
Complete Domain Decomposition
A new approach to communication avoidance when

solving boundary value problems in a parallel
environment

Yoav Segev
Department of Computer Science

University of Maryland, College Park
segev@cs.umd.edu

November 30, 2015

Abstract

As the need for parallel computation for solving partial differential equa-
tions increases, so does the communication overhead, caused by the massage
passing mechanism used in the parallel computation. In this paper, I suggest a
domain decomposition style approach for parallel computation of elliptic par-
tial differential equations that avoids nearly all communication between the
computing nodes. The test results show the correctness of this quickly con-
verging method for a one-dimensional problem. In the last sections I discuss
ideas to extend this approach to two or three dimensions

1 Introduction
Solving partial differential equations has always been an important aspect of
almost every scientific or engineering process. Since most differential equations
do not have analytic solutions, our only resort is to solve them numerically.
This entails a discretization, and solving a discrete problem that represents the
original equation up to certain discretization error. For proper discretization
process, this error gets smaller as the size of the discrete problem gets larger, by
either increasing the number of discrete data points, increasing the dimension

1

of the finite dimensional functional space, or similar. Therefore, in order to
get a result as accurate as possible, one need to solve problems of a constantly
increasing size.

In order to solve these problems time efficiently, one needs to utilize more
and more computing resources. This need for increasing computing power leads
to the use of large-scale parallel computers. Since large-scale computers cannot
use shared memory there is a need to communicate results from one computing
node to another.

The division of work between the computing units is done by dividing the
problem into a number of smaller sub-problems, usually by dividing the phys-
ical domain of the problem, and letting each processing unit solve the sub-
problem assigned to it. Since the discrete problem usually relates values at
certain grid points with its neighbors, for each computing unit to solve its as-
signed sub-problem, it needs to know the values at grid points adjacent to the
sub-problems boundary. This means that each computing unit needs to com-
municate the values it computed to all of the computing units that compute
neighboring subdomains. Also, as most current methods for solving partial dif-
ferential equations, such as the Conjugate Gradient Method (CG), the Minimal
Residual method (MinRes), Generalized Minimal Residual method (GMRES),
just to name a few, are iterative methods, such that each iteration include a
certain local part, as well as a global calculation that requires some knowledge
of the entire problem, all computing units must communicate certain values to
a central unit, which performs the calculation, and communicates the compu-
tation result back to the computing units.

As the number of computing units increases, for fixed problem size, the
number of subdomains increase; hence the area of each subdomain decreases,
and the number of boundary grid points increases. This translates to a de-
crease in the amount of work that each computing unit needs to do, and an
increase in the amount of data it needs to communicate to other units. In other
words, if more resources are utilized in the computation, the relative cost of
the communication increases.

There are several known ideas to tackle this problem, either hiding the
communication by approximating the communicated values, or decomposing
the physical domain in a way that minimizes the amount of communication
needed. I will focus on the latter ones.

2 Domain Decomposition Methods
Domain decomposition is a class of methods that apply the divide and conquer
technique for solving partial differential equations in general, and specifically in

2

this context, boundary value problems. Chan and Mathew thoroughly survey
many of these methods in [1].

2.1 Overlapping Subdomain Algorithms
These algorithms construct a decomposition of the domain Ω into k overlapping
subdomains: Ω1,Ω2, . . . ,Ωk, usually by extending a non-overlapping decompo-
sition to include all points up to a certain distance from a point within the
non overlapping subdomain. Restriction matrices {Ri}, extension matrices
{RT

i } and local matrices {Ai} map data between the complete domain Ω and
subdomains {Ωi}.

Let A be an n × n matrix representing the discrete problem on the entire
domain Ω. Than for each i = 1, . . . , k define Ri as the matrix which entries
are all zeros and ones, that restricts a vector of size n to a vector of size ni
by choosing only indices corresponding to interior points of Ωi. Its transpose
represents the extension matrix, as it extends vectors of size ni to a vector of
size n by putting zeros in all entries corresponding to points not in Ωi. Lastly,
define the local matrix Ai = RiAR

T
i , the local stiffness matrix for subdomain

Ωi. Using these matrices we can define a preconditioner to the problem Au = f
by

M−1 =

k∑
i=1

RT
i A
−1
i Ri

When this method is used as a preconditioner in conjunction with Krylov
subspace method, it is known [2, 3] that the convergence rate deteriorates as
the number of subdomains increases. This can be adjusted by adding a global
coarse grid operator, which leads to a condition number bounded independently
of either the mesh size or the number of subdomains.

