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Abstract – A classical multilayer perceptron 

algorithm and novel convolutional neural 

network payload classifying algorithm are 

presented for use on a realistic network in-

trusion detection dataset. The payload classi-

fying algorithm is judged to be inferior to the 

multilayer perceptron but shows significance 

in being able to distinguish between network 

intrusions and benign traffic. The multilayer 

perceptron that is trained on less than 1% of 

the available classification data is judged to 

be a good modern estimate of usage in the 

real-world when compared to prior research. 

It boasts an average true positive rate of 

94.5% and an average false positive rate of 

4.68%. 

 

1 Introduction 

As the internet continues to expand its us-

erbase and becomes more and more synony-

mous with daily life, the threat of malicious 

traffic gains the possibility of becoming 

much greater in volume and more debilitating 

to home and commercial networks. Defend-

ing against this malicious traffic requires a 

suite of tools that will allow network admin-

istrators to detect, block, capture, and analyze 

the malicious streams that traverse their net-

works with high accuracy and speed.  

One component of such a suite is known 

as an Intrusion Detection System (IDS), 

which is a tool for actively or retroactively 

detecting malicious streams within a body of 

traffic. These systems are usually meant to 

comprehensively identify any traffic that is 

unwanted by the network administrator and is 

generated within the network or sent from the 

outside. Examples include denial of service 

attacks, botnet traffic, heartbleed attacks, 

cross-site scripting attacks, worms, buffer 

overflow attacks, port scans, data exfiltration, 

and even malicious binary file transfers.  

Two examples of commonly used IDS’s 

are Cisco’s Snort and the open-source Bro 

IDS [1][2]. These systems use techniques like 

generating signatures of known malicious 

files and having network security experts 

come up with rigidly defined rules for what 

constitutes malicious traffic. Signatures are 

generated automatically and matched against 

files that are extracted from network traffic, 

and rules include things like blacklisting cer-

tain IP addresses within or outside of the net-

work, searching internet packet payloads for 

certain strings or regular expressions, and 

checking for combinations of metadata in in-

ternet packet headers that should never occur 

in legitimate traffic. Although both are effec-

tive, in actual use, signatures can only defend 

against exact replicas of known malware, and 

there can easily be hundreds of rules that need 

to be handwritten and tested. So, signatures 

cannot defend against differently coded ver-

sions of the same malware, zero-day attacks, 

and amorphous malware, which can alter its 

code, and new rules need to be created as new 

attack vectors are found, which constitutes a 

great commitment of time and expertise.  



To improve upon these systems, a com-

monly researched approach is to classify net-

work traffic at the session level by extracting 

a number of features from each session and 

using these features as the input to a machine 

learning (ML) algorithm like a random forest, 

support vector machine, bayesian network, or 

neural network [3][4][5]. The most success-

ful ones are based on specific neural net-

works known as multilayer perceptrons 

(MLPs) and boast impressive accuracies of 

over 98% true positives and less than 1% 

false positives on the 2015 UNSW-NB15 da-

taset [6][7][8]. These accuracies, however, 

are suspect because the authors of [6] and [7] 

respectively use a staggering 90% and 70% 

of their datasets for training purposes and 

only evaluate their classifiers on the remain-

ing 10% and 30%. Such results can be con-

sidered proofs-of-concept because they show 

that there is something that an MLP can learn 

from the input features to accurately predict a 

realistic subset of internet traffic. However, 

when this is thought of in a real-world con-

text, it is not reasonable to assume that a net-

work administrator will have access to over 

50% of benign or malicious internet traffic 

for training.  

For this reason, this paper presents simi-

lar experiments of MLP classification on net-

work traffic with considerably smaller por-

tions of the dataset allocated to training 

(>1%). A newer IDS dataset known as CI-

CIDS2017 has also been chosen to evaluate 

the classifiers because it is significantly more 

recent and appears to be more representative 

of realistic traffic [4].  

Most of the features for the MLP classi-

fier were based on header features that have 

been shown to have an effective impact on 

network traffic classification [9]. However, 

experiments were also run with an additional 

feature that is analogous to what has been 

presented in other research as an effective 

classifier of network traffic into categories 

that are different from the IDS focus pre-

sented here, like transfer protocol type and 

application type [10][11]. This feature will be 

called the payload classifier because it pre-

dicts the maliciousness of every payload of a 

particular session based only on payloads on 

which it was trained. While this payload clas-

sifier showed significance and promise by it-

self, it was unfortunately unable to improve 

upon IDS predictions when incorporated into 

the MLP classifier. 

