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ABSTRACT
We investigate the problem of combining multiple feature
channels for the purpose of efficient image classification. Dis-
criminative kernel based methods, such as SVMs, have been
shown to be quite effective for image classification. To use
these methods with several feature channels, one needs to
combine base kernels computed from them. Multiple ker-
nel learning is an effective method for combining the base
kernels. However, the cost of computing the kernel similar-
ities of a test image with each of the support vectors for
all feature channels is extremely high. We propose an al-
ternate method, where training data instances are selected
for each of the base kernels using boosting. A composite
decision function is learnt, which can be evaluated by com-
puting kernel similarities with respect to only these chosen
instances. This method significantly reduces the number of
kernel computations required during testing. Experimen-
tal results on the benchmark UCI datasets, as well as on
two challenging painting and chart datasets, are included to
demonstrate the effectiveness of our method.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology-Classifier
design and evaluation; I.4.7 [Image Processing and Com-
puter Vision]: Feature Measurement-Feature Representa-
tion

General Terms
Algorithms, Performance, Experimentation

Keywords
kernel learning, paintings, charts, boosting

1. INTRODUCTION
We address the problem of combining multiple heterogenous
features for image classification. Categorizing images based
on stylistic variations such as scene content and painting

genre requires reliance on a rich feature repertoire. Classi-
fication is accomplished by comparing distributions of fea-
tures, e.g., color, texture, gradient histograms [13, 25, 20].
For instance, Grauman and Darrell proposed the Pyramid
Match Kernel (PMK) to compute Mercer kernels between
feature distributions for Support Vector Machine (SVM)
based classification. This has been shown to be effective for
object categorization [12], scene analysis [20] and document
analysis [29]. Approaches such as PMK would compute a
kernel matrix for each feature distribution. We explore tech-
niques for combining the kernels from multiple features for
efficient and robust recognition.

A number of techniques have been proposed to learn the
optimal combination of a set of kernels for SVM-based clas-
sification. Lanckriet et al. proposed an approach for Multi-
ple Kernel Learning (MKL) through semi-definite program-
ming [19]. Sonnenburg et al. generalized MKL to regression
and one-class SVMs, and enhanced the ability to handle
large scale problems. Rakotomamonjy et al. increased the
efficiency of MKL and demonstrated its utility on several
standard datasets including the UCI repository [24]. They
compute multiple kernels by varying the parameters of poly-
nomial and Gaussian kernels, and apply MKL to compute
an optimal combination. Bosch et al. learn the optimal
mixture between two kernels - shape and appearance - using
a validation set [6]. Varma and Ray propose to minimize
the number of kernels involved in the final classification by
including L1 norms of the kernel weights in the SVM opti-
mization function [27]. Bi et al. proposed a boosting-based
classifier that combines multiple kernel matrices for regres-
sion and classification [5].

The efficiency of MKL-based SVM classifiers during the test-
ing phase depends upon the number of support vectors and
the number of features. In general, multi-class problems re-
quiring subtle distinctions entail a large number of support
vectors. The computational cost is substantial when the
kernels are complex, e.g., matching similarity of feature dis-
tributions. Is it possible to reduce the number of complex
kernel computations while maintaining performance? We
propose an approach for combining multiple kernels through
a feature selection process followed by SVM learning. Let
Km(., .) be the kernel values for the mth feature channel
computed using approaches such as Pyramid Match Kernel.
The columns of Km are considered to be features embedding
the images in a high-dimensional space based on similarity
to training examples. During the training phase, a subset of



the columns are chosen using Gentle Boost [1] based on their
discriminative power, and a new kernel K is constructed.
This is provided as input to an SVM for final classification.
Kernels of test images need to be computed for only the cho-
sen set of columns - much smaller than the full set of kernel
values. This results in substantial reductions in computa-
tional complexity during the testing phase. The consequent
approach is simple and relies on well understood techniques
of Boosting and SVMs. Boosting methods have previously
been used for feature selection [30], to learn kernels directly
from data [9, 16], and for selecting a subset of kernels for
concept detection in [17].

