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Abstract—Behavioral cloning (BC) for first-person shooter
(FPS) games has shown promising results in contexts of limited
information. However, BC models are no exception to issues with
compounding errors, stochasticity, and temporal dependencies
commonly observed in other applications like autonomous driv-
ing. In this paper, we build upon foundational previous work
to address failure states in fine-tuning. Through preliminary
analysis of existing behavioral cloning models in Counter-Strike:
Global Offensive (CS:GO), we find four general categories of
failure states. Then, we propose a data aggregation method
for adjusting the agent from a failure state, collecting the
recovery action data, and fine-tuning the behavioral cloning
model. However, these manual adjustments do not significantly
affect the base performance, which still struggles to achieve
human-like performance. We then looked into applying DQfD,
a reinforcement learning algorithm, to train a new model. We
demonstrate the potential of this new approach and propose a
new methodology to improve our results.

Index Terms—first-person shooter, game AI, data analysis

I. INTRODUCTION

Recent work in behavioral cloning (BC) for first-person

shooter (FPS) games have shown promising results in games

without convenient APIs or large-scale simulation, such as

Counter-Strike: Global Offensive [1]. Behavioral cloning is

a technique where an agent learns an action policy from

expert demonstration in a supervised fashion, whereas an agent

learns in deep reinforcement learning (DRL) through free

exploration of a well-defined environment with a well-defined

reward function. DRL is also more commonly used in artificial

intelligence (AI) for games that are easily simulated, examples

including DeepBlue Chess [2] and DOTA [3]. However, the

application of vision-based behavioral cloning from first-

person perspectives faces several challenges compared to their

easily simulated counterparts and is much less studied in the

context of limited information.

Specifically, behavior cloning suffers from three aspects: 1)

compounding errors, where errors accumulate over a trajectory

and lead the agent into a state unrepresented in the training

data, 2) stochastic expert actions, where multiple “correct"

expert actions exist and the averaged expert action is not a

valid action, and 3) Non-Markovian observations, where ob-

servations depend on multiple previous states (e.g. a trajectory)

rather than only the current state [4], [5]. While these limi-

tations are well-explored in applications such as autonomous

driving, it is a relatively new technique for tactical multi-agent

game AI, where agents operate under a competitive zero-sum

objective.

Additionally, major changes to the game itself could break

a model trained used behavioural cloning, which is very

sensitive to game images. Updates to UI or game features

could deviate far enough from the outdated demonstration

data that the model becomes confused. This is especially true

for CS:GO, which recently updated to be Counter-Strike 2

as of September 27, 2023 and introduced many UI changes

that broke previous work in fine tuning. However to avoid

confusion, we will be referring to the game as CS:GO for the

rest of the paper.

Reinforcement learning can be used to mitigate these limi-

tations. Unlike behavioural cloning, models learned through

rl are more adaptable to changing environments and can

recover better from errors. However, the amount of data

required to train an agent to become proficient in a complex

game such as first-person-shooters is usually too large to be

practical. Instead, we can use a modified algorithm Deep Q-

learning from Demonstrations(DQfD) [6] that utilizes existing

demonstration data to speed up the training process.

In this paper, we present two different methods for training

a model to play CS:GO - one using behavioural cloning

with fine tuning and another using the DQfD algorithm. In

the beginning, we will explore the application of behavioral

cloning methods on FPS games and propose a simple method

for failure state recovery based on mini-map and player local-

ization cues. A visual summary of our method can be found

in Figure 2. Later, we created a custom gym environment for

running the CS:GO game and demonstrate the process that

allows our model to converge to near zero loss and increase

training score over time. However, further improvements to

how we do reward engineering is needed.

