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ABSTRACT

A fundamental characteristic of audio is its compositional nature. Audio-language
models (ALMs) trained using a contrastive approach (e.g., CLAP) that learns a
shared representation between audio and language modalities have improved per-
formance in many downstream applications, including zero-shot audio classifi-
cation, audio retrieval, etc. However, the ability of these models to effectively
perform compositional reasoning remains largely unexplored and necessitates ad-
ditional research. In this paper, we propose CompA, a collection of two expert-
annotated benchmarks with a majority of real-world audio samples, to evaluate
compositional reasoning in ALMs. Our proposed CompA-order evaluates how
well an ALM understands the order or occurrence of acoustic events in audio,
and CompA-attribute evaluates attribute-binding of acoustic events. An instance
from either benchmark consists of two audio-caption pairs, where both audios
have the same acoustic events but with different compositions. An ALM is eval-
uated on how well it matches the right audio to the right caption. Using this
benchmark, we first show that current ALMs perform only marginally better than
random chance, thereby struggling with compositional reasoning. Next, we pro-
pose CompA-CLAP, where we fine-tune CLAP using a novel learning method
to improve its compositional reasoning abilities. To train CompA-CLAP, we first
propose improvements to contrastive training with composition-aware hard neg-
atives, allowing for more focused training. Next, we propose a novel modular
contrastive loss that helps the model learn fine-grained compositional understand-
ing and overcomes the acute scarcity of openly available compositional audios.
CompA-CLAP significantly improves over all our baseline models on the CompA
benchmark, indicating its superior compositional reasoning capabilities. |

1 INTRODUCTION

In recent years, multi-modal contrastive pre-training has emerged as an active area of research due
to its great success in various downstream applications. CLIP (Radford et al 2021}, a pioneer-
ing vision-language model (VLM) trained using a multi-modal contrastive approach between vi-
sion and language representations, achieves state-of-the-art (SoTA) results in a variety of vision
understanding tasks and enables crucial auxiliary tasks like image captioning (Mokady et al.l|2021),
text-to-image generation (Rombach et al.} 2022), etc. Inspired by CLIP, Elizalde et al.[ (2023)) in-
troduce CLAP (Contrastive Language Audio Pre-Training), an audio-language model (ALM) that
employs contrastive pre-training between audio and language representations and achieves SoTA in
16 downstream audio understanding tasks like zero-shot audio classification, text-to-audio retrieval,
etc. CLAP imposes a shared representation space for audios and their text descriptions (captions),
making it superior for audio-language perception than other models.

Despite much success, Wu et al.| (2023) show that ALMs often act as bag of words and lack natural
language comprehension. Understanding the relationship between text in captions and the corre-
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sponding content of the audio is a fundamental goal of audio processing, and the fact that different
word orders correspond to differently perceived audio should be reflected in the capabilities of the
ALMs. This phenomenon, also known as compositional reasoning, may be characterized as the
ALM’s capacity to understand the interrelationships among multiple discrete acoustic events in au-
dio, such as order of occurence and attribute-binding, as conveyed through the words in the caption.
Work in natural language has shown that transformers are often remarkably insensitive to word or-
der (Sinha et al.| 2021). Prior research has shown that models like CLIP, despite being trained on
abundant data, exhibit a deficiency in compositional reasoning (Thrush et al.,[2022;|Ma et al.| 2023}
Yuksekgonul et al.,|2023). [Yuksekgonul et al.[(2023)) argue that one of the primary causes of this is
that contrastive pre-training optimizes for retrieval, and it is easy for these models to perform well
on retrieval even without having a good compositional understanding. In the past, researchers have
proposed benchmarks (Thrush et al., 2022} [Yuksekgonul et al., |2023) and tried inducing compo-
sitional reasoning in vision-language models (VLMs) (Yuksekgonul et al., [2023; [Ma et al.| [2023;
Jiang et al., [2022), but no such attempt has been made in the audio space yet.

Main Contributions. In this paper, we perform the first systematic study for compositional reason-
ing in ALMs. To this end, we propose two novel expert-annotated benchmarks and a novel learning
paradigm to teach ALMs compositional reasoning. Our main contributions are two-fold:

1. We develop two expert-annotated benchmarks, CompA-order and CompA-attribute,
with majority real-world audios, that serve as a test-bed to evaluate the compositional
reasoning of ALMs. CompA-order and CompA-attribute have 400 and 200 test instances,
respectively, where each instance has two or three audio-caption pairs. Each audio is dif-
ferent in composition, and each caption contains the same words but in a different order to
account for the different compositions. The task of an ALM is to correctly match the audios
with their captions. While CompA-order is used to evaluate the models’ ability to under-
stand the order of occurrence between two acoustic events in an audio, CompA-attribute is
used to evaluate the models’ ability to link attributes to specific acoustic events (attribute-
binding). More than 90% of audio snippets in CompA are sourced from real-world audio
samples from AudioSet (Gemmeke et al., 2017 by expert annotators experienced in audio
and language research. We discuss in Section [2] why current benchmarks do not evaluate
compositional reasoning and how CompA serves as an essential step to fill this gap.

2. We propose a robust learning solution for improving compositional reasoning in
audio-language models. First, we propose several improvements to contrastive learning
with composition-aware hard negatives (Yuksekgonul et al., 2023). Employing hard neg-
atives for each audio in the batch has proven to be an effective solution and we propose
the following improvements: (1) We formulate the objective such that the hard negative
captions for a particular audio are ignored by other audios in the batch. (2) We use an LLM
to generate semantically viable negatives. Additionally, due to the lack of compositional
audios in current training datasets, we propose a novel dataset with 110k+ audio-caption
pairs based on the AudioSet strong subset (Hershey et al.,2021). Next, we propose a mod-
ular contrastive learning objective that does not require any existing compositional audio-
caption pairs. Our proposed solution leverages a template-based audio-caption creation
approach and improves CLAP’s fine-grained attribute-binding and order-understanding ca-
pabilities. More specifically, we aim at aligning captions of various granularities to an
audio, each of which represents a decomposed version of the audio scene. Additionally, we
mine multiple negatives from the positives by interchanging orders and attributes. CompA-
CLAP outperforms all our baselines on the CompA benchmark by 10%-28% while retain-
ing performance on existing retrieval and zero-shot classification benchmarks. We open-
source our code and data: https://sreyan88.github.io/compa_iclr/.

2 COMPA BENCHMARK

Overview. We propose two expert-annotated benchmarks, CompA-order and CompA-attribute,
structured in the Winograd twin sentence format, to evaluate an ALMs’ capabilities to understand
various types of compositional relationships. Each instance in each benchmark has two or three
audio-caption pairs, where each audio has the same acoustic events but with a different composi-
tion, and each caption has the same words (specifics detailed in next Sections). The task of an ALM
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is to match the right caption with the right audio and vice-versa. We are particularly inspired by
the Winoground dataset proposed by [Thrush et al.| (2022) built for evaluating visio-linguistic com-
positional reasoning. Our work is also inspired from Winograd twin sentence format, originally
proposed in the Winograd schema challenge (Levesque et all 2012), detailed in Section 3]

Annotation. Both benchmarks were annotated by four subject-matter experts specializing in au-
dio and language. To build CompA-order, we used natural audio samples sourced from AudioSet
Strong (Hershey et al., [2021). AudioSet Strong has temporal labels, and annotators were asked to
annotate continuous stretches of audio with the desired acoustic events. We list down annotation
rules, illustrate the snapshot of the annotation tool, and provide more information on the annotator
backgrounds in Appendix [B.3] We opted for natural audio over synthetic alternatives to capture
inherent elements such as background noise and interventions, thereby offering a test-bed for ALMs
that closely mimics real-world conditions. Finally, a continuous stretch of audio with the annotated
events is sliced (with gold timestamps), and a caption is written for it.

2.1 WHY ARE CURRENT BENCHMARKS INSUFFICIENT FOR EVALUATING COMPOSITIONAL
REASONING IN ALMS?

Fig. [T]illustrates the results of an experiment where Clotho Validation AudioCaps Validation

we show that it is easy for ALMs to perform well = .

on the most commonly used audio-retrieval bench- i - i
marks, Clotho (Drossos et al., [2020) and Audio- o202 . - I- .
Caps (Kim et al., 2019), even without proper word Ao TV R@1 Ao Text @10 w0 T R@1 Ao Text R@10
ordering. Additionally, we analyze the distribution Clotho Test ‘ AudioCaps Test

of unique nouns per caption and see that most of 0ss

the audio samples in the test set of both bench- = i

marks have only a single acoustic event and are -]
non-compositional. Wu et al.| (2023) also report
that CLAP achieves similar benchmark performance
when trained with captions stripped of all but nouns Figure 1: Comparison of CLAP performance af-
and verbs. This suggests that even ALMs without ter shuffling the word order in captions. CLAP

compositional reasoning abilities can perform well ~Undergoes an average degradation of 0.04 in top-
on these benchmarks. 1(R@1) and 0.03 in top-10 (R@10) retrieval.