We compare our Boosted Kernel SVM (BK-SVM) approach
with the Efficient Multiple Kernel Learning (EMKL) ap-
proach proposed in [24]. EMKL has been shown to increase
the efficiency of kernel learning while enabling the use of
a large number of kernels within SVM. It uses all the ker-
nel values for classification - a superset of the features ob-
tained by the greedy Boosting-based selection. BK-SVM
and EMKL are tested in three scenarios: standard datasets
from the UCI repository [2], a novel Painting dataset and a
previously reported database of computer generated charts
[29]. Results indicate that BK-SVM’s classification accuracy
is comparable to that of EMKL, with the additional advan-
tage of a much smaller number of complex kernel computa-
tions.

The Painting dataset consists of nearly 500 images down-
loaded from the Internet - the task being to classify images
into 6 genres. This provides a good testbed as the classi-
fication is subtle, requiring a large variety of features. Re-
cently, there have been studies on the classification of paint-
ings based on their style, artist, period and brushwork [32,
18, 15, 22, 31]. A semi-supervised method employing a vari-
ety of feature channels to annotate painting brushwork was
presented in [32]. In [18] paintings are classified according to
artist. Li et al. [22] have used 2D multi-resolution HMMs
with multi-level Debauchies wavelet coefficient features to
identify the artists of ancient Chinese paintings. In [21],
high level semantic concepts are combined with low level
image features to annotate paintings based on period, style
and artist. In some of these methods such as [32, 21] a high
level of domain knowledge has been used to develop the hi-
erarchy of classes and to select appropriate image features.
We use a large repertoire of simple features and rely on ma-
chine learning to obtain the combination best suited for the
classification. This provides the potential for application in
other categorization tasks.

The next section presents details of combining multiple ker-
nels, followed by experiments on the UCI datasets. Section 4
presents the Painting dataset, the features used and the ex-
perimental results. Section 5 describes experiments on the
Charts dataset, followed by concluding remarks.

2. LEARNING A MIXTURE OF KERNELS
Content-based image categorization typically represents im-
ages with histograms or distributions of features from chan-
nels such as texture, color and local gradients [10, 23]. Clas-
sification is performed by comparing such distributions. Grau-
man and Darrell [13] proposed the Pyramid Match Ker-
nel (PMK) for efficiently computing Mercer kernels between

feature distributions and apply it to Support Vector Ma-
chine (SVM)-based object categorization [13]. A closely
related approach used spatial distributions of features for
scene recognition [20]. These techniques use SVM to learn
the manifold of image categories and show good general-
ization. However, classifying images based on subtle style
variations, e.g., painting genres, requires a large repertoire
of feature channels. Techniques such as PMK would com-
pute a kernel matrix for each feature channel. We are thus
faced with the problem of determining the best mixture of
the kernels for a given classification task.

A number of Multiple Kernel Learning (MKL) techniques
have been proposed to compute linear combinations of ker-
nels for classification by SVM [19, 24, 26]. Let {K1,K2, . . . ,KM}
be the kernel matrices computed for various feature modal-
ities. MKL computes an optimal classification kernel

K(qi, qj) =

M∑
m=1

βmKm(qi, qj) (1)

where qi are the training images. Recent MKL techniques
have progressively improved training efficiency, e.g., [24, 7].
However, classifying a test image x, using a non-linear SVM,
requires computing its kernel value with respect to the se-
lected set of training support vectors S for all feature chan-
nels with βm 6= 0, i.e. Km(q, x) ∀q ∈ S and ∀m where βm 6=
0. This has O(cÑM̃) computational complexity where

• c is the complexity of computing the kernels. This is
significant when matching the similarity of distribu-
tions.

• Ñ is the number of support vectors, |S|. Classification
problems with difficult decision boundaries require a
large set of support vectors. Some approaches propose
to reduce this by approximating S with a reduced set
of vectors, e.g., [8]. However, they are unsuitable for
our case as each kernel is constructed from a different
feature modality. Moreover, it is desirable to include
as many training images as possible for good general-
ization (large N).

• M̃ = |{m|βm 6= 0}|. MKL methods reduce M̃ by
imposing sparsity constraints on the weights βm [26].
However, this may not provide significant benefits when
a large variety of features are required for classification.

Is it possible to reduce the number of kernel computations
while maintaining performance?

