Combining Metrics to Improve RNA-Seq
Quantification
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Abstract—Transcript quantification from RNA sequenc-
ing (RNA-seq) data plays a pivotal role in understand-
ing gene expression dynamics, particularly in complex
processes like alternative splicing. This paper explores
novel strategies to improve RNA-seq quantification by
intelligently combining Maximum Likelihood Estimators
(MLESs), specifically Expectation-Maximization (EM) and
Variational Bayesian Expectation-Maximization (VBEM).
We begin by reviewing existing quantification methods
such as Sailfish, kallisto, and Salmon, which employ
distinct algorithms for estimating transcript abundances.
While EM and VBEM offer robust approaches for like-
lihood optimization, their standalone applications present
limitations in accuracy and convergence. Our investigation
introduces a weighted average scheme, integrating EM and
VBEM likelihoods to achieve refined abundance estimates.
To determine optimal weights, we devise an iterative
algorithm that minimizes the Mean Absolute Relative
Difference (MARD) between estimated counts and ground
truth data. The proposed method demonstrates superior
accuracy compared to standalone EM and VBEM ap-
proaches, as evidenced by reduced MARD values. Further-
more, we present modifications to the Salmon algorithm to
incorporate our weighted combining strategy seamlessly.
Experimental results validate the efficacy of our approach,
showcasing its potential to enhance RNA-seq quantification
accuracy and reliability.

I. INTRODUCTION

Alternative splicing is a process by which differ-
ent exons from the same gene are joined in various
combinations, leading to the production of different
but related mRNA transcripts. Transcript quantifica-
tion, which determines the steady-state abundance
of these alternative transcripts within a sample, has
numerous valuable applications. It can be used to
detect biomarkers for diseased and normal tissue,
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understand how transcript expression levels change
during organismal development, and track the pro-
gression of cancer. RNA-seq, a high-throughput
sequencing technique, is employed to analyze the
transcriptome of a cell or organism by generating
millions of short sequence reads, facilitating these
critical insights. Mapping the short-sequence reads
from RNA-seq back to the transcriptome is an
ongoing challenge. Various generative models have
been proposed for the read generation process, and
by optimizing their likelihood, we obtain abundance
estimates of the transcripts. This work explores
ways to improve existing quantification methods
by intelligently combining different maximum like-
lihood estimates to potentially improve the final
abundance estimates.

II. RELATED WORK
A. Existing Quantification Methods

The Sailfish method [1] significantly increases
the speed of abundance estimation by avoiding read
mapping altogether and instead using counts of k-
mers to estimate transcript coverage. The kallisto
method [2], which is even faster, calculates the
probability that each read originates from a given
transcript through pseudoalignment, achieved via
fast hashing of k-mers and the transcriptome de
Bruijn graph (T-DBG). The Salmon method [3]
employs a dual-phase inference procedure, combin-
ing information about the position and orientation
of mapped fragments with abundances from online
inference to compute per-fragment conditional prob-
abilities. These probabilities are then used to esti-
mate auxiliary models and bias terms, and update



abundance estimates using iterative methods such
as Expectation-Maximization (EM) and Variational
Bayesian Expectation-Maximization (VBEM).

B. Maximum Likelihood Estimators

The EM algorithm optimizes the likelihood for
the estimated counts of fragments derived from
each transcript, given the set of equivalence classes
of fragments. It approximates this likelihood by
collapsing fragments into equivalence classes and
maximizing the product of transcript abundances
and the affinity of each transcript for each equiva-
lence class. This is done by updating the estimated
read count for each transcript, normalizing it by
the estimated number of reads across all transcripts,
weighted by the equivalence class affinity for the
current transcript, and taking the weighted sum
across all equivalence classes.

The VBEM algorithm, on the other hand, aims
to infer the posterior distribution of nucleotide
fragments given the transcriptome and observed
fragments. It finds the approximate posterior that
best matches the true posterior by minimizing
the Kullback-Leibler (KL) divergence between
them. VBEM updates are performed by taking the
weighted sum across equivalence classes of the
affinity for each transcript, normalized by the sum
of affinity values across the specified equivalence
class. Once the parameters converge, an estimate for
the expected value of the posterior nucleotide frac-
tions is obtained. VBEM leverages a prior for each
transcript, which represents the number of reads per
nucleotide. With a larger prior, VBEM estimates
more non-zero abundances than EM, and fewer non-
zero abundances with a lower prior. VBEM also
tends to converge after fewer iterations than EM.