2.2 COMPA-ORDER

Fig. [P]illustrates an example from CompA-order.
We build CompA-order to evaluate an ALM’s abil- CompA-Order
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multiple acoustic events. At its core, an acous- nn I
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. . . . Captions
tic event in an audio can either succeed another ... ... ora e succecded
event, precede another event, or occur simultane- YD G
ously with it. CompA-order has 400 test instances, ™" jrreton suesceded 52 X
with each instance comprising a minimum of two . _

. . . The growl of a tiger amidst % %
audio-caption pairs (Cy,Aq;C1,41), where the au- human conversation.”

dios have the same two acoustic events, but the order . .
of occurrence of the event in the audio differs. Out Figure 2: CompA-order evaluates an ALMs
of the 400, 100 of these instances have an extra pair caPability to understand the order of occurrence
i . . between multiple acoustic events in an audio.
(C3,A,), where the two acoustic events occur simul-
taneously. Expanding CompA with audios comprising more than two acoustic events remains part
of future work. The captions for the audios in an instance with two pairs have the exact same words
but in a different order, except for the instances with three pairs, where only a single word that
defines the preposition between the events is changed. More details are in Appendix [B-1]

2.3 COMPA-ATTRIBUTE

We build CompA-attribute to evaluate an ALM’s ability to reason attribute-binding for acous-
tic events. CompA-attribute has 200 test instances, with each instance comprising two
audio-caption pairs (C7,A;;C5,45), where each audio has the same two acoustic events
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but as if associated with a different attribute. The

term attribute is broad, and for our case, we consider

multiple attributes like source (example in Fig. [3), ~CompA-Attribute - 6 e Y
. . < . . .. Sh %k o v R

qualitative (“Static hiss joins random notes played % b« ‘

by a synthesizer.” — “Static notes joins random hiss

played by a synthesizer.”), etc. The captions have

the exact same words but in a different order. For

CompA-attribute, we used synthetically generated A womancries whie ababy laughs™ — §2

audios from WavJourney Liu et al.| (2023d)) that are

carefully validated by experts who also supervise the Figure 3: CompA-attribute evaluates an ALM’s

generation process. More details are in Appendix capability to understand attribute-binding for
and[B.3 multiple acoustic events in an audio.

Audio

Captions

"A baby cries while a woman laughs" %

2.4 EVALUATION

Performance on both CompA-order and CompA-attribute is measured on three different met-
rics to measure different aspects of compositional reasoning in an ALM. We are inspired by
Winoground (Thrush et al., 2022)) for our evaluation metrics. Given two audios Ay and A; and
their corresponding captions Cy and (', from an instance in either benchmark, we define the text
score that measures whether an ALM can select the correct caption, given an audio. Thus, our metric
f(Cy, Ag, C1, Ay) is defined as follows:

1 if s(Co, Ag) > s(Cy, Ag)
f(Co, Ay, C1, Ay) = and s (Cy, A1) > s(Co, Ay) (1
0 otherwise

where s(-) is the cosine similarity between the audio-caption pair. Intuitively, if the model has a
higher similarity for its ground-truth caption than the alternative caption describing a composition-
ally different audio, it performs better at compositional audio-to-text retrieval. The second metric is
the audio score, which measures whether an ALM can select the correct audio, given a caption. We
define our metric g (Cy, Ag, C1, A1) as follows:

1 ifS(CO7A0)>S(Co,A1)
g(Co, Ay, Cr1, Aq) = and s (C1, A1) > s(Cq, Ap) 2
0 otherwise

Intuitively, if the model has a higher similarity for its ground-truth audio than the alternative audio
that is compositionally different, it performs better at compositional text-to-audio retrieval. Finally,
we define a group score combining the audio and text scores defined above as follows:

1 iff(C(MAOaChAl)
h(Co, A, Cr, Ar) = and g (Cy, Ay, C1, Ay) 3)
0 otherwise

The group score helps evaluate performance for an entire benchmark instance or set of sentences.
This is motivated by prior work by [Elazar et al| (2021), who show that the individual evaluation
metrics tend to overestimate model performance by computing scores for the twin sentences indi-
vidually. Finally, we average across all instances in the benchmark dataset for all three scores.

3 CoOMPA-CLAP: IMPROVING COMPOSITIONAL REASONING IN ALMS

Fig. []illustrates the training methodology of CompA-CLAP. CompA-CLAP is initialized with
CLAP weights and is fine-tuned twice to learn compositionality. In the next sub-sections, we first
discuss why currently available training datasets are insufficient to make an ALM learn composi-
tional reasoning. Second, we detail the two stages of CompA-CLAP training, which prove to be
superior to CLAP in compositional reasoning, when tested on CompA benchmarks.
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3.1 WHY CURRENT TRAINING DATASETS ARE INSUFFICIENT TO LEARN COMPOSITIONAL
REASONING? CAN SYNTHETIC DATA HELP?

Problem. Unlike vision-language models, which benefit from being trained on internet-scale
data (Schuhmann et al., 202 1)), datasets for training ALMs are generally orders of magnitude smaller.

While the presence of compositional audio in the LAION Audio-630K CompA-AudioSet
training dataset does not guarantee the model will
acquire compositional reasoning skills (Thrush et al.| 29%
2022), most proposed composition learning tech-

niques from literature operate under the assump- .
tion that compositional audio is available within the 26%
training dataset (Yuksekgonul et al. [2023). The
largest ALM to date is trained on only 630k audio- Figure 4: Comparison of unique acoustic events
text pairs (Wu et al.l 2023). The authors propose per audio between LAION Audio-630K and
LAION-audio-630K, pooled from several existing CompA-AudioSet.

openly available datasets. However, most of these

audios do not have more than one acoustic event. Fig. []illustrates this phenomenon by show-
ing the distribution of unique nouns per caption in LAION-audio-630K. To expand the pre-training
dataset, the authors further propose keyword-to-caption augmentation on the large-scale AudioSet
dataset (Gemmeke et al., [2017). Precisely, they feed the audio labels to a Pre-trained Language
Model (PLM), which generates a coherent caption from the labels. However, we argue that such an
augmentation scheme would generate captions that do not describe the correct ordering of events and
would adversely affect the models’ compositional reasoning abilities. Table 1 from|Wu et al.|(2023))
also shows that augmenting LAIONAudio-630K with the entire 2M AudioSet for CLAP training
almost never improves performance on any benchmark. We hypothesize that this is due to their
Keyword-to-Caption generation algorithm, which does not guarantee temporally aligned captions.

A simple yet not very effective solution. A simple solution to the above-mentioned problem is to
generate compositional audio using recent advancements in text-to-audio generation. We prompted
SoTa text-to-audio generation models (Liu et al., 2023bj |Ghosal et al., 2023), including WavJour-
ney (Liu et al.||2023d) to generate audio for a caption generated using GPT-4. From our experiments,
we conclude that current text-to-audio generation models struggle with diverse and compositional
audio generation. Most of the time, the models struggled to generate cohesive audio with more than
two acoustic events, and the generated audio did not constitute of events mentioned in the caption.

3.2 VANILLA CONTRASTIVE AUDIO-LANGUAGE PRE-TRAINING

Methodology. We train our own version of CLAP with contrastive audio-language pre-training but
with minor modifications. For the audio encoder, we employ HTSAT-large(Chen et al.l 2022), as
also employed by Wu et al.[(2023). For the text encoder, we replace the ROBERTa encoder with
an instruction-tuned Flan-T5-large encoder (Chung et al.l [2022). (Ghosal et al.| (2023) showed the
effectiveness of employing an instruction-tuned encoder for multi-modal contrastive pre-training.
Using our audio and text encoders, we solve the contrastive objective similar to CLAP (Elizalde
et al., [2023)), which solves the InfoNCE loss (Oord et al., 2018) between a batch of audio and text
embeddings. Each audio in the batch of size 3 has one positive caption and 23-1 negative captions.
The same holds for text representations.

Experimental Protocol. For pre-training, we make minor modifications to the LAION-audio-630K
pre-training dataset proposed by Wu et al.| (2023). We introduce CompA-661k, with 661k unique
audio-caption pairs. We list down all the sources of CompA-661k in Appendix [B:2] Our version of
CLAP outperforms (Wu et al., 2023) on all existing retrieval benchmarks for both text-to-audio and
audio-to-text retrieval by 0.15%-4.67%, and CompA-order and CompA-attribute by 11.85%-23.8%.

3.3 CONTRASTIVE PRE-TRAINING WITH COMPOSITIONALLY-AWARE HARD NEGATIVES

Overview & Background. In this subsection, we describe our methodology to fine-tune an ALM
using a modified contrastive learning (CL) formulation with compositionally-aware hard negatives.
Following prior work in VLM fine-tuning (Yuksekgonul et al., 2023)), we modify the vanilla CL
objective and introduce compositionally aware hard negative captions for each audio in the batch to
teach the model compositional reasoning. However, compositionally aware hard negative captions
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Figure 5: Illustration of contrastive learning techniques for improving compositional reasoning in
ALMs. Left: Contrastive training with compositionally-aware hard negatives where each audio has K hard
negative captions generated using an LLM, and each audio in the batch ignores negatives of other audios in the
batch for more focused training. Right: Our proposed Modular Contrastive training employs multiple positives
and negatives for each audio in the batch generated using a template-based algorithm. Each positive describes
compositional relationships of various granularities in the audio, and this helps the model learn fine-grained
order and attribute-binding. An audio in the batch ignores the positives and negatives of other audios.

can only be formed for existing compositional audios, and the absence of it in open-source datasets
is a considerable challenge to this approach.