Consider a vector constructed for a test image by concate-
nating its kernel values with all the training images. For an
image x, this would be an NM dimensional vector

f(x) = 〈K1(q1, x) . . .K1(qN , x) . . .KM (q1, x) . . .KM (qN , x)〉
(2)

We use Gentle Boost to determine the L most discriminative
dimensions for a classification problem. The size of L is
chosen such that |L| � ÑM̃ . This results in a reduced

dimensional vector for each image, denoted by f̃(x). An

SVM is trained to classify images based on the f̃ ’s. E.g., for



a linear SVM, the kernel between two images x and y would
be

Φ(x, y) =
∑

〈n,m〉∈L

Km(x, qn)Km(qn, y) (3)

For each test image, this requires O(|L|) complex kernel
Km(., .) computations, and O(N |L|) computations of a sim-
pler kernel such as linear or RBF. This significantly reduces
the computational complexity.

To better understand the nature of Φ(., .), notice that the
Pyramid Match Kernel between two images x and y can be
abstracted as a dot-product between two bit-vectors,
ψm(x)Tψm(y), where m is the feature channel [13]. There-
fore, eq.(3) is equivalent to

Φ(x, y) =
∑

〈n,m〉∈L

ψm(x)Tψm(qn)ψm(qn)Tψm(y)

=
∑
m

ψm(x)T

 ∑
〈n,m〉∈L

ψm(qn)ψm(qn)T

ψm(y)

(4)

The inner matrix, Am =
∑
ψm(qn)ψm(qn)T , is a semi-

definite matrix. It is easy to show that for a RBF SVM

Φ(x, y) = exp
1

σ2

∑
m

‖ψm(x)− ψm(y))‖2Am (5)

Intuitively, A’s are akin to covariance matrices of the ex-
emplar images in L. When L is constructed to maximize
discrimination between classes, A defines a discriminative
projection.

We note that the approach does not restrict the number
of support vectors chosen by the SVM. It only restricts the
SVM’s kernel to be based on a limited number of base kernel
columns.

2.1 Boosting for Feature Selection
Discriminative feature selection is a well studied problem
in machine learning, e.g., Xiao et al. propose a variant of
boosting called Joint Boost for feature selection [30]. We use
Gentle Boost for its simplicity and robustness [1, 11]. Let
f ’s be D dimensional vectors. D is typically large; in our
case D = NM . The basic version of Gentle Boost defines a
set of weak learners h(f) where each h(.) is a linear classifier
along a single dimension. The algorithm iteratively chooses
a set of weak learners to maximize classification accuracy.
The weak learner chosen at the tth iteration, namely ht(.),
is the one providing maximal increase in classification accu-
racy with respect to the set of previously chosen classifiers
h1, . . . , ht−1. Thus, the choice of dimensions depends upon
the incremental benefit relative to previous choices. Inspite
of the greedy nature of the selection process, Boosting has
been shown to perform well in many classification tasks [11].
Outline of Gentle Boost:

• Given: (x1, y1), . . . , (xn, yn) where xi ∈ X and yi ∈
{−1, 1}

• Initialize the weights D(i) = 1
m

• For t = 1, . . . , T

– Choose confidence value αt ∈ R
– Find the classifier ht which minimizes the classi-

fication error with respect to the distribution Di

– Update the weights Dt+1(i) = Dt(i)e
−αtyiht(xi)

Zt
where Zt is a normalization factor.

• {ht} are the selected features.

3. EXPERIMENTS WITH UCI DATASETS
The boosting-based feature selection is an efficient but greedy
approach. To observe its performance penalties, BK-SVM
was applied to four datasets from the UCI repository, specif-
ically the Liver, Ionosphere, Pima and Sonar datasets. The
kernels were simple polynomial and Gaussian functions. Here,
the motivation was solely to empirically observe the perfor-
mance for standard datasets. The efficiency gains become
evident for more complicated kernel functions used later in
the Painting and Chart datasets.

The classification results were compared with those of the
Efficient Multiple Kernel Learning (EMKL) algorithm de-
scribed in [24]. For each dataset, a large number of Gaussian
and polynomial kernels are computed as described in [24].
The base kernels include Gaussian kernels with 10 different
bandwidths σ on all variables and on each single variable,
and also polynomial kernels of degree 1 to 3 on all variables
and each single variable. EMKL and BK-SVM are used to
learn a mixture of the kernels appropriate for classification.
During the testing phase, the number of kernels computa-
tion required in EMKL is a product of the number of kernels
selected and the number of support vectors. In case of BK-
SVM, the complexity depends upon the number of kernel
columns chosen by boosting.