The main contributions of this paper are 

showing that MLP IDS techniques are appli-

cable to a modern environment and providing 

a better estimate of classification accuracy 

with these techniques. It also introduces a 

technique for leveraging payload features 

that shows significance in being able to clas-

sify packets with meaningful payloads. 

The paper is organized as follows. Sec-

tion 2 introduces this paper’s implementation 

of MLP classification. Section 3 introduces 

the application of deep convolutional neural 

networks to payload classification and how it 

can be combined with an MLP. Section 4 pre-

sents the testing methodology and results of 

using the MLP and payload classifier. And 

section 5 provides the conclusion. 

 

2 The MLP IDS Classifier 

2.1 MLP Network Architecture 

The basic MLP classifier was imple-

mented in keras on top of TensorFlow and is 

a deep neural network that utilizes the Adam 

optimizer and consists of a 27-node input 

layer, which is followed by three fully con-

nected 64-node layers that each have a drop-

out probability of 0.5 and rectified linear unit 

activation, which are followed be a single-

node output layer with a sigmoid activation 

[12][13][14][15].  



The 27 inputs are packet header features 

extracted from .pcap files by a custom Python 

framework and are based on ones that were 

found to be successful in [9]. They include 

(1) number of TCP packets, (2) number of 

UDP packets, (3) number of ICMP packets, 

(4) number of other packets, (5) average in-

terarrival time of packets, (6) number of self-

to-self connections, (7) number of wrong 

TCP packets, (8) number of urgent TCP 

packets, (9) number of packets sent over FTP, 

(10) number of packets sent over SSH, (11) 

number of packets sent over Telnet, (12) 

number of packets sent over SMTP, (13) 

number of packets sent over DNS, (14) num-

ber of packets sent over DHCP, (15) number 

of packets sent over TFTP, (16) number of 

packets sent over HTTP, (17) number of 

packets sent over POP3, (18) number of 

packets sent over NTP, (19) number of pack-

ets sent over NetBIOS, (20) number of pack-

ets sent over IMAP3, (21) number of packets 

sent over SNMP, (22) number of packets sent 

over BGP, (23) number of packets sent over 

LDAP, (24) number of packets sent over 

HTTPS, (25) number of packets sent over 

LDAPS, (26) number of packets sent over 

FTP using TLS/SSL, and (27) number of 

packets sent over another service. Each of 

these features was extracted over an entire 

.pcap, which was preprocessed to contain 

only one 5-tuple internet session, and each 

extraction except for (5) was then divided by 

the appropriate possible upper bound of the 

feature within the session in order to alleviate 

classification bias that arises from sessions 

having different numbers of packets. For ex-

ample, the number of urgent TCP packets 

was divided by the total number of TCP pack-

ets. 

After the features for a session are ex-

tracted and run through the MLP, it produces 

a score based on its training that is in the 

range [0, 1], where 0 corresponds to the ses-

sion being benign and 1 corresponds to the 

session being malicious. A session was con-

sidered benign in practice when the output 

was below 0.5 and malicious otherwise. 

 

2.2 MLP Training 

A successful neural network classifier 

usually relies on clean and evenly sampled 

data to produce effective results, and it be-

came clear from early tests that the IDS ap-

plication is no different. Training the MLP 

classifier on unbalanced sets of benign and 

malicious examples always showed biased 

results, and even within each classification 

category, subcategories of types of benign 

and malicious traffic needed to be well bal-

anced to work effectively. 

After some testing on initial datasets, the 

following methodology was settled upon and 

relied on undersampling the training data and 

leveraging biased results. The total dataset is 

first split into malicious and benign subcate-

gories based on the dataset. Then, each sub-

category has 1% or less of its data randomly 

selected to appear in the training set; the rest 

is reserved for testing. The training data then 

has the number of benign and malicious 

streams compared; either benign or malicious 

streams are randomly removed such that the 

ratio of benign to malicious streams is 1.2:1, 

which is called undersampling because all of 

the training data is not actually being used. 

This has an advantage over other techniques 

like oversampling because all of the used data 

is still unique, and there is more benign than 

malicious training data to intentionally bias 

the classifier towards benign classifications 

since false positives can be considered a great 

limiting factor on the usefulness of an IDS 

[16]. 