A new training dataset with compositionally rich audio-text pairs. Building on the hypothesis
that training on a compositionally rich audio dataset can lead to better compositional reasoning, we
propose AudioSet-CompA, a new paired dataset, with =110k audio-text pairs for complex composi-
tional audios. To build this dataset, we generated captions for the AudioSet strong by prompting an
LLM and then asked two human annotators to evaluate and correct the captions. We experimented
with both GPT-4 (OpenAlL 2023 and LLaMa-2 (Touvron et al., |2023)), and we found GPT-4 to
be better at generating captions. The AudioSet strong subset has temporally strong labels, i.e., it
includes timestamps for custom prompt to generate captions that have the correct ordering of sound
events. Fig. 4] compares the average number of acoustic events per audio in existing and our dataset.

Methodology. To mine compositionally aware hard negative captions from existing captions, we
employ an LLM. Prior work in VLM fine-tuning employs traditional NLP techniques (Yuksekgonul
et al.| [2023)), we found an LLM to better deal with anomalies and generate linguistically and seman-
tically viable sentences. While most open- and closed-source LLMs are qualitatively competitive
on this task, we adhere to GPT-4 as it performed better at generating structured outputs. A com-
parison of negatives generated using various LLMs and details on prompts used can be found in
Appendix[B.4] To generate hard negatives, we ask the LLM to swap acoustic event ordering, replace
the preposition, or swap noun-verb associations. This helps generate negatives with similar contexts
but different compositions. Additionally, we constrain the LLM to perform these operations only
when the resultant swap resembles a plausible real-world scenario. This helps our model to learn
more meaningful compositional relationships in the feature space. An example can be seen in Fig.
[l and more examples can be found in Appendix [B.4]

Given a dataset D with A/ audio-caption pairs (A,7), for every audio a,, € A and its correspond-
ing caption t,, € T, we generate K compositionally-aware negative captions tl:frd. The generated
negative captions serve as hard negatives in our modified contrastive fine-tuning objective. Unlike
prior work, we formulate the objective such that hard negative captions for a particular audio are
ignored by other audios in the batch. This helps in more composition-focused training. Thus, our
final objective is defined as follows:

0% = —t]a;/o + log Zexp (t a]/o) 4)
B g=1
00t = —a;rti/a + log Zexp (a t; /0’) Z exp( ;r hard /0’) )
=1 k=1
where ("% is the contrastive loss for text that treats audio as negatives and 0“*" is the con-

trastive loss for audio that treats text as negatives. B is the batch size indexed by ¢ and j, o
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is the temperature parameter and (t?kard)ke[L K] is the k" negative caption for audio sample a;.
Finally, we combine both the losses with appropriate scaling factors, «; and «y, to optimize:

S1 1 B t2a a2t
%= Ly (00l + ant®).

Experimental Protocol. For training, we use only the compositional audios from Clotho and Au-
dioCaps in addition to our AudioSet-CompA dataset. This results in =100k training pairs, which
is significantly low-resource compared with prior-art teaching a model compositional reasoning.
We use K=3 negatives and provide values for other values of K in Appendix We initialize
the training with vanilla CLAP weights and only train the last few layers to overcome the prob-
lem where fine-tuning distorts pre-trained features when the fine-tuning and pre-training algorithms
don’t match (Wortsman et al., 2022} Goyal et al., [2023)). Hyper-parameters details in Appendix

3.4 MODULAR CONTRASTIVE LEARNING FOR FINE-GRAINED COMPOSITION
UNDERSTANDING

Overview & Background. This Subsection describes modular contrastive learning, a novel con-
trastive learning formulation backed with a novel synthetic data creation methodology that over-
comes problems in compositionally-aware hard negative contrastive training, like scarcity of existing
compositional audio-caption pairs and learning fine-grained compositional reasoning.

As discussed earlier, ALM training suffers from an acute lack of compositional audio. Thus, scal-
ing contrastive pre-training with hard negatives poses a significant challenge. Additionally, a single
hard negative for an audio with multiple difficult-to-distinguish acoustic events can be too compli-
cated for the model to understand effectively. This is because real-world audio is often complex
and unpredictable. This hinders the model from learning fine-grained attribute-binding and order
information. Thus, we propose a new learning methodology that can be easily scaled, does not
require any existing compositional audio-caption pairs, and helps the model learn fine-grained com-
positional reasoning. More specifically, we employ a modular template-based approach to create
compositional audios and their captions from single acoustic events and their labels (which are
abundantly and easily available). Then, we align each audio in the batch with positive captions of
various granularity and generate hard negatives with different compositions, which allows the model
to focus on fine-grained compositional relationships in the audio.

Template-based synthetic creation of audio-caption pairs. Fig. [6]illustrates the proposed algo-
rithm. We propose a simple and scalable template-based approach to create compositional audio,
their caption, and hard negatives for training.

. . - A= (Af+.AD) = A}

W@t first create a pool of several unique auc.ho - -

snippets and their labels, each comprising a sin- Overayed () 120

gle acoustic event. Each label might have sev- L -@ JIX
. . . . . Acoustic Event

eral unique audio snippets corresponding to it. Compositon 7« Tigor Roarfollowed by

human conversation,

Concatenate (+) amidst thunder”

Using the snippet and the label corresponding
to the acoustic event of the audio, we either con-
catenate these audios or overlay one audio over
the other (More details in[B.6.1). For this pa- & e
per, we slice longer audios from the AudioSet o ‘Conersston”
strong subset (with the provided temporal la- Figure 6: Nlustration of our template-based audio-
bels) to create the pool of unique audio snippets  caption creation process. An LLM first generates a
and employ a maximum of 4 snippets corre- scene from a pool of available acoustic events. We then
sponding to 4 unique events for synthetic audio perform simple operations to generate compositional
creation. Additionally, to assure high quality, audio and their captions. This process also enables us to
we don’t concatenate or overlay random acous- ~generate positives (and their corresponding negatives)
tic events but ask an LLM to create unique au- that define fine-grained relations between events.

dio scenes based on the available labels (examples in Table[J). To create its corresponding caption,
we employ pre-defined templates with diverse prepositions. Additionally, since we create compo-
sitional audio in a modular fashion, it allows us to easily obtain captions of various granularity and
complexities, each defining one or multiple compositional relationships in the audio. To generate
a hard negative that defines an alternate composition, we either switch attributes among events or
word order. Examples can be found in Table

“Tiger Roar followed by

T;* : "Thunder’;
human conversation”
Negative
Positive Generation

Generation

“Human conversation
followed by Tiger Roar"
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Table 1: Performance comparison of CompA-CLAP with baselines on benchmark datasets. Left: Text-to-
Audio and Audio-to-Text retrieval performance on AudioCap / Clotho (in the same format). Right: Zero-shot
classification results on four benchmark datasets. While our CLAP achieves SoTA performance in almost all
cases, CompA-CLAP retains its performance even after fine-tuning for compositionality.

Model T-A Retrieval A-T Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 ESC-50 USS8K VGGSound FSDS0K
MMT 36.1/67 720/21.6 845/332 | 39.6/7.0 768/227 86.7/346 VAV“;?%%_'P 2})3 gg;‘ 100 431
ML-ACT 33.9/144 69.7/36.6 8267499 | 39.4/162 720/37.6 839/502 0P 26 732 ) 586
CLAP 346/167 702/411 820/54.1 | 41.9/200 73.1/449 846/587  I'uplAION-audio630K 850 758 263 oid
_CLAP-LAION ___ : 362/17.2 70.3/429 82.5/554 | 450/242 767/51.1 880/669 -~CrAp(ours) 92 861 T M0 T 718
CLAP (ours) 3507170 783/341 8967569 [ 4787238 8327518 90.7/678  CompA-CLAP (ours) 801 857 395 774
CompA-CLAP (ours) 36.1/168 78.6/43.5 90.2/56.1 | 47.8/23.9 835/50.7 90.2/67.6 — —

Methodology. Given a pool of acoustic events and their labels P, we first generate a dataset D with
N training instances, where each instance consists of an audio, its fine-grained (Positive captions,
. . . 0S8 eg : pos oS .
and their corresponding negatives denoted as (A, 77°°, 7"“Y). Every instance t; € T"°" is a set

i
of K7’ fine-grained positives, denoted by tf}fmos , and similarly tzmg e 7" is asetof K" fine-

grained negatives, denoted by tzl;i(g . Other audios in the batch ignore the generated fine-grained
positives and negatives for a particular audio. Thus, we define our objective as follows:

KPos B
£§-2-a __ % Z (ti_nzs)'l' a;o | +log Zexp (tzaj/a) (6)
= j=1
KPo® - B J K"
R P M L DT N B e ) B
k=1 j=1 k=1

where ¢ is the contrastive loss for text that treats audio as negatives and 0> is the contrastive
loss for audio that treats text as negatives. B is the batch size indexed by ¢ and j, o is the temper-
ature parameter. (tf:s) kel1,kvos] and (t?keg )ke[1,Knes] are k' generated fine-grained positive and
negative caption for audio sample a;. Finally we combine both the losses with appropriate scaling

factors /3, and f3,, to optimize: £ = % ile (5162_2_‘1 + ﬂzﬁg_z't).