The classification results are summarized in Table 1. They
indicate that BK-SVM performs close to the baseline EMKL
approach even though the number of kernel computations is
more than an order of magnitude lower. The loss of perfor-
mance of approximately 2% may be ascribed to the greedy
selection of kernel columns. The results also demonstrate
the scalability of our method, which performs comparably
to EMKL even in the case of the Sonar dataset where a
large number of kernels(793) are used for learning with only
a small number of training examples(104). These trends are
reflected in the experiments with painting and computer-
generated chart datasets - described in the next sections.
The modest loss in performance is outweighed by the large
decrease in computational complexity, especially for com-
plex kernel functions.

4. PAINTING DATASET
BK-SVM was applied to painting genre classification. A
dataset of 81 Abstract Expressionist, 84 Baroque, 84 Cu-
bist, 82 Graffiti, 89 Impressionist and 78 Renaissance (total
of 498) paintings was collected from the Internet. The paint-
ing styles along with the painters of each style are listed in
Table 2. Some of the public domain images are shown in
Figure 1. The distinguishing features for painting styles are
not clearly defined due to its abstract nature. There is high
intra-class variation due to differences between the painters
of a particular style and also between the different paintings
of individual painters [3]. The content in the paintings varies



Table 1: Experiments on UCI Dataset
Dataset BK-SVM EMKL

name size kernels accuracy kernel computations accuracy kernel computations

Liver 345 91 66.0± 5.0 40 65.0± 2.3 1607± 324
Ionosphere 351 442 92.0± 4.0 40 92.3± 1.4 1496± 266

Pima 768 117 73.0± 7.0 60 75.8± 1.6 3123± 526
Sonar 208 793 75.0± 5.0 20 78.6± 4.2 2538± 351

Table 2: Painting Classes
Painting Style Artist

Abstract Expressionist Arshile Gorky, Helen Frankenthaler, James Brooks, Jane Frank, Jean Paul Riopelle,
Kenzo Okada, Paul Jenkins

Baroque Anthony Van Dyck, Artemisia Gentileschi, Carravagio, Diego Velazquez, Jan Vermeer,
Nicholas Poussin, Peter Paul Reubens, Rembrandt

Cubist Fernand Leger, Georges Barque, Gino Severini, Jacques Villon, Juan Gris,
Lyonel Feininger, Pablo Picasso

Graffiti Anonymous

Impressionist Alfred Sisley, Camille Pissarro, Claude Monet, Frederic Bazille, Mary Cassatt,
Pierre Auguste Renoir, Edouard Manet

Renaissance Correggio, Raphael, Leonardo Da Vinci, Sandro Botticelli, Titan, Giorgione,
Pieter Brueghel, Michelangelo

significantly and occasionally paintings of different styles de-
pict the same scene or object, further complicating the prob-
lem. Having been compiled from a variety of sources, the
images have variations in scale and illumination as well. The
classification task is complex, requiring a rich set of features.
This makes the dataset a good testbed for BK-SVM.

4.1 Features
Inspired by previous studies on painting classification, a
large variety of features are computed. Each feature channel
produces a distribution of filter responses for a given image.
The similarity of images is defined as the match between
the distributions. To reduce the computational cost of ex-
tracting the features the images were resized such that their
smaller side was a maximum of 1000 pixels while maintain-
ing the aspect ratio.

4.1.1 Texture
Texture features capture brushwork and characteristics of
the depicted scene. They have been shown to be effec-
tive in classification of paintings [22, 32, 15]. We employ
the MR8 filter bank [28] as it responds to both isotropic
and anisotropic textures and was observed to perform bet-
ter than Gabor filter banks. The MR8 filter bank consists
of a Gaussian and a Laplacian of Gaussian with σ = 10
and oriented edge and bar filters at 3 scales (σx, σy) =
{(1, 3), (2, 6), (4, 12)} and 6 orientations. Only the maxi-
mum response is recorded at each scale for each of the edge
and bar filters across all orientations. This provides 8 re-
sponses at each pixel. The responses at all the pixels are
combined to form a set of vectors, denoted by Ftexture.

