this paper. For some more information on the data,
see the Data section of this paper.

Data

All the data was obtained from the UCI Machine Learning Repository. [3] I used the
Iris, cpu-performance, Spambase, soybean and glass data sets from the
Repository. [3] Most of the data sets were used as-is by the learning algorithms, but I modified
two of those data sets. The first data set was the cpu-performace data set. It’s class
attribute PRP (Published relative performance), was continuous. To make it discrete, the
documentation with the data file gave performance ranges. I then wrote a script to take the
original file and produce a file that produced a discrete PRP ordinal attribute by converting each

3

value into its range. Since ERP (Estimated Relative Performance) was a similar attribute, but not
the class attribute, I dealt with it in three different ways: I left it as a continuous attribute, I
discretized it like I discretized the PRP attribute and I produced a data set without the ERP
attribute. [3] Also, the model attribute was a set of strings, so I changed the attribute category
from just string to a nominal attribute that contained all of the model names as possible values.

The glass data set also had an interesting property. Each instance had an ID number as
an attribute. While this attribute is usually irrelevant, it happened in this data set the instances
were sorted by class, and the ID numbers were assigned in increasing order to the instances.
Since testing divided this data set into random instances, it made the ID attribute extremely
relevant since the ranges of ID numbers corresponded to all instances of the class. So I ran the
algorithm on the glass data set with the ID attribute and recorded the results, and then I made
another version of the data set that did not contain the ID attribute and ran the data through the
algorithms and produced a different result.

All the results of the data including all 3 runs with the cpu-performance data set and
both runs with the glass data set are given in the results section.

Results

Below are data tables and charts with the results. The first two tables gives the percent of
instances correct on the 25% test set. Note that a * in the data set entry (in the table and in the
chart) indicates that the pruned decision tree and unpruned decision tree were identical.

Data Set
Pruned Decision
Tree

Unpruned
Decision Tree IB1 IB1-3NN

Iris * 97.0588% 97.0588% 97.0588% 97.0588%
CPU-Performance
(no ERP) 52.6316% 64.9123% 66.6667% 56.1404%
CPU-Performance
(Discrete ERP) 62.5000% 64.2857% 67.8571% 69.6429%
CPU-Performance
(Continuous ERP) 63.0435% 71.7391% 71.7391% 67.3913%

Spambase 92.7046% 92.9715% 89.5018% 88.9680%

Soybean 93.0818% 91.1950% 88.6792% 89.3082%

Glass * 100.0000% 100.0000% 94.0299% 95.5244%

Glass (No ID) 70.1493% 70.1493% 64.1791% 64.1791%
Table 1: Percent Correct on Test set for original learning algorithms.

4

Data Set
IB1 with Pruned
Tree

IB1-3NN with
Pruned Tree

IB1 with
Unpruned Tree

IB1-3NN with
Unpruned Tree

Iris * 97.0588% 97.0588% 97.0588% 97.0588%
CPU-Performance
(no ERP) 63.1579% 54.3860% 68.4211% 57.8947%
CPU-Performance
(Discrete ERP) 62.5000% 64.2857% 64.2857% 67.8571%
CPU-Performance
(Continuous ERP) 73.9130% 63.0435% 71.7391% 63.0435%

Spambase 89.2349% 89.1459% 89.8577% 89.0569%

Soybean 71.6981% 75.4717% 80.5031% 78.6164%

Glass * 98.5075% 98.5075% 98.5075% 98.5075%

Glass (No ID) 65.6716% 65.6716% 65.6716% 65.6716%
Table 2: Percent Correct on Test sets for combined algorithms

Performance of Learning Methods

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

Ir
is

 *

C
PU

-P
er

fo
rm

an
ce

 (
n
o
 E

R
P)

C
PU

-P
er

fo
rm

an
ce

 (
D

is
cr

et
e

E
R
P)

C
PU

-P
er

fo
rm

an
ce

(C
o
n
ti
n
u
o
u
s

E
R
P)

S
p
am

b
as

e

S
o
yb

ea
n

G
la

ss
 *

G
la

ss
 (

N
o
 I

D
)

Data Set

P
e
rc

e
n

t
C

o
rr

e
ct

 O
n

 T
e
st

 I
n

st
a
n

ce
s

Pruned Decision Tree

Unpruned Decision
Tree

IB1

IB1-3NN

IB1 with Pruned Tree

IB1-3NN with Pruned
Tree

IB1 with Unpruned
Tree

IB1-3NN with
Unpruned Tree

Chart 3: Plot of the percent correct of the various learning algorithms.