Experimental Protocol. We generate ~251k audios for training. Our pool P has =500k unique
audio snippets. The maximum number of acoustic events we use to make an audio is 4. Since the
number of positives and negatives for each audio can grow combinatorially, we restrict the maximum
to 7 for each. We initialize our model from CLAP, fine-tuned with hard negatives. Training hyper-
parameters are detailed in Appendix We call the resultant model CompA-CLAP.

4 RESULTS

Table [1] (left) compares CompA-CLAP Table 2: Performance comparison of CompA-CLAP with
with four other baselines on text-to-audio ~baselines on CompA-order and CompA-attribute.

and audio-to-text retrieval tasks on Clotho

and AudioCaps. These four baselines  ya Tt e e S roup
are MMT (Oncescu et al., 2021), ML-  Human 9060 9120 8240 7980
- - Random 19.70 19.70 25.0 16.67

ACT (Mei et al.| 2022), CLAP (Elizalde] 19902150 6854150 169:20 312170

ML-ACT 208551 75 8.0040 50 5114500 3755086

et al.}|2023)) and CLAP-LAION (Wuetal) ciap R Ol e

+1.45 6524147 5.0Ts162
252,005 15.134p00
17714015 1135

2023).  While our CLAP trained On  Gomaciapioms 07052 36 3
CompA-661k outperforms all baselines in  \iiot e 50 & B e
most CaSCS, COmpA'CLAP, ﬁne_tuned for CLAP (ours) 33.7540.05 15.75:0.15 11.5040.15 ,12,1[)20'07 20.50.
better compositional reasoning, performs

on par with CLAP with minimal performance degradation. Table[I|(right) compares CompA-CLAP
with four other baselines on zero-shot classification datasets on ESC-50 (Piczak), US8K (Salamon
et al.l [2014), VGGSound (Chen et al., [2020) and FSD50k (Fonseca et al., [2022). The four base-
lines are Wav2CLIP (Wu et al.,[2022), AudioCLIP (Wu et al.,2022)), CLAP, and CLAP-LAION. All
scores have been averaged for 3 runs on 3 random seeds.

475
o.05  14.75

40.13

Table 2 compares the results of CompA-CLAP with our baselines on CompA-order and CompA-
attribute benchmarks. First, our vanilla CLAP performs better than all other baselines from litera-
ture, outperforming CLAP-LAION by x26%-33% over both benchmarks. CompA-CLAP, which is
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CLAP trained consecutively with hard negatives and modular contrastive learning, improves per-
formance on both benchmarks by =10%-28% over CLAP. We also notice *4%-13% performance
degradation when compositionally-aware hard negative training is skipped before Modular con-
trastive training. Modular contrastive training after hard negative training improves performance on
benchmarks by =2%-11%. However, all models, including CompA-CLAP, perform worse than our
random baseline on CompA-attribute, which leaves plenty of room for improvement.

We also discuss some common mistakes observed upon result analysis. 1) CompA-CLAP per-
forms better in cases when the acoustic events in an audio sound more distinct (eg., tiger growling
and human speaking) and underperforms where they sound very similar (eg., human sounds). 2)
CompA-CLAP also suffers from the long-tailed problem in AudioSet, wherein it underperforms in
audios with acoustic events seen less during training. 3) In CompA-order, the model underperforms
on prepositions not seen during training.

5 RELATED WORK

Compositional Reasoning. Early work in linguistics has tried to understand what models know
about word order (Sinha et al.| [2021), syntax (Gauthier et al., 2020; Gulordava et al.| 2018; |Hu
et al., 2020; Linzen et al., |2016), or the complex interaction between syntactic and semantic cate-
gories (Kann et al.}2019; Thrush et al., [2020; Warstadt et al., [2019;[2020). Learning visio-linguistic
compositionality has been extensively studied in prior art (Yuksekgonul et al.,[2023;|Ma et al.,[2023).
Winground (Thrush et al.|[2022), the work closest to ours, proposes a benchmark with 400 test cases
in the Winograd twin sentence format, with pairs of compositionally different images and captions
with the same words but in a different order. The task, similar to the one proposed in this paper,
is to match the right image with the right caption. They additionally show that current VLMs per-
form no better than random chance. The Winograd twin sentence format was originally proposed
in the Winograd schema challenge (Levesque et al.,[2012) and has been earlier used for a variety of
language-related tasks (Rudinger et al.| |2018; |Sakaguchi et al., [2021; [Zhao et al.| 2018])). Following
this, (Yuksekgonul et al.l 2023) propose a large-scale benchmark with over 50,000 test cases and
compositionally different captions by swapping relational tokens within sentences. Lack of com-
positional reasoning in VLMs has affected multiple downstream tasks like text-to-image generation
(Conwell & Ullman, [2022)) and Visual Question Answering (Bogin et al.l 2021). A similar prob-
lem was observed in AudioLDM (Liu et al., |2023a)), which employs CLAP as a text encoder for
text-to-audio generation and fails to generate compositional audios (Ghosal et al., 2023)).

Audio and Language. Recent developments indicate an increasing trend in leveraging language as a
modality for interaction with audio systems. Downstream tasks like text-to-audio generation (Ghosal
et al., 2023} |Liu et al, |2023a; [Huang et al.| 2023)) and text-to-music generation (Agostinelli et al.,
2023) have gained much popularity. Other tasks include text-guided audio source separation (Liu
et al.| 2023c) audio captioning (Ghosh et al.| [2023)), etc. Deshmukh et al.|(2023)) integrate language
models with audio encoders and frame all audio tasks as text-generation tasks. Their model, Pengi,
achieves SoTA performance on 22 downstream tasks, which shows promises of effective language
modality integration for enhanced audio system interactions. Most of these models employ a text
encoder or audio encoder to accomplish their task. CLAP, which learns a shared representation
between audio and language modalities and achieves impressive performance on zero-shot tasks,
proving to be a compelling model for cross-modal understanding and interaction.

6 CONCLUSION AND FUTURE WORK

In this paper, we first discuss several problems with existing audio-retrieval benchmarks and show
that it is easy for ALMs to perform well on these benchmarks without any compositional under-
standing. To address this gap, we propose CompA, a suite of two benchmarks to evaluate an ALM’s
compositional reasoning capabilities. Using this benchmark, we first show that current ALMs strug-
gle with compositional reasoning. Next, we propose CompA-CLAP, an audio-language model that
addresses the lack of compositional reasoning in ALMs. To train CompA-CLAP, we first propose
improvements to contrastive pre-training with compositionally-aware hard negatives. Then, we pro-
pose a novel modular contrastive training approach that helps the model learn fine-grained order
information and attribute binding. As part of future work, we would like to expand the size of
CompA and find better and novel solutions to teach an ALM compositional reasoning.
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A COMPOSITIONALITY

Compositionality refers to the property that the meaning of a complex expression is determined by
the meanings of its constituent parts and the rules used to combine them. In the context of audio,
compositionality can manifest in various ways. Below are different types of compositionalities
observed in audio:

1. Temporal Compositionality: Temporal compositionality refers to the organization and
combination of audio elements over time. It involves how individual sounds or musical
notes are arranged and structured to form a cohesive and meaningful audio sequence. Ex-
amples include rhythms, melodies, and the timing of sound events within a composition.

2. Attribute Compositionality: Attribute compositionality in audio refers to the manner in
which different perceptual or structural attributes of sound elements combine or interact to
create a complex auditory experience.

3. Spectral Compositionality: Spectral compositionality pertains to the combination of fre-
quency components within an audio signal. It involves the arrangement of different fre-
quencies and how they interact to create the overall timbre or color of the sound. In music,
this can relate to the orchestration of different instruments or the layering of various sonic
elements.

4. Harmonic Compositionality: Harmonic compositionality focuses on the relationships be-
tween different pitches or tones in an audio composition. It involves the creation of har-
monies, chords, and the interplay between different musical notes to produce a harmoni-
cally rich and structured auditory experience.

5. Spatial Compositionality: Spatial compositionality refers to the arrangement and organi-
zation of sound sources in space. In the context of audio production or immersive audio
experiences, it involves how sounds are positioned, panned, or spatially distributed to create
a sense of depth, width, and localization within the auditory space.
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6. Timbral Compositionality: Timbral compositionality relates to the manipulation and
combination of different timbres or sonic qualities. It involves how variations in tone color,
texture, and sound processing contribute to the overall expressive and aesthetic qualities
of the audio. Timbral compositionality is often prominent in electronic music and sound
design.