4.1.2 Histograms of Oriented Gradients (HOG)
HOG based descriptors have been extensively used for rep-
resenting local shape in object recognition [10, 4, 23]. They

have some degree of invariance to illumination and geomet-
ric transformations. We compute two types of features using
HOG:

1. FHOGdense: set of HOG features on overlapping 8 × 8
sized patches placed on a dense regular grid with a
spacing of 4 pixels - similar to [10].

2. FHOGsparse: sparse set of HOG features computed on
8 × 8 patches centered on all edge points. This was
inspired by [4].

4.1.3 Color
Color is probably the most important aspect of paintings.
Color features have been previously employed for classifying
paintings [15, 31]. We use local histograms to represent color
features consisting of 10 bins of the pixel intensities of each
color channel. The histograms are computed in 8 × 8 sized
patches centered on a dense grid over the image. This gen-
erates a set of vectors denoted by Fcolor. The histograms of
different color channels were concatenated because the joint
histograms are quite sparse and have a high dimensional-
ity. Experiments indicated that RGB, HSV and LUV had
similar performance. Only results for RGB color-space are
presented here.

4.1.4 Edge Continuity
Edge Continuity is used to enhance the saliency of long
continuous curves relative to scattered and cluttered edges.
We use the technique described in [14] for computing the
saliency maps of the images. HOG features are extracted
from these saliency maps from patches centered on edges
having high saliency. The obtained set of HOG vectors is
denoted by FHOGsal.

4.2 Pyramid Match Kernel



(a) Original image (b) Gradient Magnitude Map (c) Edge Saliency Map

Figure 2: Salient Edges

Abstract Expressionist

Baroque

Cubist

Impressionist

Renaissance

Graffiti

Figure 1: Examples of Paintings

Each of the described features produces a set of vectors for
a given image. For each feature channel, similarity between
images is computed based on the similarity between the
two sets of vectors, computed using Pyramid Match Ker-
nel (PMK) [12]. The sets can have different cardinalities.
The approach has been shown to be efficient and effective
for image classification. In this section we briefly describe
the kernel. Let X and Y be two sets of feature vectors in
a d-dimensional feature space. Now consider L+ 1 levels of
histograms H0, H1, . . . , HL. The level 0 of the histogram
consists of just 1 bin which is the entire space, the level 1
of the histogram consists of 2d bins equally dividing the fea-
ture space into two parts along all dimensions. Similarly
the level l of the histogram consists of D = 2dl bins. Let
Hl

X and Hl
Y denote the histograms of X and Y at level l

with Hl
X(i) and Hl

Y (i) being the number of feature vectors
of X and Y respectively falling into the ith bin at level l. A
histogram intersection gives the number of matches at this
level.

I(Hl
X , H

l
Y ) =

D∑
i=1

min(Hl
X(i), Hl

Y (i))

But note that all the matches at level l+ 1 are also matches
at this level and hence the number of new matches at level
l is I(Hl

X , H
l
Y )− I(Hl+1

X , Hl+1
Y ). The matches at level l are

weighted by 1
2L−l

in order to give higher weights to matches
which happen at smaller bin sizes and hence have a higher
similarity. The total match between X and Y at all levels
is defined as the similarity between X and Y

K(X,Y ) = I(HL
X , H

L
Y )+

L−1∑
l=0

1

2L−l
I(Hl

X , H
l
Y )−I(Hl+1

X , Hl+1
Y )

To avoid biasing the kernel toward larger input sets it is
normalized

K(X,Y ) =
K(X,Y )√

K(X,X)K(Y, Y )

This normalization also ensures that ∀X,Y K(X,Y ) ∈ [0, 1].
It has been shown that PMK may be abstracted as the dot
product between two bit vectors. Therefore, it is a Mercer
kernel and can be directly used in an SVM.

4.3 Classification Results
Training the BK-SVM consists of the following steps:

• Each of the M described features is extracted for all
training images qi.

• PMK was used to compute kernel values Km(qi, qj),
∀qi, qj ,m, producing M kernel matrices, K1, . . . ,KM .



• A vector fi is constructed for each qi by concatenating
the kernel values as defined in eq.(2).

