Comparing the Performance of High-Level Middleware Systemsin Shared and
Distributed Memory Parallel Environments*

Jik-Soo Kimf, Henrique Andradet, Alan Sussmant

t Dept. of Computer Science
University of Maryland
College Park, MD 20742
{j i ksoo, al s}@s. und. edu

Abstract

The utilization of toolkits for writing parallel and/or dis-
tributed applications has been shown to greatly enhance
developer’s productivity. Such an approach hides many
of the complexities associated with writing these applica-
tions, rather than relying purely on programming language
aids and parallel library support, such as MPI or PVM. In
this work, we evaluate three different middleware systems
that have been used to implement a computation and 1/0O-
intensive data analysis application from the domain of com-
puter vision. This study shows the benefits and overheads
associated with each of the middleware systems, in different
computational environments and with different workloads.
Our results lead the way toward being able to make bet-
ter decisions for tuning the application environment, for se-
lecting the appropriate middleware, and also for designing
more powerful middleware systems to efficiently build and
run modern, highly complex applications in both parallel
and distributed computing environments.

1 Introduction

The implementation of applications that have high re-
quirements for resources such as computational power and
disk bandwidth is challenging, because it is usually neces-
sary to rely on parallel and/or distributed resources. On the
other hand, as data from sensors (e.g., microscopes, cam-
eras, satellites, etc.) becomes available at an ever-increasing
rate, effective applications for processing and analyzing
such data are required. Because of the scarcity and cost of

*This research was supported by the Nationa Science Founda
tion under Grants #EIA-0121161 and #ACI-9619020 (UC Subcontract
#10152408), Lawrence Livermore National Laboratory under Grant
#B517095, and NASA under Grant #NAG5-12652.

Y1BM T. J. Watson Research Center
19 Skyline Drive
Hawthorne, NY 10598
hcma@s. i bm com

the human resources needed to tackle the task of program-
ming such complex data analysis applications, a number of
attempts have been made to help developers become more
productive, by providing software tools to aid in that task.

Although many studies have been conducted compar-
ing the relative performance of applications using low-level
parallelization and distributed computing mechanisms, not
much attention has been devoted to comparing high-level
frameworks, the problem we address in this paper. Our
group has produced different middleware systems over the
last several years, each one based on a set of different en-
vironmental and utilization assumptions. They have been
shown to be powerful, flexible, and able to capture most
of the common support that is necessary to write complex
applications, and yet still are able to shield the developer
from the intricacies of distributed and/or parallel program-
ming. A number of real-world applications have been im-
plemented with these tools. A comparison of the behavior
of three of our middleware systems on the same application,
with the same workload model, and executing in the same
runtime environment using the same resources (machines,
network, disks, etc.) will be shown to be very instructive.
Such a study not only can highlight each of the systems’
strengths and associated overheads, but can also be used
to guide the design of better middleware systems and to
tune the configuration of applications using these middle-
ware systems in complex computational environments.

In this paper we will experimentally show several re-
sults: (1) Workload characterization is the single most im-
portant variable to account for in designing runtime mid-
dleware systems for high-performance computer vision ap-
plications; (2) Detecting and leveraging reuse plays an im-
portant role in increasing the throughput of the middleware
system and decreasing the user’s response time; (3) Coor-
dination amongst competing threads in using 1/O resources
contributes considerably toward improving system perfor-
mance; and (4) Deployment of auto-tuning capabilities into

runtime middleware systems is paramount for ensuring high
performance in varying computational environments.

The rest of this paper is organized as follows: in Sec-
tion 2 we describe some of the research that has been done
in developing high-level libraries and runtime systems to
facilitate the development of parallel data analysis applica-
tions. In Section 3, we describe and contrast three differ-
ent middleware systems developed by our group over the
past decade. In Section 4, we describe a case study appli-
cation from the computer vision domain used to obtain the
experimental data analyzed in this paper. In Section 5 we
present our comparative study and describe the lessons we
have learned that can be used to guide the further develop-
ment of data analysis middleware systems. And, finally, in
Section 6, we summarize our results and suggest open re-
search issues that should be addressed in order to provide
self-adaptive middleware systems that enable consistently
high performance for data analysis applications.

2 Redated Work

Over the last decade, many programming paradigms and
libraries have become available to ease the process of imple-
menting and deploying complex data analysis and visualiza-
tion applications. We refer to these paradigms as the low-
level portion of the spectrum of mechanisms for support-
ing the implementation of data-/compute-intensive applica-
tions, as they typically require a complete understanding
(and also the actual programming) of the communication
patterns and component interactions within the application.
Examples of such efforts are PVM (Parallel Virtual Ma-
chine) [23] and the MPI (Message Passing Interface) [35]
standard. At the other end (i.e., high-level) of the spec-
trum, middleware systems and customizable toolkits that
hide many of the low-level details of writing and deploy-
ing a parallel/distributed data analysis application have also
been designed and built. Examples of such toolKkits are par-
allel 1/0 libraries such as Passion [38] and Panda [19]; C++
tools such as pC++ [41], Chaos++ [18], POOMA [26], and
Overture [16]; parallelization tools such as Chaos [27] and
Multiblock Parti [1], KeLP [22], Fortran D [25], High Per-
formance Fortran [24], and OpenMP [33]; and parallel visu-
alization toolkits such as the Dv Project [30], VisDB [28],
and OpenDX [39]. In many cases, these middleware sys-
tems and toolkits rely on low-level mechanisms for han-
dling communication and 1/0O, but present application tem-
plates or operators that can be customized for individual ap-
plications. These templates allow many of the details of in-
terprocess communication, 1/O, etc. to be hidden from the
application writer, essentially freeing up the developer to
concentrate on writing the application, rather than focusing
on the internal details of the parallel or distributed comput-
ing environment.

3 Middleware Systems for Data-/Compute-
Intensive Applications

Over the past few year, our research group has devel-
oped multiple middleware systems for efficiently support-
ing data analysis applications. All the systems target multi-
dimensional range queries with user-defined aggregation
operations, which often arise in various data analysis ap-
plications. A range query specifies the data to process via a
bounding box in the underlying multi-dimensional attribute
space of the (input and/or output) datasets, while aggre-
gation operations are commutative and associative compu-
tations that combine multiple input data elements into a
single output data element. The Active Data Repository
(ADR) [10, 29] represents the result of our first design.
ADR’s algorithms and runtime system target architectures
that range from tightly coupled shared-memory machines to
distributed-memory parallel machines with attached disks
in a cluster configuration.

The realization that heterogeneous environments were
becoming common both in academic as well as in commer-
cial computing environments, and the formalization of Grid
computing concepts implied a fundamental modification in
how complex applications could be decomposed. These
multi-component applications could be distributed on top
of resources with different physical characteristics. Each
component could be seen as filtering the incoming stream
of data, where each filter represents a different stage of the
computation. This is the central idea behind the DataCutter
(DC) framework [11, 36].

While DC can only process one query at a time, with
other submitted queries enqueued for execution, ADR is
able to process multiple queries simultaneously. ADR pro-
cesses queries in batches, but must complete one query
batch before starting another batch. Neither ADR nor DC
implement techniques for optimizing and removing redun-
dancies that may arise when multiple queries are presented
to the system, which is one of the main features of the Multi-
Query Optimization (MQO) framework. MQO not only can
handle multiple simultaneous queries, but also can incorpo-
rate queries into its current query execution plan as they are
submitted.

As aresult of larger datasets becoming available and also
as a result of the success of middleware systems such as
ADR and DC, data analysis is increasingly being employed
in collaborative environments. That is, multiple clients ac-
cess the same datasets and perform similar processing on
the data. For instance, in medical imaging [8], one sce-
nario is that a large group of students want to simultane-
ously explore the same set of digitized microscopy slides
or visualize the same Magnetic Resonance Imaging (MRI)
and Computerized Tomography (CT) results. In these sit-
uations, the data server needs to execute multiple queries

simultaneously to minimize latencies to the clients.

Many different aspects of the multiple query optimiza-
tion problem have been studied in other contexts, particu-
larly in relational databases. In the context of scientific data
analysis applications, however, the scale of the datasets, the
application-specific nature of the data structures, and the
computation of user-defined aggregates require new opti-
mization techniques to ensure good system performance,
especially under heavy workloads. In addition to leveraging
several ideas previously developed in ADR and DC, these
are the problems targeted by the MQO [4, 7].

We now describe some of the most important architec-
tural details of the three middleware systems.

