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Final Project Report: 
Comparison of Single File vs Repository Level Code Benchmark  

Problem Statement 
As codebases grow, ensuring the security and functionality of project-level code has become 
essential to prevent vulnerabilities that may not be apparent at the single-file level. Language 
Models (LMs) are increasingly being used as coding assistants, with several benchmarks 
developed to measure their coding abilities. However, these benchmarks often focus on 
single-file code rather than repository-level code, and even those that do evaluate 
repository-level code typically overlook code security. Single-file benchmarks fail to capture 
dependencies between files, making them insufficient for evaluating security risks that can arise 
from interactions across a project. To close this gap, we propose a repository-level version of 
CodeGuard+, a new benchmark designed to assess an LM’s ability to generate secure and 
functionally correct project-level code completions. 
 
Since code repositories are often larger than a LM’s context window, a LM needs a retrieval 
mechanism to add relevant code to the LM’s context. However, the particular retrieval method 
used can impact a LM’s coding performance, either by leaving out some relevant dependencies 
or by adding too much irrelevant code to the context. To determine how different retrieval 
methods affect a LM’s performance at generating code, we will evaluate LMs on our benchmark 
with the following retrieval methods: sparse retrieval, dense retrieval, and current file retrieval. 
 
Previous benchmarks have evaluated LMs on file-level code generation. For instance, the 
SecCodePLT benchmark (Yang et al., 2024) measures an LM’s ability to generate functionally 
correct and secure code for individual functions. This raises the question: how well does an 
LM’s performance on file-level code generation generalize to project-level code 
completions that prioritize both security and functionality? To address this, we will 
compare the performance of ten different LMs on our repository-level benchmark and 
SecCodePLT. 
 

Related work 
LM Code Generation Benchmarks  
Over the past few years, a variety of benchmarks have been proposed to evaluate code 
generated by language models. Early efforts focused exclusively on functional correctness 
(Chen et al., 2021; Austin et al., 2021), while others targeted security alone (Siddiq et al., 2022). 



Recognizing that developers need both reliable and secure code, Yang et al. (2024) introduced 
a benchmark that assesses both dimensions. Although there are also repository-level 
correctness evaluations (Jimenez et al., 2023; Liang et al., 2024; Ding et al., 2024), all existing 
benchmarks combining correctness and security have so far been limited to the function or 
single-file level. 
 
Table 1: Comparison of Code Generation Benchmarks 

 
 
Retrieval Augmented Generation 
In retrieval-augmented generation, language models produce better outputs when supplied with 
pertinent context. In code generation, this context can include related functions and classes that 
depend on the code segment being created. Sparse retrieval techniques like TF-IDF or BM25 
encode files as high-dimensional, token-based vectors—each file’s vector is sparse because it 
contains only a small fraction of all possible tokens. By contrast, dense retrieval approaches, 
such as Dense Passage Retrieval (Karpukhin et al., 2020), employ neural encoders to map 
each file into a compact, low-dimensional space. Presently, file-level retrieval typically feeds the 
LLM the contents of the file under edit (with the target function omitted) as its context (Liang et 
al., 2024). 

Methodology 

Baseline Comparison:  
To make progress towards evaluating how a LM’s performance on single file-level code 
completions generalize to project-level code completions, we ran 10 models on the 
SecCodePLT benchmark. These models were also previously evaluated against single file-level 
and repository-level versions of the CodeGuard+ benchmark. The models we evaluated are: 

 
1. Llama-3.1-8B-Instruct 
2. Llama-3.1-70B-Instruct 
3. DeepSeek-Coder-V2-Lite-Instruct 
4. Codestral 
5. Claude-3-Haiku 
6. Claude-3.5-Sonnet 
7. Gemini-1.5-Flash 
8. Gemini-1.5-Pro 

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://www.anthropic.com/news/claude-3-haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/pro/


9. GPT-4o-mini 
10. GPT-4o 

 
For measuring secure coding capability, SecCodePLT uses unit tests to evaluate functional 
correctness and security wherever possible. In cases where unit tests are not applicable, 
SecCodePLT applies static rules relevant to specific CWEs (Common Weakness Enumerations) 
and queries an LM judge to verify if the generated code adheres to these rules. To maintain 
consistency with the SecCodePLT benchmark and focus on secure-pass@1, we included only 
those test cases that have unit tests. These 819 test cases collectively correspond to CWEs 74, 
77, 79, 94, 95, 200, 327, 347, 352, 502, 601, 770, 862, 863, 915, 918, and 1333. 
 