• Boosting is used to select a set of L dimensions that
best classify fi’s into the painting genres. The number
of exemplar images selected is equal to the number of
iterations of boosting and thus can be easily controlled.

• A new RBF kernel matrix Φ is constructed from the
selected dimensions (i.e. columns of Km’s) through
the relation in eq.(5). A one-vs-all multi-class SVM is
trained on Φ.

During the testing phase, PMK is computed between a given
test image and the L selected training images. Classification
is performed through the trained RBF SVM.

For comparison, EMKL was employed for the same clas-
sification task. For EMKL, we learn separate kernels for
each individual classifier, using the same parameters that
were used for the UCI datasets(C = 100,maximal number
of iterations=500,duality gap=0.01).

The experiments were repeated 10 times with a 5-fold cross-
validation(80% training data and 20% test data) and each
time the training and test sets were chosen randomly. The
results are listed in Table 3. They indicate that both the
EMKL and our method perform much better than each of
the individual feature channels. Our method used on aver-
age 490 kernel similarity computations whereas the EMKL
method requires about 2400 kernel similarity computations.
Despite this reduction in complexity, the performance of our
method is quite close to that of the EMKL method. Fig-
ure 5 plots the performance of our method as the number
of selected features is varied. It can be seen that the per-
formance is better than the individual feature channels even
when there are very few exemplar images and it increases as
the number of selected images increases.

The features, in general, perform quite well individually and
also complement each other resulting in a significant im-
provement in performance when combined. In Baroque and
Renaissance paintings, darker colors are used and this makes
color histograms particularly useful for discriminating them
from the other classes (Fig. 3). Color features are also use-
ful for identifying Impressionist paintings to some extent as
they tend to depict outdoor scenes with sunlight, landscapes
and greenery.

The texture feature proved useful for distinguishing Impres-
sionist images as they have distinctive brush strokes. Baroque
paintings being darker, generate low responses with the filter
banks and are again easily identified. Texture also distin-
guishes Renaissance from Graffiti paintings to some extent.

The cubist paintings are composed of dense geometrical struc-
tures such as straight lines, cubes, cylinders. Consequently,
local shape features such as the dense HOG are useful in
distinguishing them. The sparse HOG features encode the
local shape around the edge points and prove useful for iden-
tifying Impressionist paintings.

Perceptually salient curves can be enhanced using edge con-
tinuity techniques[14]. Graffiti paintings tend to have smooth

continuous contours, which get enhanced in the saliency
maps(Fig. 2) and the local shape features around these con-
tours help discriminate them from other paintings. Saliency
based features also help in identifying Renaissance paintings
to some extent. The corresponding kernel similarity matrix
is shown in Fig. 4.

Combining the feature channels helps reduce confusion caused
by individual features. For instance, on the sole basis of
color, a dark colored graffiti painting may be confused as
a baroque painting. However, local shape information pro-
vided by saliency maps helps reduce this confusion. The
confusion matrix obtained after combining features using
BK-SVM is shown in Fig. 6. There is some degree of con-
fusion between abstract expressionist and cubist paintings
and upon examining the misclassifications, it was found out
that most of the abstract expressionist paintings wrongly
identified as cubist had the geometrical structures charac-
teristic to cubist paintings. Some of the cubist paintings
misclassified as abstract expressionist lacked these geometri-
cal shapes. There are also some errors between impressionist
and renaissance paintings.

To gain further insight into the construction of the individ-
ual one-vs-all classifiers, we looked at the average weights
allocated by EMKL to the kernels for each individual classi-
fier(Fig. 7). Color being an important feature was assigned
a high weight in each of the individual classifiers and as
expected, it turned out to be the most dominant feature
for distinguishing Baroque paintings. Similarly the saliency
kernel is weighted relatively high in the Cubist and Graffiti
classifiers. Texture is also important to some extent in case
of Baroque, Impressionist and Renaissance classes. We also
observed that sparse HOG features are assigned extremely
high weights in all the classifiers, indicating the significance
of the local shape information represented by them. Dense
HOG features are allocated high weights in the Cubist clas-
sifier as expected. On the whole, the weights seemed quite
intuitive with features that distinguished a particular class
well, being assigned a higher weight in the respective classi-
fier. However, texture was weighted relatively low which is
surprising, given the fact that it performs quite well individ-
ually. We conjecture that since both texture and HOG are
based on local edges, they contain redundant information
resulting in texture being ignored.