II. BACKGROUND

A. Behavioral Cloning for FPS Games

Behavioral cloning (BC) is a common and well-explored

method for replicating human behavior in applications

other than video games, such as autonomous driving and

robotics [7]–[9]. This method extends naturally to video games

since video games can be considered simulation-only and



Fig. 1: Visualization of encountered failure states over a 10

minute time frame. Here, we plot the positions of failure states

(black) in relation to the density of map coverage from the

fine-tuned DM agent of [1]. Failure states often occurred in

sparse areas adjacent to popular areas.

noiseless robotics problems [10], [11]. Recently, Pearce and

Zhu provide foundational work in behavioral cloning [1] for

first-person shooter games, where large-scale simulation is

difficult for successful deep reinforcement learning, which

is what most state-of-the-art game artificial intelligence (AI)

methods employ [12]–[14]. This foundational work is the first

to employ behavioral cloning in first-person shooter settings,

where action and observation spaces are high-dimensional.

Behavioral cloning is a form of “imitation learning" where

an agent learns to mimic the action of a demonstrator, typically

a human expert. This technique can be applied to both FPS

games and autonomous robotics, albeit with a few differences.

Video games have a much lower risk factor than autonomous

driving, so incomplete datasets are acceptable and environ-

ment exploration is cost-efficient. FPS game agents can also

incorporate tuning into systems since they operate in a more

restricted environment than autonomous vehicles do.

For convenience, we reiterate the objective of behavioral

cloning from [1]. Given offline observation data pairs D =
{{a1, o1}, ...{aN , oN}} collected from an expert control pol-

icy π∗(a|o) representing a probability distribution of actions

a ∈ R
M for M degrees of freedom, the objective of behavioral

cloning is to learn a policy πθ(a|o), parameterized by θ, which

optimizes the following objective:

θ = argmin
θ

N∑

i

L(ai, πθ(â|o))

where L : A×A→ R represents a loss function.

B. Reinforcement Learning

Reinforcement learning, in contrast to behavioural cloning,

is a training method whereby the model learns through trial

and error. The agent receives a reward or punishment as it

interacts with its environment and gradually learns to maxi-

mize its reward. Through process, rl algorithms can discover

the optimal strategy without outside assistance, making it a

powerful tool for adapting to new environments. This feature

can be especially useful in the context of popular games that

receive regular updates. Reinforcement learning has commonly

been applied to games such as Atari, Chess, and Go with great

success.

III. METHODOLOGY

A. Failure State Recovery

We define a failure state as a situation where the player

policy is unable to move in any degree of freedom for more

than five seconds. We set this threshold of five seconds in

the context of a competitive tactical shooter format, since

opponents will be other players, and movement in the game,

in general, should be constant.

In general, trained player policies will fall into a failure state

due to compounding errors commonly present in imitation

learning problems for robotics. A common behavior bias found

in datasets collected from human users is that the user almost

never faces the wall while also being close to the wall; in other

words, the expert player which the imitation learning model

learns from is almost always facing away from the walls of

map corridors.

A popular technique addressing compounding errors is Data

Aggregation (DAgger) [15], [16]. Intuitively, DAgger address

out-of-distribution observation states by incorporating new

offline data in each iteration from the expert policy π∗. As the

student policy π experiences new states, the expert generates

the corresponding “correct" action and adds it to the data pool

for policy π to learn from.

Implementing this for FPS games, however, is difficult due

to the lack of an existing expert policy. While there are

large amounts of human-generated data possible, coupling

new observations with expert actions requires a human to be

present during DAgger iterations, making the naive application

infeasible. Alternatively, we propose a modified technique for

handling failure states without the need for an expert policy.

This method is further outlined in Algorithm 1.

Algorithm 1 Modified DAgger for Behavioral Cloning

Result: Trained policy π̂∗

Dataset D ← ∅ π̂0 ← Random Initialization o ← Initial

observation

for n← 1...N do

πi ← Recovery(πi) ; // Modify candidate

Di = {(s, πi(s)} ; // Sample trajectories

D ← D ∪Di ; // Combine datasets

Train π̂i+1

end

We found in existing behavioral cloning models that failure

states fell into three categories: overshot up, overshot down,

and facing walls. Occurrences occurred the most in areas of
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Fig. 2: Overview of our method. Our method, denoted by red arrows, depicts the failure state recovery routine for a baseline

behavioral cloning model in green. The result of our routine is thus nudging the agent’s observed state into a recognizable

distribution, then recording the recovery actions for future fine-tuning.
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Fig. 3: Four examples of failure states.