3.1 The Active Data Repository

The implementation of data analysis operations on a par-
allel machine requires distribution of data and computa-
tions among disks and processors to make efficient use of
all available storage space and computing power. Careful
scheduling of data retrieval, computation and network op-
erations to keep all resources (i.e., disks, processor mem-
ory, network, and CPU) busy without overloading any of
the resources is also needed. We have developed the Ac-
tive Data Repository (ADR) to provide support for appli-
cations that perform multi-dimensional range queries with
user-defined aggregation operations on multi-dimensional
datasets, to be executed on a distributed-memory parallel
machine with an attached disk farm. In this section, we
briefly describe ADR, and present the algorithms and opti-
mization techniques developed in the ADR framework.

Both input and output datasets in ADR are partitioned
into and stored as sets of data chunks. A data chunk con-
tains a subset of the data items in the dataset. A dataset is
partitioned into data chunks by the application developer,
and data chunks in a dataset can have different sizes. Since
data is accessed through range queries, it is desirable to
have data items that are close to each other in the multi-
dimensional space placed in the same data chunk. A data
chunk is the unit of data retrieval. That is, it is retrieved as a
whole during processing. Retrieving data in chunks instead
of as individual data items reduces 1/O overheads (e.g., disk
seek time), resulting in higher application level 1/0 band-
width. As every data item is associated with a point in a
multi-dimensional attribute space, every data chunk is as-
sociated with a minimum bounding rectangle (MBR). The
MBR of a data chunk is the smallest box in the underlying
multi-dimensional space that encompasses all the coordi-
nates of all the items in the data chunk.

Data chunks are distributed across the disks in the sys-
tem to fully utilize the aggregate storage space and disk
bandwidth. To take advantage of the data access patterns
exhibited by range queries, data chunks that are close to

each other in the underlying attribute space should be as-
signed to different disks. In the ADR framework, we em-
ploy a Hilbert curve-based declustering algorithm [21] to
distribute the chunks across the disks. Hilbert curve algo-
rithms are fast and exhibit good clustering and decluster-
ing properties. Other declustering algorithms, such as those
based on graph partitioning [31], can also be specified by
an application developer using ADR. Each data chunk is as-
signed to a single disk, and is read and written only by the
local processor to which the disk is attached. If a chunk is
required for processing by one or more remote processors, it
is sent to those processors as a whole by the local processor
via interprocessor communication. After data chunks are
assigned to disks, a multi-dimensional index is constructed
using the MBRs of the chunks. The index on each processor
is used to quickly locate the chunks with MBRs that inter-
sect a given range query. Efficient spatial data structures,
such as R-trees and their variants [9], can be used for index-
ing and accessing multi-dimensional datasets.

The processing of a range query in ADR is accomplished
in two steps: a query plan is computed in the query planning
step, and the actual data retrieval and processing is carried
out in the query execution step according to the query plan.

Query planning is carried out in three phases: index
lookup, tiling, and workload partitioning. In the index
lookup phase, indices associated with the datasets are used
to identify all the chunks that intersect with the query. If the
output data structure is too large to fit entirely in memory, it
must be partitioned into tiles, each of which contains a dis-
joint subset of output elements. Partitioning is done in the
tiling phase so that the size of a tile is less than the amount
of memory available for the output. A tiling of the output
implicitly results in a tiling of the input dataset. Each input
tile contains the input chunks that map to the correspond-
ing output tile. Since an input element may map to multiple
output data elements, the corresponding input chunk may
appear in more than one input tile if the output chunks are
assigned to different tiles. During query execution, the input
chunks placed in multiple input tiles are retrieved multiple
times, once per output tile. Therefore, care must be taken
to minimize the boundaries of output tiles so as to reduce
the number of such input chunks. In the workload parti-
tioning phase, the workload associated with a tile is parti-
tioned among processors. In the query execution step, the
processing of an output tile is carried out according to the
query plan. A tile is processed in four phases— a query it-
erates through these phases repeatedly until all tiles have
been processed and the entire output has been computed:
(1) Initialization: Output elements for the current tile are
allocated space in memory and initialized; (2) Reduction:
Each process retrieves data chunks stored on local disks.
Data items in a data chunk are aggregated into the output
elements allocated in the memory of each process during

phase 1; (3) Global Combine: If necessary, partial results
computed by each process in phase 2 are combined across
the processes via inter-process communication to compute
final results for the output; (4) Output Handling: The final
output for the current tile may optionally be transformed via
a user-defined operation on the values computed in phase 3.
The output is either sent back to a client or stored back to
the disks.

We have developed an implementation of the ADR
framework as a set of modular services, implemented as
a C++ class library, and a runtime system. Several of
the services allow customization for user-defined process-
ing. A unified interface is provided for customizing these
services via C++ class inheritance and virtual functions.
An application developer has to provide output data struc-
tures and functions that operate on in-core data, to im-
plement application-specific processing of out-of-core data
with ADR.

An ADR application consists of one or more clients, a
front-end process, and a customized back-end. The front-
end interacts with clients, translates client requests into
queries and sends one or more queries to the parallel back-
end. Since the clients can connect and generate queries in an
asynchronous manner, the existence of a front-end relieves
the back-end from being interrupted by clients during pro-
cessing of queries. The back-end is responsible for storing
datasets and carrying out application-specific processing of
the data on the parallel machine.

The back-end runtime system provides support for com-
mon operations such as index lookup, management of sys-
tem memory, and scheduling of data retrieval and the pro-
cessing operations described above across a parallel ma-
chine. During the processing of a query, the runtime sys-
tem tries to overlap disk operations, network operations,
and processing as much as possible. Overlap is achieved
by maintaining explicit queues for each kind of operation
(data retrieval, message sends and receives, data process-
ing) and switching between queued operations as required.
Pending asynchronous I/O and communication operations
in the operation queues are polled and, upon their comple-
tion, new asynchronous operations are initiated when more
work is required and memory buffer space is available. Data
chunks are therefore retrieved and processed in a pipelined
fashion.

3.2 DataCutter

The data processing structure of an application imple-
mented with DataCutter (DC) is represented as a set of ap-
plication filters. A filter is a user-defined object that per-
forms application-specific processing on data. A filter ob-

ject must have three functions?®; init, process, and final-
ize, that are implemented by the application developer. A
stream is an abstraction used for all filter communication,
and specifies how filters are logically connected. A stream
also denotes a supply of data to and from the storage media,
or a flow of data between two separate filters, or between
a filter and a client. Bi-directional data exchange can be
achieved by creating two pipe streams in opposite directions
between two filters. All transfers to and from streams are
through a provided buffer abstraction (Figure 1). A buffer
represents a contiguous memory region containing useful
data. The init function is where any required resources such
as memory can be pre-allocated for a filter. The process
function of the filter is called by the runtime system to read
from any input streams, work on data buffers received, and
write to any output streams. The finalize function is called
after all processing is finished, to allow release of allocated
resources such as scratch space.

A set of filters that collectively carry out application-
specific data processing is referred to as a filter group. The
DC runtime system provides a multi-threaded, distributed
execution environment. Multiple instances of a filter group
can be instantiated and executed concurrently; work (i.e.
queries) can be assigned to any group. Within each fil-
ter group instance, multiple copies of individual filters can
also be created transparently to the application. Filters
co-located on the same machine are executed as separate
threads by the runtime system. Data exchange between
two co-located filters is carried out by simple pointer copy
operations, thereby minimizing communication overhead.
Communication between filters on different hosts is done
through TCP/IP sockets.

Decomposition of application processing into filters and
filter copies effectively provides a combination of task and
data parallelism (Figure 1(b)). Filter groups and individ-
ual filters can be placed on a distributed collection of ma-
chines to minimize computation and communication over-
heads. Filters that exchange large volumes of data can be
placed on the same machine, while compute intensive filters
can be executed on more powerful or less loaded machines.

An application implemented with DC is structured in a
similar way to an ADR implementation. The application
consists of one or more clients, a console process, and at
least one filter group. The console process interacts with
clients, and forwards each client request to a filter group
instance for data retrieval and processing (more than one
instance can be created for a filter group, for example on
different sets of machines). The filter group instances are
responsible for accessing stored datasets and carrying out

1The DC framework supplies a base class with three virtual functions
(init, process, fi nalize). An application specifi ¢ fi Iter is derived from this
base class, and application operations are implemented in the three func-
tions.