We did a similar study for BK-SVM, where we examined the
proportion of exemplar images selected from each kernel for
the individual classifiers(Fig. 8). Though some of the above
mentioned trends were observed, like color and saliency be-
ing important for the baroque and graffiti paintings respec-
tively, no single feature dominated the individual classifiers.
We hypothesize that this is a result of the lack of any exter-
nal constraints imposed by our method unlike the sparsity
constraints imposed by EMKL. We are currently exploring
the possibility of constraining the underlying boosting algo-
rithm for improving the BK-SVM method.

5. CHART DATASET
We also compare the performance of our method to EMKL
on the chart dataset [29] which consists of more than 650
images of computer generated charts belonging to 5 classes.
Please refer to [29] for further details on the dataset as well



Figure 3: Color Histogram Kernel

Figure 4: Edge Saliency Kernel

Table 3: Painting Classification Results
Feature Accuracy
texture 73.5± 1.1
color 70.6± 1.1

dense HOG 69.3± 1.2
sparse HOG 69.0± 1.0

Saliency 62.2± 0.7

Combined EMKL 82.4± 0.9
Combined Our Method 80.9± 0.6
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Figure 5: Variation in performance with the number
of features for the painting dataset

Figure 6: Confusion Matrix for the painting dataset

Figure 7: Average kernel weights learnt by EMKL
for each classifier

Figure 8: Average proportion of exemplar images
selected from the feature channels for each classifier



Table 4: Chart Classification
Feature Accuracy
HOG 83.0± 0.8

Edge Continuity HOG 67.2± 0.9
Edge Orient Histograms 57.8± 0.9

Distance map 82.2± 0.6
Edge Continuity locn. 72.5± 0.8
Region Segmentation 29.2± 0.7

Combined EMKL 87.6± 0.5
Combined Our Method 86.3± 0.7

as the features used for the classification. As in the painting
classification, we compute kernels for the individual features
using PMK from which the composite kernels are learnt.
The experiments are performed using the same protocol as
the painting classification. The results are summarized in
Table 4. Again, the performance of our method is quite close
to that of EMKL and both of them are significantly better
than the individual feature channels. The average number
of kernel computations required by our method is 470 com-
pared to 3200 kernel computations required by the EMKL
method. Figure 10 plots the variation of performance with
the number of features selected and again the performance
increases with increasing number of features. The confusion
matrix is shown in Fig. 9.

In both the Painting and the Chart datasets, BK-SVM re-
quires nearly 5 times fewer kernel computations than EMKL
for achieving comparable classification accuracy. This re-
duction, though substantial, is less compared to the 40-120
time reduction achieved on the UCI datasets. There are two
plausible explanations:

• The painting and chart datasets have multiple classes,
which makes the decision boundaries more complex
than in case of the UCI datasets, which have only two
classes.

• The UCI dataset experiments use base kernels pro-
duced by varying the parameters of Gaussian and poly-
nomial kernels, many of which are likely to be redun-
dant. Hence, a relatively sparse set of features selected
by Boosting is sufficient to accurately approximate the
optimal kernel. In case of the paintings and the chart
datasets, each of the base kernels are computed from
different feature channels and contain complementary
information. Consequently, a number of exemplar in-
stances are selected for each of the base kernels.

6. SUMMARY
This paper has presented a simple and efficient approach
for learning a mixture of kernels. Our method, which works
by greedily selecting exemplar data instances corresponding
to each kernel using adaboost, has been shown to compare
well to multiple kernel learning methods, while simultane-
ously reducing the number of kernel similarity computations
required. The effectiveness of our method has been demon-
strated on some of the benchmark UCI datasets. We have
also tested our method on two extremely diverse and chal-
lenging image datasets, where a single feature channel is

Figure 9: Confusion Matrix for the chart dataset
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Figure 10: Variation in performance with the num-
ber of features for chart dataset

not adequate for classification. We combine multiple kernels
computed from different feature channels using the pyramid
match method[13], obtaining results comparable to the MKL
method. The results provide evidence that our approach is
almost as accurate as the multiple kernel learning method,
while being computationally much more efficient. We are
also looking into combining these kernels in an unsupervised
or semi-supervised manner to perform clustering.