7. Semantic Compositionality: Semantic compositionality extends beyond the perceptual
aspects of sound and encompasses the symbolic or semantic meaning associated with audio
elements. It involves how sounds convey meaning, emotions, or convey specific messages
within a larger audio context.

B ADDITIONAL DETAILS

B.1 COMPA BENCHMARK

Table 3: Left: Frequency of different kinds of sounds in the CompA-order benchmarks. The grouping was
done manually by the human annotators (top). Right: Frequency of unique parts-of-speech in the audio cap-
tions.

Description #CompA-order #CompA-attribute

Human Speech 505 166

Background Sound 210 10

Bird Sounds 151 5

Land Animal Sounds 144 20

Background Sound Distinct 142 8 CompA-Order CompA-Attribute
Human Sound 136 188 -

Alarm and Siren 120 18 Unique Nouns 795 296
Household and Indoor Sounds 116 7 Unique Verbs 250 163
Mechanical and Electrical Sounds 112 39 Unique Prepositions 21 27
Bell Sound 62 4 Uni Adiectives 99 78
Tools and Equipment Sound 41 16 nique Adjectives

Vehicle Sound 40 32

Water Sound 34 14

Mobile and Telephone Sound 26 0

Wind Sound 25 13

Construction Sound 22 4

Table [3] (left) shows the frequency distribution of various kinds of sounds among all instances in the
CompA-order and CompA-attribute benchmarks. Both benchmarks benefit from acoustic diversity.
For CompA-order, the highest occurrence includes human speech and background sounds, and the
lowest occurrence of wind and construction sounds. For CompA-attribute, the highest occurrence
includes human speech and human sound, and the lowest occurrence of mobile and telephone sounds
and construction sounds. Human Speech consists of audios of female speech, woman speaking,
child speech, etc, Background Sound consists of audios of breaking, rumbling, etc, Bird Sound
consists of audios of chirping, quacking, etc, Land Animal Sound consists of audios of roar, moo,
etc, Background Sound Distinct consists of audios of revving, explosion, etc, Human Sound consists
of audios of sneezing, cheering, etc, Alarm and Siren consists of audios of steam Whistle, alarm
clock, etc, Household and Indoor Sound consists of audios of chopping, scraping, etc, Mechanical
and Electrical Sound consists of audios of typewriter, clicking, etc, Bell Sound consists of audios of
door Bell, church bell, etc, Tools and Equipment Sound consists of audios of gunshot, electric razor,
etc, Vehicle Sound consists of audios of train horn, motorcycle, etc, Water Sound consists of audios
of rain, waves, etc, Mobile and Telephone Sound consists of audios of relephone ringing, dial tone,
etc, Wind Sound consists of audios of wind chime, wind howl, etc, Construction Sound consists of
audios of drilling, hammering, etc.

Tab [3] (right) shows the frequency of various parts of speech in CompA-order and CompA-attribute.
Both benchmarks benefit from rich linguistic diversity. This emphasizes a more robust evaluation of
ALMs with our benchmark.

Table [6| provides examples from both benchmarks.

B.2 COMPA-661K

Table [] lists all sources from which CompA-661k is pooled. We propose several changes over
LAION-audio-630K.
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Table 4: List of sources from where CompA-661K is pooled.

Dataset #Sents
MACS (Morato & Mesaros| 14400
ESC-50 (Piczak] 2000
SONISS (Sonniss Limited| 1631
Musical Instrument (Agostinelli et al.] 9774
SoundBible (sou}[2023) 1232
LibriTTS (Zen et al.;2019 93772
Free Sound (Fonseca et al., 259020
Medley-solos (Lostanlen ef 732
4347
2645
6014
40966
31201
17410
CompA-AudioSet (ours, 108311
AudioCaps (Kim et al. 48649
Clotho (Drossos et al. 19195

Table 5: List of various datasets used in Pre-training and Evaluation

Dataset Source Experiment
Pre-training
CompA-661K refer to Table[4] Vanilla Contrastive Learning

CompA-AudioSet
Modular Contrastive Dataset

AudioSet Strong

Evaluation

AudioSet (Gemmeke et al

Hershey et al.

Contrastive Learning with Hard Negatives
Modular Contrastive Learning

CompA-order
CompA-attribute

AudioSet

Gemmeke et al.

AudioSet

Gemmeke et al.

2017

WavJourney (Liu et al.{|20

3d)

Evaluation Dataset
Evaluation Dataset

Table 6: Examples from the CompA-order (left) and CompA-attribute (right) benchmark.

Description CompA-order Captions Description  CompA-attribute Captions

Caption The growl of a tiger succeeded by human conversation. Caption A crowd speaks and a man cheers.

Rev. Caption  Human conversation succeeded by the growl of a tiger. Rev. Caption A crowd cheers and a man speaks.

Triplet The growl of a tiger amidst human conversation. Caption As a woman whistles, a young kid makes a declaration and a
Caption A barking dog preceding a man’s conversation. person speaks and a young male shouts out excitedly

Rev. Caption A man’s conversation preceding a barking dog. Rev. Caption ~ As a woman speaks, a young kid make a declaration and a
Triplet A man conversing with a barking dog in the background. person whistles and a young male shouts out excitedly
Caption A howling dog, soon after joined by a speaking woman. Caption . Police n_nise blares am_id general town sir.en

Rev. Caption A speaking woman, soon after joined by a howling dog. Rev. Caption  Police siren blares amid general town noise

Triplet A howling dog intermixed with a speaking woman. Caption Chirping with light wind and distant rustiling

Caption A bleating goat followed by people speaking. Rev. Caption  Rustiling with light wind and distant chirping

Rev. Caption  People speaking. followed by a bleating goat. Caption Light music buzzing followed by static electricity

Triplet People speaking intermingled with a bleating goat. briefly playing as rain falls on a surface.

Caption A conversation occurring prior to the telephone chime. Rev. Caption nght.m.usw P]ay ng f‘{l]OWEd ‘b.y static

Rev. Caption  The telephone chime occurring prior to a conversation. electricity briefly buzzing as rain falls on a surface

Triplet A conversation interleaved with a telephone chime. Caption A music box ticks a tune and a clock plays

Caption A man speaking prior to the usage of a cash register. Rev. Caption A music box plays a tune and a clock ticks

Rev. Caption A cash register being used prior to a man speaking. Caption A baby talking over a radio as a man is crying

Triplet A man speaking while a cash register is being used. Rev. Caption A baby crying over a radio as a man is talking
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land animal sounds - human speech

Frog croaking and later man speaking. Man speaking and later frog croaking,

Paired Audios ~

Pair Reverse Pair
> 000/00 ———— )} > 000/010 —— g}

Caption ~ Caption A~

Mechanisms and music play together as whistiing and A man speaks briefly before a croaking sound with
croaking sounds are heard intermittently, followed by a man background noise
speaking and a tick sound.
Audio Events A
Audio Events ~

Start End
Start End Select Description Time Time
Select Description Time Time

0.825 1124

=] Background noise 0114 0735

u} Mect 0728 5562 Croak 1145 9556

u} Music 0735 5555 =] Background noise 1148 9551
Whistling 1002 1375
Croak 1569 185

Whistling 2077 245

[a]
L]
L]
Croak 2317 2784
L] Croak 30m 3.465
L]

Male speech, man 3535 3853
speaking

Male speech, man 4863 5026
speaking

s Tick 5201 5248

Figure 7: Snapshot of the illustration tool used for annotating CompA-order.

B.3 ANNOTATION

Fig. [/]illustrates a snapshot of the annotation tool used for CompA-order. The audio and the corre-
sponding timestamps are obtained from AudioSet strong subset (Hershey et al.| [2021)). We first per-
form pre-processing to bring down the search space of paired audios. Details about pre-processing
can be found later in the Section. Next, two expert annotators find all possible pairs of audio where
two acoustic events occur in the opposite order using an annotation tool illustrated in Fig. [/} Natu-
ral interventions or overlayed with natural disturbances were allowed. Additionally, each annotator
writes creative captions for the identified audio segment. Captions for both audios are instructed to
have the same words but different word ordering to account for the compositional change. Post the
annotators found 400 such pairs of audio-caption pairs, they were instructed to find a triplet audio
segment for any 100 such pairs from a pool of available audio segments, where the audio events in
the pair occurred simultaneously with each other.

For CompA-attribute, the entire process was done manually. In the first stage, only the audios where
an attribute swap resulted in genuine real-world audio were selected. Then, for each audio, an audio
with swapped attributes was found manually. Finally, if no such audio was found, Wavjourney (Liu
et al., |2023d)) was employed to generate the audio. Post this step, a manual inspection was done to
validate the clarity of the events in the audio.