BB

’uow2Muow1 ‘E’uowo‘

N

[t [] o]
(@)

Tm (&)

host;

\%

(b)

Figure 1. DataCutter stream abstraction and support for copies. (a) Data buffers on a stream. (b)
Filter group with three filters, labeled P,F,C, instantiated using transparent filter copies.

the application-specific processing of the data on the avail-
able resources, typically a heterogeneous distributed set of
machines. In the current DC implementation, all filters as-
signed to a given machine are run as threads within a single
process, called an application daemon, or appd, because the
process provides DC services on that host for the lifetime of
the application.

3.3 The Multi-Query Optimization Framework

Previously existing techniques for taking advantage of
reuse in relational databases suffer from limitations in han-
dling either unstructured operators or operators that are not
known a priori. In fact, most of the techniques assume a
well-defined set of operators — relational database operators
—and also assume specific algorithms implementing the op-
erators. Such a restricted set of operators allows for defining
efficient data structures for representing data and computa-
tion reuse scenarios. However, in more general data analy-
sis applications, there is no pre-defined set of operators and
algorithms that can be leveraged to construct an efficient
query optimizer. Thus optimizations must rely on abstract
operators that lend themselves to customizations. In this
way, new operators and algorithms can be added dynami-
cally to a data analysis application. This makes it necessary
to provide ways to describe operators and the aggregates
generated by such operators so that a generic query opti-
mizer can automatically detect optimization opportunities.

The Multi-Query Optimization (MQO) framework tar-
gets a data processing model that is common for these types
of queries. MQO provides the following set of abstract op-
erators used to identify and exploit data reuse opportunities
during query planning and execution:

compare(M;, M;) = true or false Q)
overlapproject (Mi, M) = k,where0 < k<1 (2)

project(M;, M;,J) = K, ,where My C M;and K C T
®)

Equation 1 describes the compare function that returns true
or false depending on whether aggregate Z, described by
meta-data M;, is the same as aggregate 7, described by
M;. When the application of this function returns true, the
framework has identified a common subexpression elimina-
tion opportunity. Hence, in a query plan where Z is sup-
posed to be computed, the query executor can replace uses
of Z with a reference to aggregate 7.

In many situations, aggregates Z and .7 partially overlap,
which means that compare is false, but partial reuse is still
possible. Equation 2 describes the overlap function that re-
turns a value between 0 and 1 that represents the amount of
overlap between aggregates 7 and 7. This function is com-
puted by inspecting the domain of a cached aggregate (de-
scribed by M) and the domain of the query being processed
(M;) in two steps. First, the amount of multidimensional
overlap with the query domain is computed. Second, an-
other factor of the overlap is computed with respect to a set
of data transformation functions (called project functions),
which are responsible for identifying each relevant element
from the cached aggregate and converting it (e.g., decreas-
ing resolution, translating or rotating the object) into an out-
put data element for the aggregate being computed. More
precisely, the project function, shown in Equation 3, takes
one data aggregate 7 whose meta-data is M; and projects
it over M; by extracting and transforming the parts of 7
that are relevant to Z, either computing Z completely or
generating XC, which partially computes Z. Each projection
function manipulates the input aggregate in different ways
to convert it into the aggregate required by the query being
computed.

Upon identifying a reusable aggregate, the query execu-
tor must complete the computation of the desired aggregate
by evaluating the portions that need to be computed from
input data or from other aggregates. The following equa-
tion defines an operator that computes the set of meta-data
descriptors for the incomplete regions:

difference(M;, M;) = C 4)

where C is the set of subqueries needed to compute the re-
maining parts of the query.

Dealing with the application-specific nature of data anal-
ysis queries requires customization of each of the operators
in the context of a particular application, which is achieved
in our implementation through C++ inheritance [3].

In MQO query planning and execution are carried out in
two steps that are only sketched here; the detailed algorithm
is described in [2]. In the first step, a decision is made as
to which query from the waiting queue is selected for exe-
cution [5]. The second step determines the query plan to be
employed in order to compute the query [6]. For each query,
the data cache is searched for aggregates that overlap the
primitive meta-data (using the compare and overlap opera-
tors). If there is complete overlap, the output is computed
from the cached aggregate by applying the appropriate pro-
jection primitive(s) (using the project operator). If cached
aggregates can only partially be used to compute the query
under evaluation, subqueries are recursively scheduled for
computation of the incomplete regions (using the difference
operator). On the other hand, if no overlap was detected, the
query needs to be executed from scratch by computing its
result from input data. As a result each output and tempo-
rary dataset is tagged and cached for potential future reuse.

4 Multi-Per spective Volumetric Shape Anal-
ysis

In this section we describe the application we used for
the experimental case study described in Section 5.

Modern image analysis and computer vision systems of-
ten use multi-perspective imaging, which employs multiple
cameras shooting the scene of interest from various per-
spectives. The basic idea is that more views deliver more
information about the scene, and potentially allow recov-
ery of interesting 3-dimensional features with high accu-
racy and minimal intrusion into the scene (e.g., no mark-
ers for tracking objects or people through the scene are re-
quired). An exciting broad range of applications for such
systems includes virtual view rendering, complex shape and
movement analysis, multi-person tracking, virtualized real-
ity, and smart environments [15, 17, 20, 32, 34, 37, 40].

The availability of affordable high-speed digital cam-
eras, along with the ever increasing computing capabilities
of desktop computers, have made such applications more
attractive for use in various computer art and animation stu-
dios, medical facilities, business environments and people’s
everyday lives. Small scale systems (involving 3 cameras or
less) can be handled by a modern desktop computer, while
larger scale applications could be quite challenging even for
high performance computing systems. Performance issues
arise because multi-perspective systems with large numbers
of cameras can produce and process vast amounts of image

Figure 2. Keck Lab model

data and video streams that can be very difficult to manage
without an efficient way to store, catalog, and process the
data.

Figure 2 shows a VRML model of the multi-perspective
Keck laboratory at the University of Maryland [20]. One
minute of multi-perspective video, shot in this facility, may
require up to 95 GB of storage. If the desired processing
of the video data cannot be performed in real time, as de-
scribed in [12], the image data must persist in long-term
storage for further off-line processing.

It is still not feasible to manage and process such large
quantities of image data on a single PC or workstation, be-
cause of performance issues stemming both from accessing
the stored data and the computational requirements of the
subsequent processing. Therefore it is imperative to store
and process those sequences using a middleware system that
is able to service data- and compute-intensive applications
and leverage storage and processing capabilities from a par-
allel machine or a cluster of workstations. Much of the pro-
cessing can be done in parallel, and there is an opportunity
to distribute data across a disk farm to achieve high perfor-
mance.

Although such an application could be implemented
from scratch using message passing with MPI or PVM as
the underlying parallelization model, a data analysis mid-
dleware system can offer considerable savings in developer
time and effort. Using such a system requires the developer
to only customize the middleware with several methods
and/or operators that are specific to the application, thereby
isolating her from ensuring correctness in dealing with the
complexities of a parallel or distributed computing envi-
ronment, such as interprocessor communication and 1/0
scheduling, data distribution, managing shared data struc-
tures, and other tasks that are usually time-intensive for the
developer and require considerable technical expertise.

4.1 Algorithms for Reconstructing 3D Volume

The multi-perspective volumetric reconstruction proce-
dure is based on visual cone intersection and the details
are described in [13, 14]. A visual cone is the portion of
3D space that a camera can see from its particular vantage
point. The main idea is to efficiently build a 3D Volume
(represented by an occupancy map) of the foreground ob-
ject(s) in a scene by using 2D silhouette image data from
all available cameras. The process assumes that the im-
ages from all the cameras are synchronized in time, as is
the case in the Maryland Keck lab. The algorithm is ap-
plied to the images from all the cameras at a given point
in time (a frame), although for performance reasons multi-
ple volumes for different frames can be produced simulta-
neously. The reconstruction algorithm uses the 2D image
data to determine the occupancy of the space bounded by a
cube at a given resolution. At each step in the algorithm, if
the occupancy of the cube is undetermined, meaning that it
has not yet been determined whether it is completely occu-
pied or completely unoccupied, the algorithm is invoked for
each of the cube’s eight sub-cubes recursively. This proce-
dure finally produces an occupancy map, stored compactly
as an octree, that approximates the space occupied by the
object(s) in the full 3D space. However, since we are deal-
ing with 3D space, we only obtain a partial occupancy map
from each 2D image. Therefore, the overall algorithm must
intersect all the partial octrees from all the camera images
(i.e., perform visual cone intersection) to produce the com-
plete reconstruction for a frame.