Algorithm 2 Recovery Policy

Data: Candidate policy π̂, Horizontal turning interval θZ ,

Vertical turning interval θY , Max turning angle β
Result: Modified Policy π̂R and chosen action a
a← π̂(o) a← clip(a,−β, β) s← Environment(a)
if Player facing wall in st then

a← θZ + aRotX

end

if Player facing sky then
a← −θY + aRotY

end

s← Environment(a)

the game map closest to edges. Examples of failure states are

pictured in Figure 3.

To address these challenges, we use RGB pixel values on

specific parts of the game window and used this information

to make slight adjustments. This is feasible since video games

are noise-less simulation environments. For example, we can

expect that map textures and HUD locations and colors will

stay constant over multiple iterations of a game.

We conduct checks for vertical adjustment scenarios by

focusing on the values closest to the center of the screen,

where the crosshair is. If this value happens to be close to

the RGB value for blue, we iteratively nudge the mouse down

until the color changes shade. We make the assumption that

sky colors are the closest to the RGB value (0, 0, 1) than any

texture on the map. Note that this does not handle areas with

ceilings; we leave this to future work, as it is nontrivial to

implement without a public API.

We use a similar method for horizontal adjustments, except

now focusing on the minimap on the top left of the screen. The

minimap is a representation of the player’s local 2-dimensional

position, with the player always at the origin and facing

forward. The minimap rotates along with the player, allowing

us to check for objects or walls in front of the player without

having to perceive a complex 3D scene. Flat, black values in

front of the player on the minimap are indicative of the player

facing a wall. The agent’s rotation is nudged again in small

intervals until the pixel value on the minimap changes.

B. Adapting DQfD for CSGO

The weaknesses of our previous fine tuning approach was its

lack of flexibility. The hardcoded values for pixels and turns

meant even slight deviations to the game ui and commands

could break our implementation. This problem was especially

highlighted when CS:GO updated to Counter-Strike 2 and a

couple features were not ported over. Differences included

a transparent radar, removal of bot difficulty options, and

changes to memory addresses, all of which made continuing

our original work difficult. By apply Deep Q-Learning onto a



gym environment that plays CS:GO, we could leverage one of

reinforcement learning’s greatest strengths - its adaptability.

Our first major challenge was creating a new CS:GO gym

environment to run the algorithm on. We found existing

gym environments that ran CS:GO on steam for linux but

not for windows. Thus, we implemented our environment

from scratch, using the linux code as a reference. Gameplay

data was gathered through a combination of screenshots, gsi

requests, and dumped offsets. In the process, we encountered

several other challenges. Since the implementation we used

passed in integers for actions, we needed to figure out how to

map discrete data to all necessary action states. Considering

that people often input multiple key presses at once when

playing fps games and that players can look anywhere on

screen, this was not a straightforward conversion. Camera

position could be addressed by binding the arrow keys to

player rotation, which adds 4 new action states. The next major

decision was how to incorporate combined actions. Players

commonly hold down multiple keys at once and limiting key

inputs hinders gameplay. One approach was to create new

actions that corresponded to multiple keys but after exten-

sive testing, there was no major difference between mapping

exclusively to single keys and mapping to multiple keys. To

keep total action states low, we only considered single keys

commonly used in our own play. Our action space included

11 total actions: fire, reload, jump, camera up/left/down/right,

and move forward/left/back/right. These actions are also listed

in the order of precedence our data collection process used to

extract the key press per frame. For instance, the forward key

is often held down but the player may want tap the right arrow

key a couple times to make a right turn. In this case, turn right

ranks higher than move forward so the recorded action will

be a series of forward moves punctuated by right turns.