For each test case, a secure-pass@1 score of 1 is awarded if a LM passes all functional and 
security unit tests. Otherwise, it scores 0. We calculated the average secure-pass@1 score 
across test cases (i.e., not across CWEs).  
 
Additionally, SecCodePLT differentiates between code generation tasks initiated by an 
instruction and code completion tasks involving partially completed code. We computed the 
average secure-pass@1 score for the code completion task, since that is our benchmark’s task. 
 
The SecCodePLT benchmark optionally provides the LM a security policy reminder when it 
prompts for code completion. The security policy reminder makes the tested LM more likely to 
generate secure code by including information about the CWE that is relevant to the task. In our 
runs, we included the security policy. 
 
All models were configured with a temperature setting of zero (greedy decoding) and a 
maximum token output length of 2048, which is consistent with the model configuration files in 
SecCodePLT. 
 
To ensure that we ran SecCodePLT correctly, we compare our results for GPT-4o 2024-08-06, 
CodeLlama 34B Instruct, and Llama-3.1 70B Instruct with SecCodePLT’s published results 
(Yang et al., 2024). Figure 1 shows the secure-pass@1 (i.e., both security and functional 
correctness unit tests are included), syntax error rate, and runtime error rate for our runs. The 
published results are pulled from the pass@1 subplot in Figure 4b in Yang et al.  
 
Figure 2 shows the pass@1 (i.e., only unit tests for functional correctness are included), syntax 
error rate, and runtime error rate for our runs. The published results are pulled from the pass@1 
plot in Figure 11b in Yang et al. 

https://platform.openai.com/docs/models
https://platform.openai.com/docs/models


 

 
Figure 1: GPT-4o average secure coding rate reported in the SecCodePLT paper and in our 
runs. 
 

 



Figure 2: GPT-4o average pass@1 for the functionality tests reported in the SecCodePLT paper 
and in our runs. 
 
Figures 1 and 2 show that our runs consistently have a higher syntax error rate, by an average 
of about 3 percentage points. Our next step is to investigate why this is happening, since 
resolving this should bring our results in line with the published results. 

Benchmark Construction 

The project-level version of CodeGuard+ already existed before we joined on this project, but it 
contained too few samples. Modern benchmarks for repository level secure code generation 
need at least 100 samples, but the existing version only had 61. Thus, our main focus after the 
midterm project report was to increase the number of samples in our benchmark. 

The benchmark samples are drawn from the ARVO dataset (Mei et al., 2024), which captures 
5,001 vulnerability-fix commits across 273 open-source projects. For each vulnerability, ARVO 
supplies the exact patch commit, the fuzzer-generated input that triggers the flaw, and a Docker 
image for reproducing it. Google’s OSS-Fuzz identified the triggering inputs. From these, we 
retained only the 3,491 unique, non-merge commits—excluding merges (which often bundle 
unrelated changes) and discarding any entries with missing metadata, unparsable diffs, or 
non-Git repositories—to yield 2,329 candidates. 

Next, we restricted our focus to commits that modify exactly one function within a single C or 
C++ source file. This “single-function” filter simplifies prompt construction: each benchmark 
sample will mask the modified code block and task the model with completing it, while still 
requiring repository-level context for both correctness and security. Applying this criterion 
reduces the set to 1,822 samples 

We then selected the top 40 projects by sample count—provided they compile cleanly and 
include runnable unit tests—to concentrate our efforts and ensure a diverse yet manageable 
benchmark. This left us with 1,165 samples. 