The steps of the volumetric reconstruction algorithm can
be performed sequentially on a single machine. However, it
is easy to see that there are many possibilities for the algo-
rithm to be parallelized to improve performance, by retriev-
ing all available image data and producing multiple partial
occupancy maps simultaneously. That is the overall strategy
for parallelizing the algorithm taken for all the middleware
systems described in Section 3.

4.2 Implementing the Volumetric Reconstruction
Application

In order to implement the volumetric reconstruction ap-
plication with our middleware systems, we started with a
single common, source code and customized and configured
the middleware systems appropriately. We now highlight
the most important aspects of the customization process.

For the volumetric reconstruction application, we have
customized the parallel back-end of ADR. During the Ini-
tialization and Reduction steps for computing an output
frame, ADR retrieves required image data from all avail-
able cameras and produces partial occupancy maps in par-
allel via the user-provided indexing and aggregation func-

tions. Each process is responsible for computing its partial
occupancy maps, represented as octrees, based on image
data stored locally. Finally, ADR produces the complete 3D
Volume for a frame through the Global Combine step by
intersecting all partial occupancy maps across all processes.

For implementing the volumetric reconstruction applica-
tion with the DC framework, as for the ADR implementa-
tion, we can produce a 3D volume for a frame in parallel.
The implementation requires three filters — ImageReader,
LocalCombiner and GlobalCombiner. The ImageReader
filter reads the required image data from the disk(s) where
the data is stored and sends the data to the LocalCombiner
filter through the filter output buffer. The LocalCombiner
filter gets input image data from ImageReader filter and
computes partial occupancy maps and sends them to Glob-
alCombiner. Finally, the GlobalCombiner filter accumu-
lates all required partial occupancy maps from the Local-
Combiner filter and generates the final complete 3D space.
The sequence of filters is specified in DC as a single logical
pipeline, with the ImageReader output connected to the Lo-
calCombiner input with one stream and the LocalCombiner
output connected to the GlobalCombiner input with another
stream.

DC supports replication of individual filters to enable
data parallelism via transparent copies, while still support-
ing the abstraction of a single logical stream connecting a
pair of filters. Data written onto the same logical stream
from multiple producer filter copies is multiplexed into the
stream, while data read from the stream is directed to differ-
ent copies of a consumer filter either in a round-robin fash-
ion or via a token-based, demand driven policy based on
how fast filter copies are consuming the data on the stream
(similar to TCP-based flow control). This DC feature en-
ables effective dynamic scheduling of filters onto the multi-
ple machines to enable parallel execution. However, if mul-
tiple filter copies are deployed onto a single SMP machineg,
there can be some overhead caused by contention among
the multiple consumer filter copies attempting to read from
the same input stream. In the SMP environment, because
reading data from the input stream is a destructive opera-
tion, the DC runtime system must lock the stream buffer
before reading and returning the data requested by a filter
copy from the stream. Such locking can incur substantial
overhead if many filter copies are reading from the same
stream. For the volumetric reconstruction application, the
ImageReader and LocalCombiner filters can be, for exam-
ple, replicated onto each host that stores image data, while
only a single copy of the GlobalCombiner filter is needed to
combine all the partial occupancy maps for a frame into the
complete map for the frame, to be returned to the request-
ing client. More details on the configuration of DC filters
for our experiments will be presented in Section 5.

As do the ADR and DC implementations, the MQO im-

plementation processes volumetric reconstruction queries in
parallel through its operators, but performs the required op-
erations in a rather different way. To produce a 3D volume
with ADR or DC, all the image data specified by the range
query must always be retrieved to produce the desired par-
tial occupancy maps. However, if there are overlaps in the
data and/or processing required across different volumet-
ric reconstruction queries, MQO can reduce the amount of
work it must perform to satisfy the queries, since it will
only retrieve and process data for computations whose re-
sults have not been already produced and stored in the MQO
cache. In addition, MQO can use cached intermediate re-
sults to compute query results if additional processing can
be performed to produce the desired results. In an SMP
environment, MQQO’s query server can either run as a multi-
threaded application (denoted as MQO-SMP) or as an MPI-
based application (denoted as MQO-MPI). In the SMP ver-
sion, MQO can execute multiple queries simultaneously by
allocating a thread or a group of threads to each query (i.e.,
queries can be a priori partitioned). In the MPI version,
all MPI processes collaborate to execute a single query.
The simultaneous execution of multiple queries contributes
to decreasing the amount of time a query will wait before
being scheduled for execution at the expense of requiring
more time for processing (since less computational power
is available for each individual query).

5 A Comparative Analysis

In this section, we compare and analyze the performance
of the three frameworks, supporting the execution of multi-
ple Volumetric Reconstruction (VR) queries. The VR appli-
cation has been implemented using each of the middleware
systems, using much of the same source code and opera-
tors. To provide additional insights from this comparison,
we have employed two quite different environments for run-
ning the middleware systems, a cluster environment and a
shared memory environment.

The cluster environment is a Linux cluster containing 17
Pentium 111 650 MHz nodes, each of which has 768 MB of
RAM, and 320 GB of disk storage. The nodes are inter-
connected via channel-bonded Fast Ethernet (200 Mb/s per
node). The shared memory environment is a Solaris Sunfire
6800 with 24 processors, 72 GB of RAM and 4 x A1000
RAID disk systems. In the shared memory environment,
we also use 17 processors for all three frameworks, 16 for
the query server and one that hosts the workload generator
producing the queries to be processed.

Our test dataset is a multi-perspective sequence of 2600
frames generated by 13 synchronized color cameras, each
producing 640 x 480 pixel images at 30 Hz [14]. The test
dataset is partitioned into 32 silhouette image files, each of
which is 329 MB in size, and the files are spread across

two disks per node on 16 nodes in the cluster environment
and stored in 32 different directories on the RAIDs in the
shared memory environment. Each of the 32 image files
contains a collection of data chunks. A chunk of data is a
single image whose attributes include a camera index and
a timestamp. Therefore an image can be identified and ac-
cessed via its camera index and timestamp. A VR query
specifies the 3D region within the overall image space to be
reconstructed, a timestamp range (which represents the set
of frames for which volumetric models are computed), and
a reconstruction resolution (higher resolution results in a re-
construction with finer detail, up to the resolution of the im-
ages). A query result is a reconstruction of the foreground
object region lying within the query region, encoded as an
octree.

5.1 The Workload Model

In our experiments, we generated 16 sets of queries, or
batches. Each batch contains 50 VR queries, with differ-
ent batches modeling different distributions of query inter-
arrival times (exponential distributions with means varying
from 4 to 64 in 4-second increments) and other VR query
attributes, simulating multiple simultaneous users/clients
generating queries. The workload characteristics are shown
in Table 1.

The queries in a batch were constructed according to a
synthetic workload model (since at this time we do not have
enough real user traces for the application). The workload
generator emulates a hypothetical situation in which users
want to view a 2 to 4-second (at a rate of 10 frames per
second) 3D instant replay for hot events in, for example,
a basketball game. The workload generator takes as input
parameters a set of “hot frames” (e.g., slam dunks during the
game) that marks the interesting scenes, and the length of a
“hot interval” (i.e., the duration of the scene), characterized
by a mean and a standard deviation.

A query in a batch requests a set of reconstructions as-
sociated with frames selected according to the following
algorithm. The center of the interval is drawn randomly
with a uniform distribution from the set of hot frames (10
hot frames were used). The length of the interval is se-
lected from a normal distribution (each hot frame is asso-
ciated with a mean video segment length, statistically vary-
ing from 34 to 62 frames). Between the first and last frame
requested by a particular query, intermediate frames can be
skipped, i.e., a query may process every frame, every 2nd
frame, or every 4th frame. The skip factor is randomly se-
lected. The output volume resolution and the 3-dimensional
query box were fixed (queries reconstructed the entire avail-
able volume, and the resolution corresponds to an octree of
maximum depth 6), as was the dataset and we have used
data from all the available cameras (the system allows for

Batch | Frames | UF | FPQ | AvgIAT | F1 F2 F3 | F>3
0 1540 400 30.80 3.67 18.0% 13.2% 16.8% 52.0%
1 1578 395 31.56 9.73 25.8% | 25.8% 3.0% 45.3%
2 1598 400 31.96 11.17 10.8% 10.8% 24.8% 53.8%
3 1366 401 27.32 14.77 8.2% 29.7% | 20.4% 41.6%
4 1691 386 33.82 20.62 9.3% 23.1% 17.9% 49.7%
5 1384 374 27.68 25.59 233% | 18.7% | 17.1% 40.9%
6 1526 397 30.52 27.92 16.6% 10.6% 27.2% 45.6%
7 1366 365 27.32 32.56 271.7% | 12.3% 7.1% 52.9%
8 1392 372 27.84 30.37 17.2% 26.3% 24.5% 32.0%
9 1580 416 31.60 38.15 9.6% 12.3% 21.9% 56.2%
10 1506 392 30.12 33.79 12.2% | 13.0% | 20.9% 53.8%
11 1645 400 32.90 48.74 11.2% 13.8% 15.2% 59.8%
12 1640 387 32.80 36.04 21.2% | 19.6% | 14.5% 44.7%
13 1421 396 28.42 62.06 5.8% 17.2% 30.1% 47.0%
14 1395 359 27.90 65.58 262% | 17.5% | 11.7% 44.6%
15 1374 362 27.48 59.82 26.8% 18.2% 19.1% 35.9%

Table 1. Workload characteristics.