Now, I compare the differences between various algorithms. Since I am interested in
determining if the combined algorithm does better than pruned decision trees alone or instance-
based learning alone, I will give those differences in the tables below and will produce a few
charts. Since unpruned decision trees are believed to overfit the data, I do not compare the
combined learning algorithm to unpruned decision trees alone.

5

Data Set

(IB1 with
Unpruned) -
(Pruned DT)

(IB1 with
Pruned) -
(Pruned DT)

(IB1-3NN with
Unpruned) -
(Pruned DT)

(IB1-3NN with
Pruned) -
(Pruned DT)

Iris * 0.0000% 0.0000% 0.0000% 0.0000%
CPU-Performance
(no ERP) 15.7895% 10.5263% 5.2631% 1.7544%
CPU-Performance
(Discrete ERP) 1.7857% 0.0000% 5.3571% 1.7857%
CPU-Performance
(Continuous ERP) 8.6956% 10.8695% 0.0000% 0.0000%

Spambase -2.8469% -3.4697% -3.6477% -3.5587%

Soybean -12.5787% -21.3837% -14.4654% -17.6101%

Glass * -1.4925% -1.4925% -1.4925% -1.4925%

Glass (No ID) -4.4777% -4.4777% -4.4777% -4.4777%
Table 4: The percent difference between the combined algorithm and the pruned decision

tree. A positive number indicates that the combined algorithm improved performance.

Data Set
(IB1 with
Pruned) - (IB1)

(IB1 with
Unpruned) -
(IB1)

(IB1-3NN with
Pruned) - (IB1-
3NN)

(IB1-3NN with
Unpruned) -
(IB1-3NN)

Iris * 0.0000% 0.0000% 0.0000% 0.0000%
CPU-Performance
(no ERP) -3.5088% 1.7544% -1.7544% 1.7543%
CPU-Performance
(Discrete ERP) -5.3571% -3.5714% -5.3572% -1.7858%
CPU-Performance
(Continuous ERP) 2.1739% 0.0000% -4.3478% -4.3478%

Spambase -0.2669% 0.3559% 0.1779% 0.0889%

Soybean -16.9811% -8.1761% -13.8365% -10.6918%

Glass * 4.4776% 4.4776% 2.9831% 2.9831%

Glass (No ID) 1.4925% 1.4925% 1.4925% 1.4925%
Table 5: The percent difference between the combined algorithm and the Instance-based

algorithms. A positive number indicates that the combined algorithm improved performance.

6

Combined Algorithms vs. Decision Trees

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

Ir
is

 *

C
PU

-P
er

fo
rm

an
ce

 (
n
o
 E

R
P)

C
PU

-P
er

fo
rm

an
ce

 (
D

is
cr

et
e

E
R
P)

C
PU

-P
er

fo
rm

an
ce

 (
C
o
n
ti
n
u
o
u
s

E
R
P)

S
p
am

b
as

e

S
o
yb

ea
n

G
la

ss
 *

G
la

ss
 (

N
o
 I

D
)

Data Set

C
o

m
b

in
e
d

 A
lg

 -
 D

T (IB1 with Unpruned) -
(Pruned DT)

(IB1 with Pruned) -
(Pruned DT)

(IB1-3NN with
Unpruned) - (Pruned
DT)

(IB1-3NN with Pruned) -
(Pruned DT)

Chart 6: Plot of (the Percent Correct of the combined algorithm) – (the percent correct by
the pruned decision tree).

7

Combined Algorithm vs. Instancd
Based Learning

-20%

-15%

-10%

-5%

0%

5%
Ir

is
 *

C
PU

-P
er

fo
rm

an
ce

 (
n
o
 E

R
P)

C
PU

-P
er

fo
rm

an
ce

 (
D

is
cr

et
e

E
R
P)

C
PU

-P
er

fo
rm

an
ce

 (
C
o
n
ti
n
u
o
u
s

E
R
P)

S
p
am

b
as

e

S
o
yb

ea
n

G
la

ss
 *

G
la

ss
 (

N
o
 I

D
)

Data Set

C
o

m
b

in
e
d

 A
lg

 -
 I

B (IB1 with
Pruned) -
(IB1)

(IB1 with
Unpruned) -
(IB1)

(IB1-3NN with
Pruned) -
(IB1-3NN)

(IB1-3NN with
Unpruned) -
(IB1-3NN)

Chart 7: Plot of (the Percent Correct of the combined algorithm) – (the percent correct by
the instance-based algorithm).