Before running the model, we collected our own demonstra-

tion data for 16 different 10 minute rounds. Each run collected

screenshots and key pressed, which would be mapped to a

number 0-10. To save space on our machine, we converted

each image to grayscale and shrunk them in size. We paired

the screenshots folder with the actions file for each run and

use it for our pretraining.

Lastly, we conducted extensive reward engineering on the

model get the agent to shoot as many enemies as possible.

This was done by running the model and adjusting the reward

function through several iterations. The specific steps of the

modified DQfD code can be seen in Algorithm 3.

IV. RESULTS

A. Fine Tuning

We show results comparing the properties of the behavioral

cloning model with the vanilla routine versus our modified re-

covery routine. In terms of hardware, all results were produced

on Intel Xeon Gold 5218 CPUs (2 cores), 64 GB of memory,

and an NVIDIA RTX 2080 Ti graphics card. Game settings

are replicated from [1].

Overall, we find that our routine diversifies the horizontal

and vertical mouse movement labels compared to the baseline

Algorithm 3 Modified Deep Q-learning from Demonstrations

Data: Demonstration data set Dreplay , random initial be-

haviour weights θ, random target weights θ′, update

freq τ , number of pretraining gradient updates k
for steps t ∈ {1, 2, ...k} do

Sample a mini-batch of transitions from Dreplay with

prioritization

Calculate loss J(Q)
Perform a gradient descent step to update θ
if t mod τ = 0 then

θ′ ← θ
end

end

for steps t ∈ {1, 2, ...} do
Sample action a from behaviour policy

Play action a
Observe s′

r ← (∆score + 2 ∗ ∆kills + ∆assists − ∆deaths +
0.01⌊time/30⌋)
Store (s, a, r, s′) into Dreplay

Sample mini-batch of n transitions from Dreplay with

prioritization

Calculate loss J(Q) using target network

Perform gradient descent step to update θ
if t mod τ = 0 then

θ′ ← θ
end

s← s′
end

dataset. A visualization comparing the two distributions can

be found in Figures 4 and 5.

To evaluate how our recovery policy may influence the

performance of the baseline agent directly, we also quantify

the difference in deathmatch metrics. Deathmatch is a free-

for-all game mode in CS:GO where every other player is an

enemy of the agent. The goal is to get as many eliminations

as possible. The metrics used are Kills Per Minute (KPM) and

Kill-Death Ratio (KD). Detailed comparisons for this can be

found in Table I. While kill per minute and kill death ratio

are worse than the original stats for each category, our routine

performs better consistently for both values compared to an

untouched routine that did not implement any tuning. We also

quantify the occurrence of different failure state scenarios in

Table II for each training model. Over a five-minute session,

we find that horizontal turning happens less frequently with the

best model, ak47_sub_55k_drop_d4_dmexpert_28, and that

all models do not engage in vertical turning. We also find

that most horizontal turning involves scenarios facing narrow

corridors and sharp turns. As we see in Figure 1, most of

the failure states are concentrated in sparsely explored areas

directly adjacent to areas with high map coverage.

B. DQfD Implementation

Our final model training statistics show promising results.

We find through our loss and training score that performance



TABLE I: Evaluation comparison for Kills-Per-Minute (KPM)

and Kill-Death Ratio (K/D) between the baseline behavioral

cloning model and our method. Without any additional train-

ing, our method enhances the performance of the baseline

model by up to 10 times.

—– Easy —– —– Medium —–
Model KPM↑ K/D↑ KPM↑ K/D↑

Baseline [1] 0.29 0.40 0.03 0.05
Ours + Baseline [1] 0.33 0.44 0.44 0.32

Expert Baselines

Built-in Bot (easy) 2.11 1.00 – –
Built-in Bot (medium) – – 2.41 1.00
Human (Non-gamer) 4.25 1.80 2.38 0.90
Human (Casual gamer) 4.20 4.20 3.51 2.48
Human (Strong CSGO player) 14.00 11.67 7.80 4.33

TABLE II: Average rate of failure states per minute for

baseline fine-tuned behavioral cloning model gameplay.