For each batch, the Frames column shows the total number of

frames in the batch, UF shows the total number of unique frames in the batch, FPQ shows the average
number of frames per query, AvglAT shows the average inter-arrival time in seconds between queries,
F1 shows the percentage of the number of frames reconstructed only once in the batch, F2 shows
the percentage of the number of frames reconstructed twice in the batch, F3 shows the percentage
of the number of frames reconstructed three times, and F>3 shows the percentage of the number of

frames reconstructed more than three times.

queries that perform the reconstruction from a subset of the
cameras that shot a frame).

From Table 1, we see that all of the batches have a con-
siderable amount of locality. Between 70% and 95% of the
frames in any given batch are specified by more than one
query in the batch, which indicates the possibility of lever-
aging considerable amounts of reuse in the MQO imple-
mentation. The table also shows that the amount of load on
the query server varies from very high for Batch 0, where
the average query inter-arrival time is around 3.7 seconds,
to very low for Batches 13, 14, and 15, where the average
query inter-arrival time is as high as 60 seconds. This work-
load enables us to study the three middleware systems from
the perspective of how well they handle workload with vary-
ing characteristics, in terms of coordinating the use of 1/0
and computational resources, as well as how the systems are
able to leverage the locality seen in the queries that must be
processed.

5.2 Experimental Metrics

To measure the performances of our three middleware
frameworks, we considered the following metrics: Query
Waiting Time (QWT), Query Execution Time (QET), and
Total Query Batch Time (TotalQBT). QWT is the amount

of time from the moment a query was submitted to the sys-
tem until it gets scheduled for execution. That is, QWT is
the query delay before actual processing begins, if the query
server is busy. QET captures the elapsed time for a query
to complete from the moment it gets scheduled for execu-
tion. Finally, TotalQBT captures the total execution time
for one query batch. From a user standpoint, lower QET
and lower QWT implies faster query turnaround time. Sim-
ilarly, from the query server perspective, lower TotalQBT
implies higher query server throughput.

5.3 Shared Memory Environment

Each of the middleware systems can be hand-tuned by a
variety of parameters. In the following experiments, we em-
ployed the best configuration found during a set of trial runs.
Among other issues, we were particularly careful in ensur-
ing that all three systems used exactly the same amount of
resources, in particular, the same number of processors and
disks were compiled with the same compiler, and used the
same libraries (i.e., ADR and MQO-MPI both were linked
against the same MPI library).

In the shared memory environment, there are 32 data
files that are stored in 32 different directories. ADR uses 16
different processes/processors to compute the queries. The

Query Execution Time Median (SMP)

Query Execution Time STDEVs (SMP)

180
HADR P ——ADR
— 160 |
e Bne _\A—A — :l((j)()-ﬁl\’ll’
140 EMQO-SMP - 140 MQO_;“” -
EMQO-MPI
120 120
:\; 100 é 100 A A
=3 a
w %
= 80 =
g 5 80
60 60
40 ©
Wb G b LR, -
QB0 QBI QB2 QB3 QB4 QBS QB6 QB7 QBS QBY QBI0 QBII QBI2 QBI3 QBI4 QBIS B0 OBI QB2 OBS QB4 OBS OB6 OB7 OBS QB9 OBIO OBIl OBIZ OBIS OBIS OBIS
Query Batch Query Batch
(a) Median (b) Standard Deviation
Figure 3. Query Execution Time in the SMP environment.
Query Wait+Execution Time Median (SMP) Query Wait+Execution Time STDEVs (SMP)
900 0
oo HADR ——ADR
800] Obpc B - DC
s —A—MQO-SMP |
00 1L EMQO-SMP | MQO-MPI
EMQO-MPI

500 [

400

QWET 50% (s)

300

200

100

T Lﬂﬂﬂﬂﬂﬂ

400

QWET STDEV (5)

QB0 QBI QB2 QB3 QB4 QBS QB6 OQB7 QBS QB9 QBI0 QBIl QBI2 QBI3 QBI4 QBIS
Query Batch

(a) Median

QBO QB! QB2 QB3 QB4 QBS OQB6 QB7 QBS QB9 QBI0 QBIl QBI2 QBI3 QBI4 QBIS

Query Bateh

(b) Standard Deviation

Figure 4. Query Wait+Execution Time in the SMP environment.

workload generator tool was used to submit batch queries
to the parallel back-end of ADR and receive the results.
The standard ADR configuration has front-end and paral-
lel back-end systems that are customizable by an applica-
tion developer. The workload generator serves as a simpli-
fied version of the ADR front-end. The parallel back-end
consists of 16 different processes that share the same code.
Each process is responsible for retrieving images that over-
lap the VR query range, which are stored in two different
data files, and the process produces partial occupancy maps
for each frame specified for a query in the ADR Local Com-
bine step. For the ADR Global Combine step, all of the par-
tial occupancy maps for each frame are globally combined

10

across the processors via inter-process communication, re-
sulting in complete occupancy maps that represent the 3D
volume occupied by the foreground objects in the images.
The process responsible for this global merging process is
determined by ADR in round-robin fashion for each frame.
Therefore the work for the Global Combine step across all
the occupancy maps is allocated uniformly across the pro-
cesses. ADR uses the MPICH library for inter-process com-
munication. We configured the low-level communication
device of the MPICH library as ch_shmem, which is ap-
propriate for a single shared memory system. The often
used MPICH ch_p4 device does not perform as well as the
shared memory device, because it employs network seman-

Query Wait Time of Query Batch 0 (SMP)

1800

—+- ADR
DC
4~ MQO-SMP

1600 -

1400 -

MQO-MPI
1200

1000

QWT ()

800 -

(a) Query Batch 0

Query Wait Time of Query Batch 8 (SMP)

450
- ADR
400 = DC
-+ MQO-SMP
MQO-MPI

350

300 -

250

QWT (5)

200 [

(b) Query Batch 8

Figure 5. Query Wait Time in the SMP environment.

Total Query Batch Time (SMP)

3500
M ADR .
—oODC IHE
HMQO-SMP
[~ EMQO-MPI alin

3000

2500

2000 nlin

1500 ml'm

TotalQBT (s)

1000 o) n

QB0 QBI QB2 QB3 QB4 QBS QB6 QB7 QBS QB9 QB10 QBI1 QBI2 QBI3 QB 14 QBI5

Query Batch

Figure 6. Total Query Batch Time in the SMP
environment.

tics even for processes that share physical memory in the
SMP. Using shared memory for MPI interprocess communi-
cation performs much better in the SMP environment since
it can substantially reduce communication time through op-
timized message passing through shared memory (as con-
firmed during our trial runs).

In the DC framework, all the VR filters are executed
as application daemon (appd) threads. Since we are us-
ing only one SMP machine in this environment, we deploy
only one appd. Therefore, all of the filter instances are
threads belonging to a single appd process. This differen-
tiates DC from ADR. That is, we can guarantee that ADR
uses only 16 processors for back-end processing. However,
in DC additional threads may be instantiated dynamically.