 

3 The Payload Classifier 



3.1 Payload Classifier Architecture 

The payload classifier is basically a 

heavy-duty feature that makes a prediction of 

session maliciousness based on only the 

packet payloads in a session. Its original 

presentation and testing can be found in [17] 

and will be summarized here. It is also imple-

mented in keras on top of TensorFlow and 

utilized the Adam optimizer, but it is a deep 

convolutional neural network [12][13][14]. It 

consists of a character embedding layer that’s 

followed by four convolutional and pooling 

layers that are followed by a two-classifica-

tion softmax layer as shown in Figure 1. Most 

of the parameters like number of layers, slid-

ing window size, number of kernels, activa-

tion functions, and pooling layer sizes are 

based on the designs of previous effective 

works or initial testing with a small dataset 

[10][11]. 

The embedding layer is a pre-trained 

character-to-character co-occurrence matrix 

of 257x256 values. Each encodes a vector of 

the context for each of the possible 256 val-

ues that a byte may contain, except for the last 

vector, which is maintained as a zero vector 

so that packets that are too short and input 

into the model can be padded with this 

pseudo-byte that will not contribute any fea-

tures to the convolutional layers. For pre-

training, all of the payloads from the selected 

training set have a sliding context window of 

three characters run over them, and the vector 

in the character-to-character matrix that rep-

resents the middle character is given plus one 

in weight at the index of the other characters 

seen in the window. This is the same idea as 

a word-to-word co-occurrence matrix with a 

sliding window of size three, but by using 

characters in place of words, and it relies on 

deterministically converting every byte into 

an index in the range [0, 255] based on the 

decimal value of each byte. Each vector in the 

embedding matrix, except for the last one that 

is reserved for a vector of zeros, is then nor-

malized to a magnitude of one. 

When the payload classifier is used after 

this pre-training, a payload is converted into 

a 1500x257 matrix by the embedding layer, 

which converts each character into its learned 

embedding and appends all of the embed-

dings onto each other in the same order as the 



payload. If a payload is larger or smaller than 

1500 characters, this matrix is curtailed or 

padded with the zero vector. They should not 

be longer than this by convention as stated by 

Lotfollahi et al., so this should not highly af-

fect results [18].  

The kernels in the convolutional layers 

each span four entire character vectors and 

use rectified linear unit activation. Each of 

the four layers learns 128 kernels, and each is 

followed by a max pooling layer over four en-

tire character vectors, except for the last one 

that pools over sixteen vectors. The last pool-

ing layer is then fully connected to a sixteen-

node rectified linear unit layer, which is then 

fully connected to a two-node softmax layer. 

The output of this layer corresponds to a per-

centage of confidence that input payload was 

malicious or benign.  

Building upon this payload classifier, 

there is a slightly larger architecture to actu-

ally predict things for sessions of multiple 

packets, although the payload classifier has to 

be trained before this prediction can occur. 

This session classifier inputs all of the pack-

ets from a single session, passes all of the 

TCP packets through the payload classifier to 

get a prediction for each, aggregates these 

predictions into a malware score by adding 

all of the malicious prediction percentages 

and subtracting all of the benign prediction 

percentages, and divides this score by the 

number of packets input to get a final mal-

ware prediction that is independent of session 

length. What is produced is a single number 

score in the range [-1, 1] that corresponds to 

how strong a prediction the network has 

made on the session as to whether it is mali-

cious or benign. Positive scores indicate ma-

liciousness, negative scores indicate benig-

nity, and scores near zero either correspond 

to unseen data or low confidence predictions. 

This score can be used directly to predict 

whether a session is malicious or benign with 

everything below or equal to zero being clas-

sified as benign, but this score has also been 

used as a single heavy-duty input feature for 

the MLP as mentioned earlier.  

 

3.2 Payload Classifier Training 

The payload classifier was trained inde-

pendently of the MLP but in a similar manner 

that utilized undersampling. Instead of train-

ing on the sessions, the payload classifier first 

extracts all of the benign and malicious 

packet payloads from the data and randomly 

removes some of them until the ratio of be-

nign to malicious payloads is 1.25:1. Then, 

all of the remaining payloads are run in a ran-

dom order through the network to train it. 

Similar to the MLP network, the result should 

be a classifier that is biased towards picking 

benign classifications when it does not detect 

features that are clearly indicative of mali-

ciousness or benignity. 