For each of these, we perform a behavioral validation: 

1. Compile the vulnerable (pre-patch) and patched versions. 
2. Execute each with the fuzzer input: the vulnerable build must crash, while the patched 

build must run without error. 
3. Verify that the patched function still passes its unit tests by injecting a print statement 

into the modified function and identifying tests whose stdout contains that marker. 

We also worked on expanding the sample set prior to this validation step. We overcame 
Pydriller’s git-clone failures for projects like binutils-gdb and elfutils by pre-cloning them locally. 
We also addressed Pydriller’s inability to detect header-file edits by switching to Lizard for 
reliable function-boundary detection and mapping diffed lines to those boundaries. 



Finally, to recover samples lost to trivial “multiple” edits (e.g., comment additions, string-literal 
tweaks, or whitespace changes), we analyzed 58 discarded cases and implemented logic to 
ignore modifications consisting solely of: 

● Multi-line or single-line comments (including inline and end-of-line) 
● Changes within string literals 
● Empty lines or purely whitespace edits 

We now automatically filter out any sample whose alterations are exclusively these 
inconsequential edits. 

Results 

Baseline Comparison (Mid-term Report Experiment) 
 
Analysis of Single-File CodeGuard+ vs. SecCodePLT 
Figure 3 compares the secure-pass@1 results from SecCodePLT and the single file version of 
CodeGuard+. All models scored higher on the single file version of CodeGuard+, with an 
average of a 10 point difference. This indicates that the single file version of CodeGuard+ may 
be too easy to serve as a useful benchmark. The prompts for the single file version of 
CodeGuard+ are publicly available, so it’s possible that the models have already trained on it. 
Alternatively, it’s possible that the models have been trained on the CodeQL documentation, 
which contains code examples that many of the test cases in this benchmark have been derived 
from. 
 
Based on the results in Figure 3, we have decided to focus the project on the repository level 
version of CodeGuard+. Had the single file version been more difficult, we could have kept it as 
another benchmark to use for determining how coding performance generalizes moving from 
single-file to project-level code generation. 
 



 
Figure 3: secure-pass@1 for SecCodePLT versus Single-File Version of CodeGuard+ 

 
Analysis of Repository-Level CodeGuard+ vs. SecCodePLT 
Figure 4 compares the secure-pass@1 results from SecCodePLT and the repository level  
version of CodeGuard+. As expected, the project-level version of CodeGuard+ was more 
difficult than SecCodePLT for all models, with an average of a 41 point difference. 
 
The trend in model performance is roughly linear, which may indicate that a model’s 
performance at single-file coding generalizes to repository-level coding. For instance, the same 
abilities that made Gemini-1.5-Pro a top performer on SecCodePLT may have helped it to be a 
top performer on the project-level version of CodeGuard+. 
 



 
Figure 4: secure-pass@1 for SecCodePLT versus Project-Level Version of CodeGuard+ 

 
It is unsurprising that GPT-4o performed the best on SecCodePLT, since it was used in creating 
the dataset. Specifically, human engineers created seed tests, from which GPT-4o created 9 
more tests per seed test by making small edits. Thus, 90% of the SecCodePLT benchmark was 
partially generated by GPT-4o. 

Benchmark Construction (New Experiment and Findings) 
Before filtering for the top 40 compilable projects that have runnable unit tests, the previous 
students who worked on this benchmark had 1,522 samples. We now have 1,822 samples at 
this step, which is a 300 sample increase. Also, the previous students had 61 samples at the 
last filter step while we now have 79, which is an 18 sample increase. Table 2 shows the 
number of samples present and lost at each filter step.  
 

 



Table 2: Samples at each filter step 
Number of Samples Samples Lost Filter Step 

5001 - Initial 

4963 38 Samples in both meta and patches folders 

3725 1238 Samples with unique fixing commits 

3700 25 Samples with parseable diff files 

3519 181 Samples with git repos 

3503 16 Samples that could be read with Repository() 

3271 232 Samples that are not merge commits 

2329 942 Samples with one changed cxx file 

1822 507 Samples with 1 changed function 

1217 605 Samples in compilable and testable projects 

1165 52 Samples in the top 40 projects (by sample count) 

520 645 

Samples whose vuln version crashes and patched version does not 
crash given the triggering input, and that have at least one passing 
unit test for both the vuln and patch versions 

79 441 Samples that have a unit test that calls the modified function 

 

Table 2 indicates that we lose 605 samples because they belong to projects flagged as 
“non-compilable” or “non-testable.” Since these projects are well-known open-source 
codebases, they should compile and almost certainly contain unit tests. Our immediate priority, 
therefore, is to revisit a subset of these repositories, fix the build or test-harness issues, and 
reclaim as many samples as possible. 