In our investigation, we compare the number of
iterations and the mean absolute relative difference
of EM, VBEM, a simple averaging scheme of EM
and VBEM, and L-BFGS weighted optimization
EM and VBEM. This comparison helps in under-
standing the trade-offs between these methods when
computing the posterior nucleotide distribution.

III. METHODS
A. Ground Truth from RSEM-Simulations

In order to ensure that we intelligently choose the
weights for our VBEM and EM updates, we need

to ensure that we have ground truth to train on. To
obtain ground truth, we use the RSEM-Simulations
[4] described in the original Salmon [3] paper. We
believe these are a good choice for comparison with
the original paper, as well as the fact that the RSEM
simulations are accurate. For each result file, we use
the MARD metric and optimize it accordingly.

B. Objective Function

To see if combining EM and VBEM values yields
more accurate gene counts, we wanted to compute
the average between the two likelihoods. There are
two ways to complete this task: one is by finding the
average of the two values, giving equal importance
to both EM and VBEM in the final value. The other
is by calculating the weighted average of the two
likelihoods, with the weights determined by how
effectively they minimize the difference between the
ground truth counts and the estimates. Equation 1
shows the equation for finding the weighted average
for set with N values. Prior to any work being
done, we believed that the weighted average would
produce the best counts because of its ability to
leverage the more important feature and increase its
influence in the final output.

C. Iterative Algorithm

The main problem that needs to be solved relating
to the weighted mean between EM and VBEM is
finding weight values associated with both probabil-
ity outputs such that the weighted mean minimizes
the error of a loss function. We had two methods
we tried to solve for these weights. One of these
methods was to create a nested iterative update task
that simultaneously finds optimal values for EM,
VBEM, and their respective weights. Each iteration
step is as followed:

1) Initialize « values and o to the default set by
the original Salmon algorithm.

2) Run VBEM and EM update rules to
get o wvalues for their respective algo-
rithms.simultaneously finds optimal values for
EM, VBEM, and their respective weights.

3) Complete L-BFGS minimization optimization
algorithm to obtain new weights for iterative
step that minimizes MARD.

4) Compute the new o' value by calculating the
weighted mean as shown in Equation 1.



TABLE I: Accuracy of different weighting methods. (Lower is Better)

Method

MARD

EM

VBEM

Simple Mean
Weighted Mean (alpha)

Simple Mean Final Iteration (EM + VBEM)

0.126
0.106
0.124
0.48

0.126

5) Check to see if cutoff values met to end
iteration. If so, return the VBEM and EM
values alongside their weights. Otherwise,
repeat steps 2-35.

Each iteration is only done if certain conditions
are met. In our case these conditions are related to
whether the weighted average is able to converge
to a real number. If this criteria is not met, then
another iteration is completed. Within each iteration,
there is the VBEM and EM update is done as
described in the original Salmon [3] paper, where «
is used to update o for their respective probability
metrics. However, unlike the original work, we are
running both EM’s and VBEM’s updates in the
same iteration loop and adjusting each value based
on their respective weights as well as a jointly
computed «’. This new value o’ will be calculated
as the new weighted mean as shown in Figure 1.