 

4 Evaluation 

Several datasets were used to tune and 

bug test the MLP classifier both with and 

without the payload classifier. In order to 

keep the final results free of possible bias 

from hyperparameters or coding mistakes, 

the classifying program must be complete be-

fore introducing the final evaluation dataset 

and drawing conclusions from it. This section 

goes through the tests that were run to ini-

tially create the classifier and evaluate it 

against a wholistic malicious and benign IDS 

dataset. 

It should also be noted that for perfor-

mance reasons, any .pcap session that was 

larger than 10,000 packets was split into 

chronologically contiguous, non-overlapping 

increments of 10,000 packets before being in-

put into the MLP classifier. If any increment 

of a session was predicted as malicious, the 



entire session was predicted as malicious, and 

this only counts towards one correct or incor-

rect prediction in the statistics. 

4.1 Initial Testing 

The first dataset that was used to test and 

tune the coding of the system was a combina-

tion of three separate datasets and was origi-

nally introduced in [17]. The first is called 

Contagio and is an amalgamation of 217 dis-

tinct samples of the malware executables pro-

ducing internet traffic that are captured in in-

dividual .pcaps [19]. The second is called 

ISCX IDS 2012, which is a simulated IDS da-

taset created by the UNB Canadian Institute 

for Cybersecurity [20]. The third is dubbed 

the Benign Binary dataset and is a collection 

of 60 HTTPS downloads of popular pieces of 

software that were monitored with tcpdump. 

Malicious and benign .pcaps were used di-

rectly from Contagio and Benign Binary 

while the benign .pcaps present in the ISCX 

2012 dataset were initially cut apart on a per-

session basis by SplitCap and then had 150 

samples randomly selected before usage [21]. 

Hyperparameters that were tested include 

payload classifier and MLP layers being var-

ied from 1 to 6, payload classifier layer sizes 

that were varied between 64, 128, and 256, 

payload classifier kernel sizes that were var-

ied from 2 to 6, MLP layer sizes that were 

varied between 16, 32, and 64, payload clas-

sifier and MLP optimization algorithms that 

were varied between Adam, RMSProp, and 

stochastic gradient descent, method of even-

ing input data that was varied between over-

sampling and undersampling, and amount of 

data used in training that was varied between 

1%, 10%, 30%, and 50%. The parameters 

were varied mostly independently because 

testing times were prohibitively long to test 

every combination, and it was noticed that 

the percentage of input data used only had a 

small effect on either classifier’s ability to 

correctly predict the testing set. In the end, 

about 10% of the data was used for training 

simply because the dataset had so few ses-

sions in it. 

By itself, the payload classifier achieved 

a significant F1 score of 0.7538 by predicting 

90.9% of the benign files and 65.99% of the 

malicious files in the testing set correctly. 

The MLP performed even better by itself by 

achieving an F1 score of 0.8988 by predicting 

85.64% of the benign files correctly and 

93.33% of the malicious files correctly. Un-

fortunately, adding the payload classifier as 

an extra input feature at this point did not 

show any discernable improvement to the 

classification accuracy of the MLP. Although 

the payload classifier undersampling could 

be altered to give it a near-perfect benign pre-

diction rate while still predicting malicious 

files at a rate >40%, it did not translate to 

picking up on any predictions that the origi-

nal MLP missed as was expected. 

 

4.2 Final Tests on CICIDS2017 Dataset 

After the classifier code, sampling 

method, and hyperparameters were finalized, 

the classifier was finally evaluated on the CI-

CIDS2017 dataset [4]. This dataset contains 

a wide variety of activity that was generated 

in a twelve-machine network over five days. 

The malicious activity included spans por-

tions of each of the last four days and can be 

categorized into (1) brute force password 

cracking attacks, (2) DoS attacks, (3) 

heartbleed attacks, (4) web attacks (brute 

force, SQL Injections, and XSS), (5) infiltra-

tion attacks (malicious Dropbox and flash 

memory downloads leading to port scans), 

(6) botnet attacks, (7) DDoS attacks, and (8) 

port scans [4]. The benign traffic included 

runs continuously throughout the five days 

and includes realistically profiled traffic over 



HTTP, HTTPS, FTP, SSH, and email proto-

cols [4]. This dataset was distributed in five 

.pcaps, one for each day of traffic, which was 

prepared by using SplitCap to separate all of 

the sessions into five benign subcategories 

for each day’s benign traffic and eight mali-

cious subcategories for each of the attack cat-

egories listed [21]. 