11

In order to ensure that the same amount of computational
resources are employed in all the VR implementations, we
used the Solaris utility psrset. This command enables the
creation of a fixed processor set and the binding of an ap-
plication to this set, thus ensuring that no additional pro-
cessors are used (note that our SMP machine has 24 proces-
sors). Therefore, we created a processor set that contains 16
processors and bound the DC appd to it. DC is configured
with 2 ImageReader filters, 13 LocalCombiners, 1 Global-
Combiner and a separate Consol e process. This config-
uration proved to be the best one we could find during our
trial runs. The Consol e acts as the workload generator,
similar to the front-end in ADR. The Consol e runs as a
separate process and submits batch queries and receives the
results from the filters. We determined that using more than
two ImageReader filters decreases the overall performance
of the DC implementation, because of resource contention
from multiple threads attempting to read image data from
the RAID disks simultaneously.

We employed two configurations of the MQO system,
an SMP version and and an MPI version, to see how differ-
ent mechanisms for processing multiple queries can affect
the overall performance of the MQO implementation. In
the SMP version of the MQO framework, each query is ex-
ecuted as one thread (using the Pthreads library). MQO’s
Query Server is implemented as a fixed-size thread
pool that interacts with the clients to receive queries and
return the results. Usually the size of this thread pool is the
number of processors available in SMP system, i.e, it is the
limit on the maximum number of queries that can be simul-
taneously serviced. However, we configured MQO’s query
server such that it uses a 16-thread pool since we wanted to
ensure that it relies on the same resources as ADR and DC.

The MPI version of the MQO framework was originally de-
veloped for clusters of SMPs. In MQO-SMP, all queries are
executed as different threads, i.e., using inter-query paral-
lelism. However, MQO-MPI processes one query with mul-
tiple processes, i.e., using intra-query parallelism. There-
fore, in a sense, MQO-SMP is similar to DC in the SMP
environment since all queries are executed as threads in
one server process. Similarly, MQO-MPI and ADR have
in common that they use multiple server processes to exe-
cute a query. We will see from the experiment results that in
the SMP environment, MQO-MPI outperforms MQO-SMP
in many cases.

Both versions of the MQO system employ a fixed
amount of space for semantic caching. In our experiments,
this amount was fixed at 1 GB. In the SMP version, there is
a common pool of 1 GB and, in the MPI version, 1 GB is
uniformly split among the 16 processes, i.e., each one has
64 MB for caching. The size of the reconstructed volume
for each frame in the queries in the experimental batches re-
quires 256 KB of storage and, therefore, a 30-frame query
requires 7.5 MB. It is easy to verify that 1 GB of cache space
is enough to store the reconstructed volume for 4096 frames
(which implies potentially caching all of the frames in our
experimental dataset). This analysis allows us to estimate
an upper bound for the estimated decrease in batch execu-
tion time that can be achieved by either version of MQO.
Looking at Table 1, we see that for all of the batches the
number of frames that undergo volumetric reconstruction is
around 1500, however only about 400 of those are unique.
Therefore, MQO could ideally execute a query batch in
approximately 26% of the time required by either DC or
ADR, since its cache space is large enough to store all re-
constructed frames.

Figures 3, 4, 5, and 6 depict the performance of the var-
ious implementations of the VR application in the SMP en-
vironment. In these charts, we see that the two variants
of MQO perform better than both DC and ADR. Interest-
ingly, as seen in Figure 3(a), MQO-SMP has the worst per-
formance in terms of the observed QET for batches QBO,
QB1 QB2, and QB3. This is explained by how queries are
processed by the query server, i.e., queries are usually allo-
cated to a single thread and because of the small query inter-
arrival time, multiple queries, in particular, the ones for
which reuse can be leveraged will block, while the reusable
results are computed. In other words, the system infers
that reuse is possible, but the reusable result is still being
computed and this triggers a wait period for all queries al-
ready in the system whose results are going to be computed
based on previously reconstructed frames. As the system
becomes less busy, results can be immediately reused and
queries are computed more quickly. Note that MQO-SMP
may assign more than one thread for a query, if there are no
other waiting queries in its scheduling queue. However, this

12

Total Query Batch Time (Cluster)

3500

DADR
L mpC
EMQO

3000

2500 -

2000 -

1500

TotalQBT (s)

1000 |

500

QBO QBI QB2 QB3 QB4 QBS QB6 QB7 QBS QB9 QB10 QB11 QB 12 QB13 QB 14 QB 15
Query Batch

Figure 10. Total Query Batch Time in the clus-
ter environment.

strategy provides performance improvements if the system
is not overloaded. Because of MQO-SMP’s adaptive behav-
ior, the standard deviation for batch execution time depicted
in 3(b) is consistently much higher (but decreasing as the
system becomes less loaded) than for the other implemen-
tations where queries are processed in parallel, but one at a
time. It is also evident in this picture that ADR, by employ-
ing asynchronous 1/0 operations, shows very low variability
in the QET metric.

For QBO, Figure 5 shows that MQO-SMP incurs the
least amount of delay between the submission of a query
and when it is scheduled for execution, since queries are as-
signed to as little as one processor (thread). In fact, a query
may execute sequentially with other queries using other pro-
cessors. The QWT slope for ADR and DC shows that those
implementations are not able to keep up with the incom-
ing queries, as the wait time increases for queries submitted
later.

Analyzing the performance of the different implemen-
tations using the combined QWT and QET metrics, i.e.,
the Query Wait and Execution Time (QWET), provides us
with a user perspective of how long it takes to actually
execute the queries. This metric is particularly important
in interactive systems. One interesting point is seen when
Figure 3(a) is contrasted with Figure 4(a), in particular for
QBO (i.e., when the systems are subjected to the the highest
workload), MQO-SMP and MQO-MPI behave quite differ-
ently. While, MQO-SMP shows a longer QET on average,
it makes up for that in terms of of a much lower QWT on
average, which results in faster response time (QWET). Al-
though that advantage does not appear consistently, even for
batches QB1, QB2, and QB3, MQO-SMP is clearly supe-
rior in terms of reducing QWT as it can execute more than
one query simultaneously. From the QWET metric, we see

Query Execution Time Median (Cluster)

OADR |
EDC

QET 50% (s)

QB0 QB1 QB2 QB3 QB4 QBS QB6 QB7 QBS QB9 QB10 QBIl QBI2 QBI3 QBI14 QB IS
Query Batch

(a) Median

Query Execution Time STDEVs (Cluster)

Figure 7. Query Execution Time in the cluster environment.

Query Wait+Execution Time Median (Cluster)

350
DADR
EDC
EMQO

300

250

200 r

150

QWET 50% (s)

100

50

QBO QBI QB2 QB3 QB4 QBS QB6 QB7 QBS QB9 QBI0 QBIl QBI2 QBI3 QBI4 QBIS

Query Batch

(a) Median

A\ ADR
12 -=-pC
—&—MQO
10 +
Z 8f
a
=
@
= 6
=
=]
4|
s
QRO QBI OB2 OQBI QB4 OQBS OQBG QB7 QBS OB QBI0 QBII QBI2 QRBI3 QBI4 QBIS
Query Batch
(b) Standard Deviation
Query Wait+Execution Time STDEVs (Cluster)
200
180 ADR |
—&-DC
160 —4—MQO -+
140
<120
>
2
£ 100
z
2 %0
=4
60
20 o
I . i e e i i
0 N

QB0 QBI QB2 QB6 QB7 QBS QB9 QBI0 QBII QBI2 QBI3 QBI4 QBIS

Query Batch

(b) Standard Deviation

Figure 8. Query Wait+Execution Time in the cluster environment.

that both MQO systems perform much better than ADR and
DC, show the large benefits of optimizing for reuse when
there is locality and the systems are subjected to intense
workloads. Those performance improvements are less obvi-
ous as the system becomes less busy (QB7 to QB15), even
though a great deal of locality still occurs across the queries.

Another interesting result is seen in Figure 6. When
the system is under a great deal of stress (QBO to QB4),
the multi-query optimization strategies are most beneficial.
That is, any savings in resource usage observed for a query
immediately translates into decreased response time for
other queries in the system. It is also interesting to observe
that MQO-MPI is clearly superior to MQO-SMP for those

13

query batches. The primary reason is that MQO-SMP pro-
cesses several queries at the same time. This causes internal
competition for the I/O subsystem in the SMP, as low local-
ity is achieved in disk operations. MQO-MPI is more dis-
ciplined in that regard because only a single query is being
processed at a time. Another observation is that MQO-MPI
is able to process QBO in around 35% of the time required
by ADR. A back of the envelope calculation shows that the
lower bound in terms of batch execution time is 26% (400
unique frames out of a total of 1540, as seen in Table 1).
Therefore, we can estimate MQO’s overhead, i.e., the func-
tionality required to support multi-query optimization, as
around 10%. Figure 6 also shows that as the system be-

Query Wait Time of Query Batch 0 (Cluster)

ADR
—&-DC

[—a—MQO

VR Que

(a) Query Batch 0

Query Wait Time of Query Batch 8 (Cluster)

:ii ADR [.T)

" | -m-pC /\

40 - —A—MQO
% 25

: /\A Bk /\ [‘\./.\.Jk

R R P P S LSS

(b) Query Batch 8

Figure 9. Query Wait Time in the cluster environment.

comes less busy (QB5 to QB15), reuse does not improve
the MQO implementations’ performance in terms of total
query batch time, despite the fact that it still decreases the
execution time of individual queries (because of the large
inter-arrival times of the queries)..