Model Wall Sky

ak47_sub_55k_drop_d4 30 0
ak47_sub_55k_drop_d4_dmexpert_28 32 0
ak47_sub_55k_drop_d4_aimexpertv2_60 41.6 0
July_remoterun7_g9_4k_n32_recipe_ton96__e14 39 0

TABLE III: Evaluation comparison for Kills-Per-Minute

(KPM) and Kill-Death Ratio (K/D) between the baseline

behavioral cloning model and our method. Without any ad-

ditional training, our method enhances the performance of the

baseline model by up to 10 times.

Model KPM↑ K/D↑

Past Model [1] 0.44 0.32

Baseline [1] 0.03 0.05

generally goes up. Loss decreases until it plateaus around 0.02

and both training score and action value displays a consistent

increase. In sum, the average loss was 0.032, one of the lowest

out of all test runs.

However, our model still struggles when put into practice.

The agent tends to move around randomly before stopping

completely after a couple seconds. The agent stays motionless

until it gets killed and begins moving again.

Average Losses: 0.032

target_interval = 10000

warmup_steps = 50000

pretrain_steps = 10000

learning_interval = 4

num_steps = 200000

num_episodes = 900

max_steps_per_episode = 1000

output_freq = 100

save_freq = 50

V. CONCLUSION

In this paper, we present a simple method for failure state

recovery in behavioral cloning for CS:GO without the need

for an expert policy. We find through our analysis of baselines

that failure states can be easily inferred through pixel checks

on the noiseless environment, and implement recovery actions

accordingly to augment the training dataset for fine-tuning. We

also explored the possibility of using DQfD to train a model

to play CS:GO using a combination of imitation learning and

reinforcement learning. Although performance did not exceed

one trained through behavioural cloning, we shown there is

promise on continually expanding on this work.

Our work has several limitations. Firstly, our method is not

reflective of human-like recovery and only addresses entirely

expert-free scenarios. Future work can take advantage of both

limited expert recovery data and our expert-free recovery ac-



tions to produce realistic behavior. Additionally, our results are

limited in terms of fine-tuning results. In future work, we seek

to evaluate our augmented recovery dataset on a fine-tuned

FPS behavioral cloning model and provide additional insight

into its value to high-dimensional deep learning policies. Ad-

ditionally, we recognize that hardware differences between our

setup and baseline setups can significantly influence baseline

model performance; results for baselines are re-evaluated on

our setup for this reason.

Our work in implementing DQfD also did not bring about

a better improvement. While DQfD worked fine for simple

2D atari games, extrapolating it to a more complex 3D

environment is not so simple. One major problem is the

high dimensionality of our data. Our agent can move in 27

directions, much more than the 8 directions of a 2D avatar.

Another problem is reward sparseness. While most atari

games have simple goals where success and failure can

be determined relatively quickly, CS:GO is much different.

Whether an agent looks upwards 1 degrees or moves to the

right for 5 frames is not strongly correlated to whether it is

going in the right direction. Additionally, killing an enemy by

chance is extremely rare and there is no guarantee whether the

agent can repeat it or learn anything from so few successes.

A game like CS:GO needs a complex reward function as well

as carefully tuned weights, both of which was unfeasible with

manual reward engineering. These problems contribute to the

reason that the game was difficult to train by reinforcement

learning.

This could be addressed by incorporating smarter reward

engineering practices. One method is Direct Behavior Speci-

fication via Constrained Reinforcement Learning [17], which

automatically weighs each of the behavioral constraints and

finetunes the model for desired behavior. Additional work

could be done for extracting more information from the game

itself as model is training as understanding map layout from

screenshots alone is likely not enough. In the future, many

modifications can be made to our work for better performance.
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