For each test of the MLP, 5 sessions were 

randomly selected for the training set and 995 

sessions were randomly selected for the test-

ing set from each of six of the eight attack 

subcategories – the web attacks had the re-

maining 1186 sessions always picked for the 

testing set and heartbleed attacks were only 

included in the testing set because the dataset 

only included five of them. Furthermore, 20 

sessions were randomly selected for the train-

ing set and 1980 sessions were randomly 

selected for the testing set from both the 

Monday and Thursday benign subcategories, 

and only 2000 sessions of training data were 

randomly selected from the Tuesday, 

Wednesday, and Friday benign subcatego-

ries. Five such tests were run both by using 

the MLP classifier with and without the pay-

load classifier. The payload classifier was in-

itially run by itself without the MLP, and alt-

hough it performed significantly better than 

random, it was not comparable to the inclu-

sion of header features. 

The results of the five runs using the MLP 

classifier without the payload classifier can 

be explicitly seen in Table 1; the percentages 

in each cell represent the number of correct 

predictions. The average F1 score was 

0.9488, the average attack detection rate was 

94.5%, and the average false positive rate 



was 4.68%. The average classification time 

was about 0.41 seconds per megabyte, which 

is reasonable for modern home bandwidths 

but may need further optimization in a busi-

ness setting. 

The results of the five runs using the MLP 

classifier with the payload classifier can be 

seen in Table 2. The average F1 score was 

0.9480, the average attack detection rate was 

95.02%, and the average false positive rate 

was 5.44%. This is almost identical to the 

MLP without the payload classifier, but it 

took around fifteen times longer to train and 

test, so adding the payload classifier clearly 

has not improved the basic MLP. 

 For both classifiers, the predictions are 

generally very accurate across all subcatego-

ries, and each run’s accuracies are generally 

closely grouped across all subcategories ex-

cept for “Thurs. Infiltration Attacks and Port 

Scans.” Upon more detailed inspection of the 

data, it appears that this subcategory contains 

mostly port scans, which is the same as the 

second category with the lowest successful 

detection rates, “Fri. Port Scans.” Further-

more, the runs with the lowest port scan de-

tection rates generally seem to be the runs 

that have the fewest false positives. This 

makes it appear as though the features used 

are not sufficient to clearly identify port scans 

because these particular features are similar 

in port scans and some benign connections. 

 

5 Conclusion 

Using 27 basic network packet header 

features, the MLP presented in this paper was 

able to classify malicious and benign streams 

at a very high rate at a reasonable speed. Alt-

hough prior works were able to boast better 

accuracy, the MLP presented here used such 

a smaller portion of a more modern dataset 

for training that it is expected to be much 

more indicative of real-world usage. As such, 

network administrators can be more confi-

dent when looking at this data and deciding 

the costs in terms of false positives and neg-

atives when implementing a similar system to 

alert them of likely intrusions into their net-

works.  

Unfortunately, although the payload clas-

sifier technique presented was shown to be 

effective at other classification tasks besides 

intrusion detection in [10]and [11], it was un-

able to add anything to an MLP classifier. As 

it stands, the payload classification showed 

significance in being able to detect some at-

tacks by itself, but it was less accurate, more 

complicated, and about fifteen times slower 

to train and test than the MLP by itself. In 

fact, some sessions that had the densest pay-

loads took up to 95 times longer to classidy 

with the payload classifier. Future work 

might include attempting to find exactly what 

subcategories of traffic the payload classifier 

can effectively identify and incorporating it 

in a different manner into an IDS. 

Both classifier techniques also appeared 

to perform particularly poorly at detecting 

port scan attacks. Most of the classifier tests 

detected them at a fairly high rate, but remov-

ing port scans clearly would have improved 

on overall malicious detection rates and may 

have improved on benign detection rates if 

the cause of the problem is that port scans 

have very similar features to benign traffic. 

Evaluating the usage of a classifier like the 

presented MLP on everything but port scans 

while using some other method to detect port 

scans may be a fruitful avenue for future 

work to further increase accuracy. 

 

References 

[1] https://www.snort.org 

[2] V. Paxson, "Bro: a system for detecting 

network intruders in real-time", Computer 



Networks, vol. 31, no. 23-24, pp. 2435-

2463, 1999. 

[3] Sabhnani, Maheshkumar and Gürsel Ser-

pen. “Application of Machine Learning Al-

gorithms to KDD Intrusion Detection Da-

taset within Misuse Detection Con-

text.” MLMTA, 2003. 