5.4 Cluster Environment

In the cluster environment the input dataset was declus-
tered across multiple local disks. We employed a declus-
tering strategy based on Hilbert space-filling curves [31],
which has been shown to result in close to optimal workload
balance for Volumetric Reconstruction queries on contigu-
ous regions in the multi-dimensional space [14]. We used
16 nodes for storing the dataset files. Each node hosted two
dataset partitions stored on two local hard disks, since hav-
ing one partition per disk enables better 1/O performance.

ADR employed a total of 17 nodes for the experiments,
one for the workload generator and 16 for its parallel back-
end nodes, each of which stores the two data files. We
used the generic ch_p4 MPICH device in this environment.
We measured the execution times of queries in ADR as the
server-side computation time. Because ADR (and MQO)
uses MPI for interprocess communication, there is an over-
head from MPI initialization time that does not exist for
the DC implementation, which uses TCP/IP communication
between multiple appds. To ensure a fair comparison, we
inserted timing code into the ADR server code, and mea-
sured the processing time in the parallel back-end system.
Since a query is executed in parallel across multiple clus-
ter processes (one per processor), we used the maximum
server-side execution time across the all processes as the
query execution time.

14

As does the ADR implementation, the DC implemen-
tation reserves one node for running its console process.
In the shared memory environment, we used only one DC
appd since the application runs on single SMP machine. In
the cluster environment, we deployed 16 appds across the
16 available processors, each of which is assigned one Im-
ageReader filter and one LocalCombiner filter. Since we
want to use exactly the same resources as for ADR, we
placed the GlobalCombiner filter on one of the 16 proces-
sors (appds). Hence, the DC implementation uses 16 Im-
ageReaders, 16 LocalCombiners and 1 GlobalCombiner re-
sulting in a total of 33 filters. To exploit effective dynamic
scheduling of filters, we used DC’s demand-driven policy
to connect the streams between the transparent copies of
the ImageReader and LocalCombiner filters. That policy
ensures that the runtime system checks the status of the Lo-
calCombiners on all nodes and directs the output of an Im-
ageReader copy to the LocalCombiner copy with the light-
est current load. Because the LocalCombiners perform the
most compute-intensive tasks in the system, a good load
balancing of all the workload in the system is imperative.
The demand-driven policy achieves this goal better than the
default round-robin policy.

We employed the MPI version of the MQO system on
the cluster, since that is the only version that can run in the
cluster environment. We deployed one MQO process onto
each of the 16 cluster nodes used for the server, and used
the other cluster node for the workload generator. MQO
was configured with one worker thread on each node, since
each node has only one processor. That implies that each
node can only execute one query at a time, and since each
query must be executed on all server nodes (to access the
data on all nodes).

The results in Figures 7, 8, 9, and 10 show trends that
are very similar to the SMP experimental results. One in-
teresting observation is that the multi-query optimization
strategies are not as important from the standpoint of to-
tal batch query execution time as in the SMP environment.
As seen in Figure 8, only QBO0, QB1 and QB2 show sub-
stantial differences in performance among MQO, ADR and
DC. The processors in the cluster are considerably faster
than the SMP processors and the 1/0 workload is spread
across 32 disks. Therefore, the systems do not appear to be
as busy as in the SMP, which becomes evident when con-
trasting Figure 9(b) to Figure 5(b). However, reuse is still
important when the QWET metric is used to compare the
three implementations.

MQO can also be configured to generate non-optimized
query plans, i.e., no reuse is enabled (but the reuse infras-
tructure is still in place, so some overhead still occurs). Al-
though the results are not shown in the graphs, we ran the
same experiments using the unoptimized MQO configura-
tion in order to capture the overhead caused by the reuse
infrastructure. Our results show that both ADR and DC out-
perform MQO in such a situation. That is, for scenarios in
which there is low locality in the queries, both ADR and
DC will produce better overall system throughput and user
response time than the unoptimized MQO.

Finally, considering all the experimental evidence we
have gathered, we observed that in both the SMP and cluster
environments, ADR tends to outperform DC. In our experi-
mental environments, DC incurs the overhead of data copies
as data flows from one filter to the next. When we com-
pare these two systems employing the TotalQBT metric, the
difference can be substantial. For example, ADR runs in
around 68% of the time required for DC for Query Batch 0
in the SMP environment. It should be noted, however, that
the DC architecture was tailored for heterogeneous environ-
ments, where applications are functionally decomposed and
different components may execute on different machines.
Therefore, it is interesting to see that as far as TotalQBT
is concerned, when the query server is moderately loaded,
all three middleware system implementations exhibit simi-
lar throughput.

5.5 Lessons Learned

We present a short summary of key points from what we
have learned from the experimental study:

1. Workload characterization is very important in design-
ing a middleware system. The impact caused by dif-
ferent optimizations relies primarily on variables such
as the expected inter-arrival time of queries and the
amount of locality in the workload.

2. Carefully scheduling and coordinating the utilization

15

of 1/0 resources plays an important role, as compe-
tition for resources among multiple entities (threads,
processes, etc.) can negatively impact system perfor-
mance.

3. Reuse is an important optimization, but comes at a
cost that can be substantial in some cases. Moderately
loaded systems do not appear to substantially benefit
from reuse, and when there is poor locality in the work-
load reuse strategies become a liability.

4. Resource adaptation is paramount. ADR achieves
adaptation by employing asynchronous 1/0, DC
achieves adaptation by dynamically load balancing
across filter copies, and MQO adapts its query
execution strategy from essentially sequential for
a single query (i.e., executed within a single
thread/processor) to parallel for one query (i.e., mul-
tiple threads/processors) as the overall MQO system
becomes less loaded. Employing all of these resource
adaptation techniques at the same time and dynami-
cally modifying query server behavior can potentially
yield greater performance in comparison to any one of
the three existing systems, at the expense of more ar-
chitectural complexity in the middleware.

6 Conclusionsand Future Work

Any experimental study such as the one conducted in this
paper has limitations. Although we have attempted to study
the middleware systems using different workloads and run-
time environments, many aspects of such a study are closely
tied to the application characteristics and system configura-
tion. Our major aim was to present trends and, based on
them, suggest improvements to data analysis middleware
systems. One limitation of the present study is that in both
computational environments we employed, the parallel re-
sources are homogeneous. However, when heterogeneity is
an issue (and, in Grid environments that is becoming preva-
lent), DC is expected to outperform both ADR and MQO,
because of its ability to adapt to the current runtime envi-
ronment. We intend to address the issue of heterogeneity in
resources (processor, network, etc.) in a future study.

We have shown that leveraging reuse across queries and
designing middleware for multi-query scenarios can pro-
vide large performance improvements. On the other hand,
there are overheads associated with such an architecture.
Therefore, a system that can change its behavior based on
the workload offered should be able to provide increased
performance both in system throughputand in user response
time. Coordination across multiple threads in performing
1/O operations is also very important. With the exception of
ADR, which carefully plans its 1/O operations, neither DC
nor MQO provide an internal mechanism for optimizing 1/0

operations, and performance is degraded by lack of support
for 1/0 coordination.

We have shown that being adaptive to runtime con-
straints and to workload characteristics is important for
an SMP environment as well as for a cluster environ-
ment. With the advance of Grid technologies, adaptation
will play an even more important role for designing high-
performance, truly distributed applications. We intend to
investigate mechanisms for automatic and quick adaptation
to changes in resource availability and user’s demands on
middleware systems.

References

(1]

(2]

(3]

[4]

5]

(6]

[7]

(8]
(9]

[10]

[11]

G. Agrawal, A. Sussman, and J. Saltz. An integrated runtime
and compile-time approach for parallelizing structured and
block structured applications. IEEE Transactions on Paral-
lel and Distributed Systems, 6(7):747—754, July 1995.