Annotator Demographics.Our team of annotators comprises highly skilled domain experts in au-
dio, each bringing a wealth of research experience. They possess a deep understanding of sound
analysis and are adept at discerning intricate details in audio recordings. Their expertise is not just
technical but also theoretical, allowing them to approach the annotation process with a nuanced per-
spective. This background enables them to handle complex audio data with precision and insight,
ensuring high-quality annotations that are both accurate and meaningful. Their combined experi-
ence in audio research is a valuable asset to our project, contributing significantly to the depth and
reliability of our annotated audio corpus.

Annotator Process. Out of the total 600 pairs in both benchmarks, all four annotators annotated
150 pairs each (100 and 50 for CompA-order and CompA-attribute, respectively). After the initial
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round of annotations, each annotator reviewed and annotated a set previously handled by a fellow
annotator in a second round (assigned randomly).

Annotation Rules.

1. Primary Event Focus: Annotators must prioritize the identification and labeling of the
two main events in each audio. While acknowledging other background sounds, the focus
should be on clearly distinguishing and documenting these primary events.

2. Background Sound Limitation: Background or incidental sounds can be present, but
they should not overpower or obscure the primary events. Annotators should ensure that
these main events remain distinct and easily identifiable despite the presence of additional
sounds.

3. Consistent Event Ordering: Each audio contains the same two events, but in reverse or-
der. Annotators should carefully document the sequence of these events, ensuring accuracy
in reflecting their reversed order across paired audios.

4. Clarity and Distinctiveness: In instances where natural sounds or other auditory elements
are present, annotators should verify that these do not interfere with the clarity and dis-
tinctiveness of the main events. The two primary events should be identifiable without
ambiguity.

5. Contextual Relevance: Any additional sounds included in the recordings should be con-

textually relevant and not misleading. These sounds should support the primary events’
setting or scenario without leading to confusion about the main events themselves.

Annotation Pre-processing. To decrease the search space of finding pairs of audios with the desired
acoustic events and opposite order of occurrence, we filter the search space using rules and logic.
We provide the code in our Supplementary.

B.4 COMPARISON OF VARIOUS TECHNIQUES FOR NEGATIVE MINING

Table [/|compares various LLMs and traditional NLP techniques for mining compositionally aware
hard negatives for contrastive training. While LLaMa (Touvron et al., 2023) and LLaMa-2 (Tou-
vron et al., 2023) are competitive in quality to GPT-4, Falcon (Penedo et al., 2023)) almost always
produces the same output as the input caption. On the other hand, traditional NLP techniques using
spacy (Honnibal & Montani, |2017)) almost always generate sentences that are not linguistically and
semantically viable.

B.5 PROMPTS

We use two prompts to generate the negatives of a given caption - fist to generate the negatives
by changing the temporal order of events in the caption, and second to generate the negatives by
swapping the verbs associated with the nouns until the the sentence made sense after swapping. The
prompt used for both are listed below respectively:

1. I will provide you with a list. Each item in the list is a caption of an audio file. The cap-
tion may have a temporal sequence of multiple audio events taking place. The temporal
sequence of events can be of any order, which may describe sounds occurring together,
followed by each other, etc. You have to return 3 modified captions that change the audio
composition by changing the temporal order of events through modifying phrases in the
caption. Except the words that contribute to the ordering of the events, the wording of the
actual events should be kept as unchanged as possible. You are only allowed to make minor
modifications to words that do not contribute to the temporal sequence, so that the mod-
ified caption is linguistically correct. Return only a list for each caption in the input list,
with compositionaly modified caption. Here are some examples: Original Caption: *A man
speaks twice before an electric toothbrush starts, followed by clicking sounds.”, Modified
Captions: [’Clicking sounds occur after a man speaks twice, followed by the start of an
electric toothbrush..”, A man speaks twice with an electric toothbrush starting and click-
ing sounds in background’, A man speaks twice after an electric toothbrush starts amidst
clicking sounds in background’, A man speaks twice as clicking sounds occur, followed
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Table 7: Comparison of different LLMs and Traditional NLP technique to generate negative of the given

Original caption

Model Caption

Original Someone sneezes, a crowd laughs

GPT-4 Someone laughs, a crowd sneezes

LLaMa creaming is heard, followed by a large gun being fired.

LLaMa-2 A crowd laughs, followed by someone sneezing.

Falcon Someone laughs, a crowd sneezes

Traditional NLP  crowd sneezes , a Someone laughs

Original An infant crying as a man is talking followed by a toy train horn honking

GPT-4 An infant talking as a man is crying followed by a toy train horn honking

LLaMa A man is talking and an infant cries, amidst the sound of a toy train horn honking.
LLaMa-2 A man is talking and an infant cries, amidst the sound of a toy train horn honking.

Falcon An infant talking as a man is crying followed by a toy train horn honking

Traditional NLP  An infant train as a crying is talking followed by a honking man toy horn

Original A woman speaks and then a kid yells loudly as soft voices speak softly in the background
GPT-4 A woman yells and then a kid speaks loudly as soft voices speak softly in the background
LLaMa Soft voices speak softly in the background, then a woman speaks, followed by a kid yelling loudly.
LLaMa-2 Soft voices speak softly in the background, then a woman speaks, followed by a kid yelling loudly.
Falcon A woman speaks and then a kid yells loudly as soft voices speak softly in the background
Traditional NLP A background speaks and then a voices yells loudly as soft woman speak softly in the kid
Original Wood thumping then clanking followed by metal snapping

GPT-4 The sound of metal snapping after wood thumping and clanking

LLaMa Metal snapping is heard, followed by wood thumping and clanking.

LLaMa-2 Metal snapping is heard, followed by wood thumping and clanking.

Falcon The sound of metal snapping after wood thumping and clanking

Traditional NLP  thumping Wood then clanking followed by metal snapping

Original A large gun is fired then several beeps goes off and a woman speaks

GPT-4 A large beep is fired then several guns go off and a woman speaks

LLaMa Screaming is heard, followed by a large gun being fired.

LLaMa-2 Screaming is heard, followed by a large gun being fired.

Falcon A large gun is fired then several beeps goes off and a woman speaks

Traditional NLP A several gun is fired then large beeps goes off and a woman speaks

by the start of an electric toothbrush.’, An electric toothbrush starts, followed by a man
speaking twice, and then clicking sounds.’]; If you see, all the modified captions change
the temporal order of the 3 events in the original caption. Here is another example: Original
Caption: ’A man speaks, followed by a whack and whoosh sound effect, then cheering and
shouting from a crowd’, Modified Captions: [’A man speaks amidst a whack and whoosh
sound effect and cheering and shouting from a crowd’, ’A whack and whoosh sound effect
is heard, followed by a man speaking, then cheering and shouting from a crowd.’, ’A man
speaks while a whack and whoosh sound effect is heard, followed by cheering and shout-
ing from a crowd.’, ’A whack and whoosh sound effect, along with cheering and shouting
from a crowd, is heard before a man speaks.’, ’A man speaks and then there is cheering and
shouting from a crowd, followed by a whack and whoosh sound effect.’]. Similar to the
previous example, the temporal ordering of all events in the original caption were changed
in the modified captions. For some captions, you will have no modifications, like ’Birds
and fowl are heard in the background.” because they have just one event. So in this case
just return an empty list. Please don’t return captions that translate to the same audio com-
position. Please only return a json with these lists of 3 modified captions and nothing else.
Here is the list of captions:

2. 1 will provide you with a list. Each item in the list is a caption of an audio file. The
caption may have multiple noun-verb combinations, i.e., a noun performing a verb. You
need to swap the verbs and associate them with a different noun until the swap and the
resulting sentence make sense. For example: you cannot swap an animal sound with a
noun describing a human. Here is an example: Original Caption: A woman speaks with
a baby crying in the background as occasional breathing is heard.” Modified captions: [’A
woman crying with a baby speaking in the background as occasional breathing is heard.’].
Only one swap was possible with this example. ; Original Caption: A baby cries while
male singing and music play in the background.” Modified captions: [’A baby sings while
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male cries and music play in the background.’] ; Original Caption: "Human sounds and
environmental noise interrupted by occasional taps.” Modified captions: [’Human noise and
environmental sounds interrupted by occasional taps.’]. If you think more than one swap
is possible, return multiple. For some captions, no swap will be possible. This includes
captions with just one noun-verb pair or where swaps don’t make sense. Original Caption:
A man speaks, and a dog barks in background noise followed by a shout” Modified
captions: []; Original Caption: A cat meows as music plays and a female sings.” Modified
captions: []; Original Caption: ’A baby cries.” Modified captions: []; Original Caption: ’A
woman talks nearby as water pours.” Modified captions: []. In all these cases, swapping the
noun and verbs do not make sense, for example water cant talk and women cant pour. In
such cases, return an empty list. Please only return a JSON with these lists for each caption
in the list given to you and nothing else. Here is the list of captions:

We generate AudioSet-CompA by prompting GPT-4 for time-aligned compositional captions for
audios in the AudioSet strong dataset. The AudioSet strong dataset has time-aligned labels (the start
and the end time for each event, e.g.,) for each acoustic event in an audio. Thus, we prompt GPT-4
with these time-aligned labels and ask it to generate a coherent caption from this, and indeed, GPT-4
performs accurately at this task. The prompt used for this task is listed below:

1. T will give you a list of of lists. Each list in the list describes a 10 second audio file
in the form of multiple tuples. Each tuple describes a sound event with their starting
and ending times in the audio. For example, (Wind-0.0-10.0)’ signifies that Wind was
heard through the 10 second audio and ’(Tick-6.899-7.01)’ signifies a sound of a clock
tick was heard from 6.899 to 7.01 span of the 10s audio. The events in the list are tem-
porally aligned. You need to create a one liner caption out of this list of multiple tu-
ples that 1) Follows the temporal sequence of events , 2) The caption in detail describes
the compositionality of the audio, i.e. for eg.,, what occurs before what and with what
and 3) Make sure you are using grammatical subject-verb-object sentences. Directly de-
scribe the sounds and avoid using the word “heard”. You should also use your reason-
ing skills to not blindly follow the temporal events in the list but output a caption of a
10 second audio that explains a plausible real life 10 second event for which you may
also ignore some events to achieve. Here are some examples: Input: [’(Laughter-4.881-
6.144)’, ’(Female speech, woman speaking-7.26-8.035)’, ’(Tick-8.603-8.694)’, ’(Back-
ground noise-0.0-10.0)’, *(Speech-1.365-3.569)’, ’(Breathing-8.948-9.687) ]Output: A fe-
male laughter is heard followed her talking over a constant background noise in the back-
ground. Input: [’(Female speech, woman speaking-2.734-3.783)’, ’(Music-0.0-8.359)’,
’(Ocean-4.373-9.399)’, ’(Rain-0.0-4.086)’], Output: A woman is speaking while while
its raininng and music is playing in the background. Input: [’(Female speech, woman
speaking-7.354-9.039)’, ’(Dishes, pots, and pans-9.906-10.0)’, ’(Mechanisms-0.0-10.0)’,
’(Generic impact sounds-9.551-9.843)’] Output: Generic mechanism sounds are heard
throughout while later on a female starts speaking followed by dishes and pots clanging.
Input: [’(Applause-0.0-6.78)’, ’(Crowd-0.0-10.0)’, ’(Male speech, man speaking-3.693-
4.481)’, ’(Male speech, man speaking-5.091-5.781)’, ’(Male speech, man speaking-6.78-
7.601)’, ’(Tick-9.25-9.347)’], Output: A man is heard talking while the crowd is applauding
throughout, and following this towards the end a ticking sound is observed. Just return a
single list of one liner captions that are (less than 30 words). The list format should be
[’caption for audio 1°,’caption for audio 2°,..]. Here is the list of items:

We used the following prompt to generate scenes for modular contrastive learning using GPT-4:

1. I will provide you with a list of unique sound events. I have taken these events from labels
in a audio dataset. Generate acoustic scenes that are highly plausible in the real-world.
Here is the list of events:

B.6 MODULAR CONTRASTIVE LEARNING
B.6.1 TEMPLATE-BASED SYNTHETIC CREATION OF AUDIO-CAPTION PAIRS

Algorithm [T] demonstrates the algorithm for our template-based synthetic audio-caption creation
process. For concatenating, we use the append(. ) function in Soundfile library with a crossfade

20



Published as a conference paper at ICLR 2024

Algorithm 1 Template Based Audio-Caption Creation

Data: Acoustic Events Dataset P — {A (Audio), L (Label)};
// Generate List Of Possible Acoustic Scenes

E=LLM(Prompt, L)

// Generate Compositional Audio and Fine-grained Positive and Negative

Captions
initialize(A, 77, T")
fori=1to|E| do
initialize( A", 7", T."")
for j = 1to |&;| do
if isAcousticEvent(&; ;) then
‘ (A", append(getAudio(E; ;)), (7;}““), append(&; ;)
end

order or operation (+/x)
else if isOperation(&; ;) then
a1, as = (A"™"). pop(), (A""). pop()
fork=1toj—2do v
(7;}2“). append(concatenate(7"*"[k], EiirEijo1))

end
// Generate Compositional Audio
if (£; ;). isEquals(“ +”) then
| (A"*"). append(concatenateAudio(a,, as))
end
elseif (£; ;).isEquals(“ * ”) then
| (A"*"). append(overlayAudio(a; , as))
end

end
(A). append((A"*"). pop())

// Template based conversion to captions
(T7%). append(convertToCaption(nlzst))
(T"). append(convertToCaption(7;5’“))

end

end

// Generate fine-grained positive and negatives by changing the

(T,1*"). append(swapOrderAndChangeOperation(7"**[ k], Eiir€i-1))

of 10% of the duration of the shorter audio file. For overlay, we employ the algorithm proposed by
(Tokozume et al.| 2018) to mix two sounds. Additionally, Table [§] shows examples of positives and
negatives generated for our modular constrastive learning approach, and Table 0] shows examples of
acoustic scenes output by GPT to create the final audio.

Table 8: Template-based fine-grained positive and negative captions for various acoustic scenes,

Acoustic Scenes Positives

Negatives

Hammer and Jet engine and then Crackle
Jet engine and then Crackle

(Hammer * Jet engine) + Crackle Hammer and Jet engine

Hammer and Crackle and then Jet engine
Hammer and then Jet engine and then Crackle
Jet engine and Crackle

Crackle and then Jet engine

Hammer and then Jet engine

Machine gun and then Jackhammer amidst by Engine knocking
cl amidst by Engine knocking

Machine gun and then Jackhammer

Machine gun amidst by Engine knocking

(Machine gun + ) *
Engine knocking

Jackhammer and then Machine gun amidst by Engine knocking
Jackhammer and then Engine knocking

Machine gun amidst by Jackhammer

Jackhammer and then Machine gun

Whispering overlayed by Female singing succeeded by Female speech, woman speaking
succeeded by Sonic boom

Whispering overlayed by Female singing succeeded by Female speech, woman speaking
‘Whispering overlayed by Female singing succeeded by Sonic boom

Whispering overlayed by Female speech, woman speaking succeeded by Sonic boom
Female singing succeeded by Female speech, woman speaking succeeded by Sonic boom
Female speech, woman speaking succeeded by Sonic boom

Whispering * (Female singing + Female
speech, woman speaking + Sonic boom)

Female singing overlayed by Female speech, woman speaking
Sonic boom succeeded by Female singing

Whispering succeeded by Female speech, woman speaking
succeeded by Sonic boom

Female speech, woman speaking succeeded by Female singing
Female speech, woman speaking succeeded by Female singing
Whispering overlayed by Female singing overlayed by Female
speech, woman speaking
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Table 9: Examples of acoustic scenes created for various numbers of audio snippets for final synthetic audio
creation in our proposed template-based synthetic audio-caption creation process.

Number of Acoustic Events Acoustic Scenes

Vehicle * Hammer

Female speech, woman speaking * Tap dance
Crow * Rain

Mechanical bell * Engine starting

Bird * Whimper (dog)

Crow * Roaring cats (lions, tigers)

Doorbell + Engine

Bell + Engine starting

Train whistle + Car

Buzzer + Drawer open or close

Keys jangling * (Howl (wind) + Male singing)

(Tap dance + Applause) * Female speech, woman speaking

Drill * (Computer keyboard + Emergency vehicle)

Chainsaw * (Power windows, electric windows + Train)

(Light engine (high frequency) + Train horn) * Children shouting
(Engine starting + Bell) * Human group actions

(Propeller, airscrew + Siren) * Booing

Train whistle + Dial tone + Children shouting

(Truck + Fusillade) * Howl (wind)

(Cart + Rumble) * Wind noise (microphone)

Coo * (Background noise + Fly, housefly + Speech synthesizer)

Bird vocalization, bird call, bird song * (Stream, river + Roaring cats (lions, tigers) + Speech)
4 Chicken, rooster * (Environmental noise + Mosquito + Child speech, kid speaking)

(Train + Drill) * (Booing + Wind)

Booing * (Child speech, kid speaking + Male singing + Environmental noise)

B.7 HYPER-PARAMETER SETTINGS

Vanilla CLAP Training. For vanilla contrastive pre-training with CompA-661k, we use a batch
size of 24, and Adam optimizer with a learning rate of le-4, and warm-up of 3200 steps, and train
for 45 epochs. For training with compositionally aware hard negatives, we start with vanilla CLAP
weights and train for 20 epochs with no warm-up. We follow a similar setup for modular contrastive
training.

B.8 BASELINES

For retrieval-based evaluation (text-to-audio and audio-to-text), we compare CompA-CLAP with six
baselines:

MMT (Oncescu et al., 2021) introduces the task of retrieving audio using free-form natural language
queries. The authors argue that this is a more intuitive and flexible way to search for audio than
traditional methods, which rely on text annotations, and also demonstrate the benefits of pre-training
on diverse audio tasks.