In order to figure out the weights to be used to
find o/, which will ultimately help us find the final
weights and probability values, we implemented an-
other iterative optimization function that minimizes
the Mean Absolute Relative Difference (MARD) as
described by Patro et. al (2017) [3] of the ground
truth data and the following function:

Y = (wEM +w VBEM)/(wy +wi) (1)

where wy and w; are the calculated weights. This
was done using L-BFGS optimization. L-BFGS is
an optimization method used to minimize an objec-
tive function over unconstrained values for a real-
vector z. It employs the first derivative of the objec-
tive function to identify the direction of steepest de-
scent and uses the second derivative to compute the
inverse Hessian, capturing the curvature information
about the objective function. L-BFGS utilizes a two-
loop recursion procedure to approximate the inverse

Algorithm 7.5 (L-BFGS).
Choose starting point x, integer m > 0;
k < 0;
repeat
Choose H,’ (for example, by using (7.20));
—H; V [ from Algorithm 7.4;

Xk + ag pr, where . is chosen to

Compute py <
Compute x4 <
satisfy the Wolfe conditions;
ifk > m
Discard the vector pair {s;_,,, v, } from storage;
Compute and save s; < Yk, Vo = V i1 — Vi
k «—k+1;

until con vergence.

Nkt1

Fig. 1: L-BFGS Algorithm

Hessian matrix and determine the direction and step
size for updating the current solution toward the
minimum of the objective function. Figure 1 shows
pseudocode for the algorithm and its iterative nature
[5]. By finding weights for the weighted average
such that we minimize MARD, we wanted to see
if we can get a weighted combination of the two
likelihoods that will outperform EM and VBEM
individually as well as a simple mean approach.

Another approach that we explored was to op-
timize the parameters for EM and VBEM before
completing the minimization task for the weights.
To do this, we computed the outputs for EM and
VBEM as done by Patro et. al (2017) [3]. Once
those values converged, we then completed the L-
BFGS optimization algorithm to find w; and wy
given the EM and VBEM abundances for each
gene in the simulated data. This was done as an
alternative to the method disucssed above to see if
leveraging the current iterative adjustments where
EM and VBEM are computed separately for more
accurate results when they are combined after con-
verging.
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Fig. 2: Norm of VBEM and EM Abundance Estimates

IV. RESULTS

Figure I displays the relationships between dif-
ferent weighting methods. The baseline methods
include VBEM and EM, while our new results
are derived from various weighted combinations of
these two methods.

Figure 2 shows the magnitude of the EM and
VBEM abundance estimates over 10 iterations.
From this, we can see that the gradient of the objec-
tive function with respect to EM is much larger than
the gradient with respect to VBEM. The L-BFGS
minimization refines the sequence of estimates by
using the first-order gradient, which explains why
the updated inverse Hessian optimizes the function
by moving in the direction of EM and away from
VBEM. Furthermore, the Wolfe line search [6],
which chooses a search direction and step size to
minimize the objective function, ensures that the
curvature condition is satisfied and that the L-BFGS
updating is stable. However, in our optimization
problem, the MARD function is not second-order
differentiable, causing instability in the updates to
the weights of the objective function.

V. CONCLUSION

Although we could show that intelligently averag-
ing VBEM and EM drastically impacts abundance
estimates, it is still worth investigating how different
weighting systems can maximize the accuracy of
these estimates. With an appropriate method for

calculating weights for VBEM and EM, we can po-
tentially uncover relationships in gene abundances
across datasets. Exploring optimization approaches
that do not heavily rely on the data’s gradient
would allow us to compute weights that are not
biased towards EM, which typically has a much
larger gradient compared to VBEM. Additionally,
experimenting with other functions to minimize,
such as cosine similarity, Spearman correlation, and
mean-squared error, could reveal more distinctions
between EM and VBEM, aiding in the development
of weights that better maximize abundance counts.

Once better weights are computed, it is crucial
to test their generalizability to other datasets. If the
same proportions apply across different datasets, it
suggests consistent underlying conditions between
EM and VBEM, helping to identify similarities
between datasets and relationships between indi-
vidual genes and their counts. By diving into the
specifics of the VBEM and EM algorithms, we
might leverage properties that enhance the accuracy
of abundance counts, potentially leading to a novel
maximum likelihood estimator optimized for quan-
tifying RNA sequences.

Overall, our project aims to improve the under-
standing of the relationship between VBEM and
EM and explore how they can be used together to
enhance effectiveness. This will deepen our com-
prehension of gene abundances within and across
datasets. The work from our project can be applied



to

future methods investigating the relationships

between that aim to improve quantification methods
and better understand why certain genes are present
at the abundance that they do.
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