From this data, I can conclude that this method of combining decision trees and instance-
based learning does not result in significantly better results. While I understand that if these
results were good, it may require more data sets to be able to show significant results, this
amount of data is adequate to show that there was no significant improvement. I discuss possible
causes of this lack of improvement in the Conclusions section of this paper.

Conclusions

Based on the data, I conclude that this method of combining decision trees and Instance-
based learning does not produce a significantly better algorithm. I can make this conclusion
since the combined algorithms gave fewer correct answers on a significant percentage of the data
sets. The closest improvement is IB1 with the Unpruned Tree compared to IB1. However, it
only improved on 5 out of the 7 data sets and the gain is slight (usually only 1-2%). Based on
the analysis, the soybean data may be a fluke or extremely different data set, since performance
was far worse for the combined algorithms on this data set. However, since the number of data
sets used is small, I am unable to conclude this. Even if the soybean data set is ignored, the gain
of the combined algorithms is very slight compared to the instance-based learners and to the
pruned decision trees on the data sets that do show an improvement. Many of the data sets
resulted in the combined algorithm performing worse.

8

Also, while the combined algorithm sometimes shows significant gains when compared
to the Decision trees, much of this difference is due to the instance-based learners doing better
than decision trees on these algorithms.

Therefore, I reject my hypothesis that combining a decision tree and instance-based
learning in this method (by using the decision tree to determine the relevant attributes for the
instance-based learner). One possible reason for the lack of performance improvement is that
decision trees use attributes to distinguish instances from each other while instance-based
learning uses attributes to determine how similar instances are from each other. This may pose a
problem, since attributes that are good at differentiating instances may not be good indicators of
similar instances, and vice versa.

Another reason is that the attributes that one algorithm considers relevant may be
different from the attributes that are relevant for the other algorithm. This is likely, since the two
algorithms represent the data different and interact with the data differently. Instance-based
learning takes instances and looks for similarities between the instances. On the other hand,
decision trees often look at the attributes and distinguish the instances based on what the
differences between the instances are. These two different approaches may result in what is
relevant for one algorithm to be not very relevant for the other algorithm.

While this method of combining the two algorithms did not produce better results, it may
be that these algorithms can produce better classification results when combined in some other
way. That is future work.

Acknowledgements

I thank Dr. James Reggia for his advice and helpful discussions on this research and this
paper.

References

[1] Aha, David.W. (1998) Feature weighting for lazy learning algorithms. In: H. Liu and H.
Motoda (Eds.) Feature Extraction, Construction and Selection: A Data Mining Perspective.
Norwell MA: Kluwer, 1998.

[2] Aha, David, Dennis Kibler and Mark K. Albert. Instance-Based Learning Algorithms,
Machine Learning, 6, 1991, 37-66.

[3] Asuncion, A & Newman, D.J. (2007). UCI Machine Learning Repository
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California,
Department of Information and Computer Science. Last Accessed December 2, 2007.

[4] Domingos, P. (1996). Unifying Instance-Based and Rule-Based Induction. Machine
Learning, 24:141-168.

[5] Friedman, J.H., R. Kohavi and Y. Yun. Lazy decision trees. Proceedings of the Thirteenth
National Conference on Artificial Intelligence and the Eighth Innovative Applications of
Artificial Intelligence Conference. AAAI Press, 1996, 717-724.

9

[6] Ian H. Witten and Eibe Frank (2005) Data Mining: Practical machine learning tools and
techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005. (Source of WEKA)

[7] Mitchell, Tom. Machine Learning. McGraw Hill, 1997.

[8] Quinlan, J. R. 1986. Induction of Decision Trees. Machine Learning. 1, 1 (Mar. 1986), 81-10

[9] WEKA Software. The University of Waikato. [http://www.cs.waikato.ac.nz/ml/weka/]. Last
Accessed December 2, 2007. (Where WEKA was obtained from).