H. Andrade. Multiple Query Optimization Support for Data
Analysis Applications. PhD thesis, Department of Computer
Science, University of Maryland, December 2002.

H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Efficient ex-
ecution of multiple workloads in data analysis applications.
In Proceedings of the 2001 ACM/IEEE SC Conference (SC
2001), Denver, CO, November 2001.

H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Active
Proxy-G: Optimizing the query execution process in the
Grid. In Proceedings of the 2002 ACM/IEEE SC Confer-
ence (SC 2002), Baltimore, MD, November 2002.

H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Schedul-
ing multiple data visualization query workloads on a shared
memory machine. In Proceedings of the 2002 IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS 2002), Fort Lauderdale, FL, April 2002.

H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Exploit-
ing functional decomposition for efficient parallel process-
ing of multiple data analysis queries. In Proceedings of the
2003 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS 2003), Nice, France, April 2003.

H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Optimizing
the execution of multiple data analysis queries on parallel
and distributed environments. IEEE Transactions on Paral-
lel and Distributed Systems, 15(6):520-532, June 2004.
Association for Pathology Informatics.
http://www.pathologyinformatics.org.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In Proceedings of the 1990 ACM In-
ternational Conference on Management of Data (SIGMOD
1990), pages 322—331, May 1990.

M. Beynon, C. Chang, U. Catalyurek, T. Kurc, A. Sussman,
H. Andrade, R. Ferreira, and J. Saltz. Processing large-scale
multidimensional data in parallel and distributed environ-
ments. Parallel Computing, 28(5):827—859, May 2002. Spe-
cial issue on Data Intensive Computing.

M. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman,
and J. Saltz. Distributed processing of very large datasets

16

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

with DataCutter. Parallel Computing, 27(11):1457-1478,
October 2001.

E. Borovikov and L. Davis. A distributed system for real-
time volume reconstruction. In Proc. of Computer Archi-
tectures for Machine Perception. IEEE Computer Society,
September 2000.

E. Borovikov, A. Sussman, and L. Davis. An efficient
system for multi-perspective imaging and volumetric shape
analysis. In Proceedings of Workshop on Parallel and Dis-
tributed Computing in Image Processing, Video Processing,
and Multimedia, April 2001.

E. Borovikov, A. Sussman, and L. Davis. A high perfor-
mance multi-perspective vision studio. In Proceedings of
the 2003 ACM International Conference on Supercomput-
ing (ICS 2003), pages 348-357, San Francisco, CA, June
2003.

A. Bottino and A. Laurentini. A silhouette-based technique
for the reconstruction of human movement. Computer Vi-
sion and Image Understanding, 83, 2001.

D. L. Brown, W. D. Henshaw, and D. J. Quinlan. Overture:
Object-oriented tools for applications with complex geome-
try. In Proceedings of the 1999 International Conference on
Scientific Computing in Object-Oriented Parallel Environ-
ments (ISCOPE 1999), pages 96—107, San Francisco, CA,
December 1999.

M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann, and
D. Thalmann. Motion control of virtual humans. IEEE Com-
puter Graphics and Application, 18(5):24—31, 1998.

C. Chang, A. Sussman, and J. Saltz. CHAOS++. In G. V.
Wilson and P. Lu, editors, Parallel Programming Using
C++, Scientific and Engineering Computation Series, chap-
ter 4, pages 131-174. MIT Press, 1996.

Y. E. Cho, M. Winslett, S. wen Kuo, and Y. Chen. Parallel
1/0 for scientific applications on heterogeneous clusters: A
resource-utilization approach. In Proceedings of the 1999
International Conference on Supercomputing, pages 253—
259. ACM Press, June 1999.

L. Davis, E. Borovikov, R. Cutler, D. Harwood, and T. Hor-
prasert. Multi-perspective analysis of human action. In Pro-
ceedings of Third International Workshop on Cooperative
Distributed Vision, November 19-20, 1999.

C. Faloutsos and P. Bhagwat. Declustering using fractals. In
Proceedings of the 2nd International Conference on Parallel
and Distributed Information Systems, pages 18—25, January
1993.

S. Fink, S. Kohn, and S. Baden. Efficient run-time support
for irregular block-structured applications. Journal of Par-
allel and Distributed Computing, 50(1):61-82, April 1998.
A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck,
and V. Sunderam. PVM: Parallel Virtual Machine. A Users’
Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

High Performance Fortran Forum. High Performance
Fortran — language specification — version 2.0. Techni-
cal report, Rice University, January 1997. Available at

http://www.netlib.org/hpf.

S. Hiranandani, K. Kennedy, and C. Tseng. Evaluating com-
piler optimizations for Fortran D. Journal of Parallel and
Distributed Computing, 21(1):27-45, April 1994.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

W. Humphrey, S. Karmesin, F. Bassetti, and J. Reyn-
ders. Optimization of data-parallel field expressions in
the POOMA framework. In Proceedings of the 1997 In-
ternational Conference on Scientiic Computing in Object-
Oriented Parallel Environments (ISCOPE 1997), pages
185-194, Marina del Rey, CA, December 1997.

Y.-S. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy,
R. Das, and J. H. Saltz. Runtime and language support for
compiling adaptive irregular programs. Software—Practice
and Experience, 25(6):597—621, June 1995.

D. A. Keim and H.-P. Kriegel. VisDB: A system for visual-
izing large databases. In Proceedings of the 1995 ACM In-
ternational Conference on Management of Data (SIGMOD
1995), page 482, San Jose, CA, May 1995.

T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz.
Querying very large multi-dimensional datasets in ADR.
In Proceedings of the 1999 ACM/IEEE SC Conference (SC
1999), November 1999.

J. Lopez and D. O’Hallaron. Evaluation of a resource selec-
tion mechanism for complex network services. In Proceed-
ings of the Tenth IEEE International Symposium on High
Performance Distributed Computing (HPDC 2001), pages
171-180. IEEE Computer Society Press, August 2001.

B. Moon, H. V. Jagadish, C. Faloutsos, and J. Saltz. Anal-
ysis of the clustering properties of the Hilbert space-filling
curve. IEEE Transactions on Knowledge and Data Engi-
neering, 13(1):124—141, January/February 2001.

E.-J. Ong and S. Gong. Tracking hybrid 2D-3D human mod-
els from multiple views. In Proceedings of the IEEE In-
ternational Workshop on Modeling People. IEEE Computer
Society Press, Los Alamitos, Calif., 1998.

OpenMP Architecture Review Board. OpenMP C and C++
Application Program Interface — Version 2.0 March 2002,
March 2002. Available at http://www.openmp.org.

H. Saito, S. Baba, M. Kimura, S. Vedula, and T. Kanade.
Appearance-based virtual view generation of temporally-
varying events from multi-camera images in the 3D room.
Technical Report CMUCS99127, Computer Science De-
partment, Carnegie Mellon University, Pittsburgh, PA, April
1999.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI-The Complete Reference, Second Edition. Sci-
entific and Engineering Computation Series. MIT Press,
1998.

M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek,
A. Sussman, and J. Saltz. Executing multiple pipelined
data analysis operations in the Grid. In Proceedings of the
2002 ACM/IEEE SC Conference (SC 2002), Baltimore, MD,
November 2002.

S. Stillman, R. Tanawongsuwan, and I. Essa. A system for
tracking and recognizing multiple people with multiple cam-
eras. In Proc. Second Int’l Conf. Audio- and Video-based
Biometric Person Authentication, pages 96—101, 1999.

R. Thakur, A. N. Choudhary, R. Bordawekar, S. More, and
S. Kuditipudi. Passion: Optimized i/o for parallel applica-
tions. IEEE Computer, 29(6):70—78, June 1996.

D. Thompson, J. Braun, and R. Ford. OpenDX: Paths to
Visualization. Vis, Inc, 2000.

17

[40]

[41]

A. Utsumi, H. Mori, J. Ohya, and M. Yachida. Multiple-
human tracking using multiple cameras. In Proc. of the third
IEEE Int’l Conf. Automatic Face and Gesture Recognition
(Nara, Japan). IEEE Computer Society Press, Los Alamitos,
Calif., 1998.

S. X. Yang, D. Gannon, P. Beckman, J. Gotwals, and N. Sun-
daresan. pC++. In G. V. Wilson and P. Lu, editors, Parallel
Programming Using C++, Scientific and Engineering Com-
putation, chapter 13, pages 507—546. MIT Press, 1996.