[4] Iman Sharafaldin, Arash Habibi Lash-

kari, and Ali A. Ghorbani, “Toward Gener-

ating a New Intrusion Detection Dataset and 

Intrusion Traffic Characterization”, 4th In-

ternational Conference on Information Sys-

tems Security and Privacy (ICISSP), Pur-

togal, January 2018. 

[5] N. Moustafa and J. Slay, "The Signifi-

cant Features of the UNSW-NB15 and the 

KDD99 Data Sets for Network Intrusion De-

tection Systems," 2015 4th International 

Workshop on Building Analysis Datasets 

and Gathering Experience Returns for Secu-

rity (BADGERS), Kyoto, 2015, pp. 25-31.  

[6] M. Baig, E. S. M. El-Alfy and M. M. 

Awais, "Intrusion detection using a cascade 

of boosted classifiers (CBC)," 2014 Interna-

tional Joint Conference on Neural Networks 

(IJCNN), Beijing, 2014, pp. 1386-1392. 

[7] M. Al-Zewairi, S. Almajali and A. 

Awajan, "Experimental Evaluation of a 

Multi-layer Feed-Forward Artificial Neural 

Network Classifier for Network Intrusion 

Detection System," 2017 International Con-

ference on New Trends in Computing Sci-

ences (ICTCS), Amman, 2017, pp. 167-172. 

[8] N. Moustafa and J. Slay, "UNSW-NB15: 

a comprehensive data set for network intru-

sion detection systems (UNSW-NB15 net-

work data set)," 2015 Military Communica-

tions and Information Systems Conference 

(MilCIS), Canberra, ACT, 2015, pp. 1-6. 

[9] Preeti Aggarwal, Sudhir Kumar Sharma, 

“Analysis of KDD Dataset Attributes – 

Class wise for Intrusion Detection”, Proce-

dia Computer Science, Volume 57, 2015, 

Pages 842-851, ISSN 1877-0509, 

https://doi.org/10.1016/j.procs.2015.07.490. 

[10] M. Lotfollahi, R. Hossein Zade, M. 

Jafari Siavoshani and M. Saberian, "Deep 

Packet: A Novel Approach For Encrypted 

Traffic Classification Using Deep Learn-

ing", ARXIV, vol. 1709, no. 02656, 2017. 

[11] J. Saxe, K. Berlin, “eXpose: A Charac-

ter-Level Convolutional Neural Network 

with Embeddings For Detecting Malicious 

URLs, File Paths and Registry Keys", 

ARXIV, vol. 1702, no. 08568, 2017. 

[12] https://keras.io/ 

[13] https://www.tensorflow.org/ 

[14] Diederik Kingma and Jimmy Ba, 

“Adam: A Method for Stochastic Optimiza-

tion”, International Conference on Learning 

Representations, 2014. 

[15] Srivastava, Hinton, Krizhevsky, 

Sutskever, and Salakhutdinov, “Dropout: A 

Simple Way to Prevent Neural Networks 

from Overfitting”, Journal of Machine 

Learning Research 15 (2014) 1929-1958, 

2014. 

[16] Stefan Axelsson, “The Base-Rate Fal-

lacy and the Difficulty of Intrusion Detec-

tion”, 20 May 1999. 

[17] R. Cheng and G. Watson, “D2PI: Iden-

tifying Malware through Deep Packet In-

spection with Deep Learning”, 2018. 

[18] M. Lotfollahi, R. Hossein Zade, M. 

Jafari Siavoshani and M. Saberian, "Deep 

Packet: A Novel Approach for Encrypted 

Traffic Classification Using Deep Learn-

ing", ARXIV, vol. 1709, no. 02656, 2017. 



[19] http://contagiodump.blog-

spot.com/2013/04/collection-of-pcap-files-

from-malware.html 

[20] Ali Shiravi, Hadi Shiravi, Mahbod Ta-

vallaee, Ali A. Ghorbani, “Toward develop-

ing a systematic approach to generate bench-

mark datasets for intrusion detection”, Com-

puters & Security, Volume 31, Issue 3, May 

2012, Pages 357-374, ISSN 0167-4048, 

10.1016/j.cose.2011.12.012. 

[21] https://www.netresec.com/?page=Split-

Cap 

[22] https://www.hybrid-analysis.com/ 

[23] https://httpd.apache.org/ 

 

 

 

 

 

 

 

 

 

 

 

 