ML-ACT (Mei et al.,2022) studies the impact of different metric learning objectives on the audio-
text retrieval task and finds that NT-Xent loss is a promising approach that achieves stable per-
formance across different datasets and training settings, and outper-forms the popular triplet-based
losses. Metric learning objectives are commonly used to train cross-modal retrieval models by map-
ping data to an embedding space where similar data are close together and dissimilar data are far
apart.

CLAP (Deshmukh et al., |2022a)) introduces a framework for audio retrieval that uses a contrastive
learning objective and two audio encoders to connect language and audio content.

CLAP-LAION (Wu* et al.|[2023) proposes a pipeline for contrastive language-audio pre-training to
develop an audio representation by combining audio data with natural language descriptions. They
construct a contrastive language-audio pre-training model by considering different audio encoders
and text encoders. They incorporate the feature fusion mechanism and keyword-to-caption augmen-
tation into the model design to further enable the model to process audio inputs of variable lengths
and enhance performance.
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Table 10: Performance comparison of CompA-CLAP with baselines on Real-world / Synthetic distribution in
CompA-attribute benchmark.

CompA-attribute

Model Text Audio Group
Human 80.30/84.10 82.40/86.20 79.80/83.50
Random 25.0/21.0 25.0/22.0 16.67/15.33
CLAP 33.27/37.21 6.14/8.12 4.66/6.23
CLAP-LAION 34.78 /1 38.43 6.52/8.94 5.07/7.82
~ CompA-CLAP (ours) | 44.28.0.02 /4634, 03 22.52.0.04 /2431005 15.13.0.02 /17104004

Wav2CLIP (Wu et al., |2022) proposes a pre-trained audio representation learning method that dis-
tills knowledge from Contrastive Language-Image Pre-training (CLIP). Wav2CLIP projects audio
into a shared embedding space with images and text, which enables multimodal applications such
as zero-shot classification and cross-modal retrieval.

AudioClip (Wu et al} [2022) is an extension of the CLIP model that can handle audio in addition
to text and images by incorporating the ESResNeXt audio-model in the CLIP framework. It was
trained on the AudioSet dataset, which contains millions of audio clips with corresponding labels.

C ADDITIONAL RESULTS

C.1 SELECTING K
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Figure 8: Ablation on varying K on CompA-order/attribute benchmark

Figure [8| provides insight regarding how to select K which is the number of hard negatives for
Compositional-Aware Hard Negative training, and also the max limit for selecting generated fine-
grained positives as well as negatives for Modular Contrastive Learning.

C.2 MEASURING QUALITY OF NEGATIVE SAMPLES

In this section, we measure the quality of negative samples égenerated in AudioSet-CompA. For
ne

each caption ¢; € 7, we randomly sample 1000 captions ¢, ? from the same dataset, which act

as negatives. To compare the quality of the generated negatives t? ard g .Y, we encode these

captions with sentence transformer (Reimers, 2023) and calculate relative difference between the

cosine similarity of sim(t;, £;*"*) and sim(t;, ;) which comes out to be 70.7%. From this, we
conclude that the overall quality of generated hard negatives is superior to the negatives sampled

from the dataset.

C.3 COMPARING SYNTHETIC VS ORIGINAL COUNTERPARTS DURING EVALUATION

In this section, we compare the performance of CompA-CLAP on the original subset Vs the syn-
thetic subset of the CompA-Attribute benchmark. While the original subset, also known as real-
world distribution, is derived from the AudioSet (Gemmeke et al., 2017), the synthetic distribution
is prepared using WavJourney (Liu et al.,|2023d)) and constitutes about 25% of the CompA-Attribute
benchmark. Table shows the result across both the distribution. Compared to the baselines,
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Table 11: Performance CompA-CLAP across various acoustic scenes in CompA-Order benchmark.

CompA-order

Acoustic Scenes Text Audio Group
Human Speech, Land Animal Sounds 7122 68.41 63.80
Human Speech, Bell Sounds 77.11  72.53 68.12
Human Speech, Human Sound 21.23 1141 10.13
Tools and Equipment Sound, Construction Sound | 20.12  10.42 8.10

Table 12: Analyzing CompA-CLAP Performance: Exploring variations across selected acoustic events based
on it’s frequency in AudioSet (training set)

CompA-order

Acoustic Scenes Text Audio Group
Male speech, Generic Impact Sound | 61.32 5842  52.13
‘Woman speaking, Music 65.21 60.14  58.23
Video game sound, Plop 16.23  8.21 6.24
Eruption, Stream 1232 7.13 5.21

we observe a consistent boost in the performance across both distributions in the CompA-attribute
benchmark.

C.4 ERROR ANALYSIS

* The analysis, shown in Table |1 1| evaluates CompA-CLAP performance across combina-
tions of acoustic events, considering acoustic similarities between audios. Notably, the
model excels in scenes with acoustically dissimilar audios (e.g., Human Speech and Land
Animal Sounds), but its performance dips in scenes with similar audio types (e.g., Human
Speech and Human Sound).

* Table [12] also highlights the long-tailed problem in AudioSet, where the CompA-CLAP
underperforms in audio with acoustic events seen less during training, for instance Video
game sound, Stream, Plop, Eruption, etc.

* Table [I3] illustrates the qualitative analysis, showcasing instances of significant improve-
ment in CompA-CLAP compared to other baseline models within the acoustic composi-
tions of the CompA-order and CompA-attribute benchmarks.

Table 13: Some examples of acoustic compositions in the CompA-order and CompA-attribute
benchmarks where we observed significant improvement in CompA-CLAP compared to the other
baselines

CompA-order (Acoustic Scene) CompA-attribute (Acoustic Scene)

Frog croaking followed by music playing. A man speaks then a woman panics

Man speaking before bell ringing. A baby laughs while a woman make sounds
A man speaking followed by gunshot A child sneezes and an adult laughs

Tiger growling followed by people speaking. ~ Adult female is speaking and a young child is crying
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Table 14: Examples of negatives generated for contrastive training with compositionally-aware hard
negatives. Sentences marked with gray show negatives where the order of occurrence of the acoustic
events in the audio differs, and sentences marked with orange show negatives where the attribute

between multiple acoustic events is switched.

Label Caption
Original Caption: Men speaking then sneezing.
Negative: Men sneezing then speaking.

Original Caption:

A child screams, an adult male is talking and vehicles are revving.

Negative: Vehicles are revving preceding a child screams and an adult male is talking.

Negative: An adult male talks preceding vehicles rev and a child screams.

Negative: A child talks, an adult male is screaming and vehicles are revving.

Original Caption: A crowd is cheering and shouting, thumping occurs, an adult female speaks, and an adult male speaks.

Negative: An adult female speaks following the cheering and shouting crowd, followed by thumping and an
adult male speaking

Negative: Thumping occurs, an adult male speaks, then a crowd is heard cheering and shouting and
an adult female speaks.

Negative: A crowd is speaking and shouting, thumping occurs, an adult female cheers, and an adult male speaks

Original Caption:  High pitched drilling followed by rustling.

Negative: Rustling sounds followed by high pitched drilling

Negative: Rustling and high pitched drilling happening together

Negative: High pitched rustling followed by drilling

Original Caption: ~ The entire time a loud static sound is joined with a constant clicking

Negative: The entire time a constant clicking accompanies a loud static sound

Negative: Simultaneously, a loud static sound and a constant clicking are heard

Negative: The entire time a loud clicking is joined with a constant static sound

I |def build_mask (sim_shape, no_positive_list, no_negative_list):

5

; nmmn

4 Build Mask for generated positive and negative Captions

5

6 Args:

7 sim_shape (List): shape of Similarity matrix

8 no_positive_list (torch.Tensor): Number of positive captions per
audio.

9 no_negative_list (torch.Tensor): Number of negative captions per
audio.

10

11 Returns:

12 mask_tensor (torch.Tensor)

13 e

14 #create index_map and index_range to identify

15 #the specific ranges for each texts wrt generated cations (pos/neq)

16 index_map = []

17 no_gen_caption = torch.cat (no_positive_list, no_negative_list)

18

19 for 1 in range(len(no_gen_caption)-1):

20 if not index_map:

21 index_map.append (no_gen_caption[i]+1)

22 else:

23 index_map.append (index_map[i] + no_gen_caption[i] + 1)

24 index_range = [[x,xty] for x,y in zip(index_map, no_gen_caption)]

25

26 #intialize the mask

27 mask_tensor = float (’-inf’) * torch.ones (sim_shape)

28 caption_size = sim_shape[0]

29

30 for 1 in range(caption_size):

31 gen_index = 0 #Get index w.r.t the generated pos/neg cations

32 batch_index = 0 #Get index w.r.t the original captions

33

34 for k, (start_index, end_index) in enumerate (index_range) :

25




Published as a conference paper at ICLR 2024

if start_index <= k and k <= end_index:
gen_index = k

batch_index = start_index
break
if i == batch_index:
mask_tensor[i,:] =1
else:
mask_tensor[i] [gen_index] = 1

return mask_tensor

Listing 1: Source Code To Build Mask
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