7. REFERENCES
[1] http://research.graphicon.ru/machine-learning/

gml-adaboost-matlab-toolbox.html.

[2] http://archive.ics.uci.edu/ml/.

[3] R. Arnheim. Art and visual perception. a psychology
of the creative eye. 1955.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching
and object recognition using shape contexts. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 24(4):509–522, Apr 2002.

[5] J. Bi, T. Zhang, and K. P. Bennett.
Column-generation boosting methods for mixture of
kernels. In KDD ’04: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 521–526, New York,
NY, USA, 2004. ACM.

[6] A. Bosch, A. Zisserman, and X. Munoz. Representing
shape with a spatial pyramid kernel. In CIVR ’07:
Proceedings of the 6th ACM international conference
on Image and video retrieval, pages 401–408, New
York, NY, USA, 2007. ACM.



[7] A. Bosch, A. Zisserman, and X. Munoz. Representing
shape with a spatial pyramid kernel. In CIVR ’07:
Proceedings of the 6th ACM international conference
on Image and video retrieval, pages 401–408, New
York, NY, USA, 2007. ACM.

[8] C. J. C. Burges. Simplified support vector decision
rules. In International Conference on Machine
Learning, pages 71–77, 1996.

[9] K. Crammer, J. Keshet, and Y. Singer. Kernel design
using boosting. In NIPS, pages 537–544, 2002.

[10] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, 1:886–893, 2005.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: A statistical view of boosting. The
Annals of Statistics, 28(2):337–374, 2000.

[12] K. Grauman and T. Darrell. The pyramid match
kernel: discriminative classification with sets of image
features. Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on, 2:1458–1465 Vol.
2, 17-21 Oct. 2005.

[13] K. Grauman and T. Darrell. The pyramid match
kernel: Efficient learning with sets of features. J.
Mach. Learn. Res., 8:725–760, 2007.

[14] G. Guy and G. Medioni. Inferring global perceptual
contours from local features. IJCV, 20(1/2):113–133,
1996.

[15] H. v. d. Herik and E. O. Postma. Discovering the
visual signature of painters. Future Directions for
Intelligent Systems and Information Sciences, pages
129–147, 2000.

[16] T. Hertz, A. B. Hillel, and D. Weinshall. Learning a
kernel function for classification with small training
samples. In ICML ’06: Proceedings of the 23rd
international conference on Machine learning, pages
401–408, New York, NY, USA, 2006. ACM.

[17] W. Jiang, S.-F. Chang, and A. Loui. Kernel sharing
with joint boosting for multi-class concept detection.
Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, pages 1–8, 17-22
June 2007.

[18] D. Keren. Recognizing image ”style” and activities in
video using local features and naive bayes. Pattern
Recogn. Lett., 24(16):2913–2922, 2003.

[19] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E.
Ghaoui, and M. I. Jordan. Learning the kernel matrix
with semidefinite programming. J. Mach. Learn. Res.,
5:27–72, 2004.

[20] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In CVPR ’06: Proceedings of
the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages
2169–2178, Washington, DC, USA, 2006. IEEE
Computer Society.

[21] L. Leslie, T.-S. Chua, and J. Ramesh. Annotation of
paintings with high-level semantic concepts using
transductive inference and ontology-based concept
disambiguation. In MULTIMEDIA ’07: Proceedings of
the 15th international conference on Multimedia,
pages 443–452, New York, NY, USA, 2007. ACM.

[22] J. Li and J. Z. Wang. Studying digital imagery of
ancient paintings by mixtures of stochastic models.
IEEE Transactions on Image Processing,
13(3):340–353, 2004.

[23] D. Lowe. Distinctive image features from
scale-invariant keypoints. In International Journal of
Computer Vision, volume 20, pages 91–110, 2003.

[24] A. Rakotomamonjy, F. Bach, S. Canu, and
Y. Grandvalet. More efficiency in multiple kernel
learning. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages
775–782, New York, NY, USA, 2007. ACM.

[25] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth
mover’s distance as a metric for image retrieval. Int.
J. Comput. Vision, 40(2):99–121, 2000.

[26] S. Sonnenburg, G. Rätsch, C. Schäfer, and
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