The table also shows 645 additional samples dropped during the crash/unit-test check: either 
the vulnerable build fails to crash on its fuzzer input, the patched build does crash, or at least 
one version has no passing unit test. To pinpoint where we’re bleeding samples, we’ll split this 
stage into two independent checks—(1) validating the fuzzer-triggered crash behavior and (2) 
running the unit tests. Because ARVO supplies the crashing inputs, we expect most cases to 
pass the first check. If the failures cluster in only a few projects, we can likely salvage many 
samples by tweaking test configurations or supplementing the existing test suites. 

Takeaway and Lessons Learned 
The first takeaway from our experiments is that a model’s performance at single-file coding 
generalizes to repository-level coding. Figure 4 shows that models that score relatively high at 
one coding scope tend to also score relatively high at the other coding scope. This correlation 
could be used to detect benchmark memorization through a method like ConStat (Dekoninck et 
al., 2024), where over performance on one benchmark can be detected based on its 
performance on a baseline benchmark. 



 
The second takeaway from our experiments is that repository-level code completion is 
significantly more challenging than file-level code completion. This highlights a key limitation of 
single-file benchmarks: they lack the complexity of real-world coding, where a block of code in 
one file often interacts with other code blocks in multiple files across a codebase. Thus, a model 
that scores high in a file-level code benchmark is not necessarily skilled at real-world code 
generation. Since we ultimately want language models that can generate code in real projects, 
we need coding benchmarks at the repository level.  
 
Finally, we demonstrate that the ARVO dataset can be leveraged to build a comprehensive, 
repository-level benchmark assessing both security and functional correctness. ARVO provides 
paired vulnerable and patched code alongside fuzzer-generated inputs that serve as security 
tests. Because these are real-world projects, they already include unit tests, which we can 
execute by discovering the appropriate test invocation commands and then selecting those tests 
that exercise the code modified between the vulnerable and secure versions. This approach 
yields robust functional-correctness checks. Such a benchmark is essential for measuring a 
language model’s ability to generate code that is both secure and functionally correct at the 
repository scale. 

Individual Member Contributions 
The individual member contributions after the midterm project report, as discussed below. 
 
Connor improved the baseline comparison with SecCodePLT by running CodeLlama 34B 
Instruct on that benchmark, and adding those results along with the previously run 
Llama-3.1-70B-Instruct to Figures 1 and 2. He also modified these figures to only use code 
completion unit tests, and to display the passed, unpassed, runtime error, and syntax error 
results for a finer-grained comparison. 
 
Connor also increased the number of samples in our benchmark by resolving the repository 
read error for binutils-gdb and elfutils. He switched from Pydriller to Lizard so that modified 
functions in header files are considered. He added logic to ignore differences due to multi-line 
comments, single line comments, empty lines, end of line comments, comments within a line, 
content with a string, and spacing within a line. He also added logic to ignore modified files that 
only had these trivial changes. 
 
Purva worked on the benchmark code to identify the gaps where we are losing samples in the 
filter step. This includes identifying the areas where we lose samples due to single line 
comments, struct changes in the header file which were ignored previously, single line changes 
in c/c++ functions which were ignored due to the functions defined inside a function. She added 
the logic to ignore comment changes which were only the version changes or date changes. 
Then she worked on identifying the git repositories which were skipped due to no unit tests and 
making unit tests for the repositories like opensc. She improved the filter code by caching and 
checkpointing which reduced the runtime to 3 hours. She also improved and parallelized the 



code for next steps of docker compile and arvo eval for executing the unit tests. And finally to 
finish the draft writing of the final report. 
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