2.2 Non-Overlapping Subdomain Algorithms
The main idea in these methods is to decompose the matrix A into four sub-
matrices AII , AIB, ABI , ABB, where AII corresponds to entries in A that deal
with internal points of the subdomains. ABB corresponds only to points on the
boundary between subdomains, and AIB, ABI corresponds to realtions between
boundary points and internal points. This way the equation Au = f can be
written as a block matrix equation:[

AII AIB
ABI ABB

] [
uI
uB

]
=

[
fI
fB

]

3

Formal block factorization of A gives:

A =

[
AII AIB
ATIB ABB

]
=

[
I 0

ATIBA
−1
II I

] [
AII 0
0 S

] [
I A−1

II AIB
0 I

]
One can easily note that AII is a block-diagonal matrix, where each block

is concerned with a single subdomain. It is a block diagonal, since internal
points of different subdomain do not affect one another in the solving process.
This means that basically one can solve for each subdomain internal points on
a different computing node, without any communication needed. Still, though,
there is a need for communication for the boundary points, and their relation
to adjacent internal points, and that is where the solution with S is involved
in the above block matrix representation. The efficiency of this task, and
hence the efficiency of the entire computation relies greatly on finding a good
preconditioner for the Schur complement S.

3 One-dimensional Complete Domain Decom-
position method
The idea behind this method is to extend the idea of domain decomposition
to a case where absolutely no communication is needed between computing
nodes for each of the solver iterations. The basic idea relies on the fact that
the sub-problem presented on each subdomain is actually the same as that of
the original problem on the entire domain, so I tried to solve each of them
independently using the same method that one might want to use to solve
the original problem. There is still one problem though, and that is the fact
that for solving a boundary value problem, one must have correct boundary
conditions, but the problem statement only gives boundary conditions for ∂Ω,
and not for ∂Ωi, ∀i = 1, . . . , k. In order to solve the local subdomain problem,
one must find proper boundary conditions. To do so, I suggest to solve on a
coarse grid consisting of only boundary points of the subdomains.

As an example, assume we want to solve an equation on the interval [0, 1]
given certain Dirichlet boundary conditions u(0) = u0 and u(1) = u1. We
first discretize the problem to grid points xi = ih for some mesh width h.
Then we divide the problem into subdomains: Ω1 = [0, H], . . . ,Ωi = [(i −
1)H, iH], . . . ,Ωk = [(k−1)H, 1] where H = 1/k and k is the number of subdo-
mains. In order to find the boundary conditions for each subdomain, I start by
solving the same equation on the coarse grid defined by x̂i = iH, and use the
values I get ûi as boundary conditions for the respective subdomain problem,
which can be solved now completely independently of the other subdomains,
hence implying no communication needed.

4

The problem that arises from the algorithm as described above is that the
new internal boundary conditions u(x̂i) = ûi are not calculated precisely, but
up to a discretization error, and therefore force an error on the local subdomain
problem. One may argue that this is alright, as the continuous problem can
never be solved exactly, but only up to some discretization error, but unfor-
tunately this is not the case, as the coarse grid discretization error is of order
O(H) which leads to a total error of the entire solution of order O(H) on top
of the much smaller order of O(h) discretization error for the fine grid.

In order to solve this problem, I introduced an iterative process similar to
the one used in multigrid methods to reduce the error. To describe it, define
the following:

• Ah the matrix representing the fine grid discrete problem.
• Ah,i the matrix representing the local problem on subdomain i.
• Ah the matrix representing the coarse grid discrete problem.
• uh the desired fine grid solution.
• uH the coarse grid solution.

First solve AHuH = fH for ûH to get the coarse grid values to use as sub-
domain boundary values. Than solve each subdomain j separately by solving
Ah,juj = fj to get ûh,j and collect all of them into one vector ûh. Now define
the residual of the process by

rh = fh −Ahûh

Note that the error eh = uh− ûh = A−1
h fh−A−1

h Ahûh = A−1
h rh or in other

words rh = Aheh, so if we could solve this equation for eh we could find the
exact uh by uh = ûh + eh. Instead we can approximate it by iteratively solve
for the error using the same complete domain decomposition method and get
ui = ui−1 + ei, ri = f −Aui, and solve for ei+1: ri = Aei+1

4 Test Problem
To test this method for correctness I ran it on the one-dimensional Poisson
equation: −u′′ = f on the domain Ω = [0, 1]. After discretization I got that
Ah is a tridiagonal matrix which entries are 2 along the diagonal and -1 along
both the subdiagonal and superdiagonal multiplied by a constant 1

h2
if finite

differences discretization is used, or 1
h if finite elements. It is clear to see that

AH , Ah,i have the exact same structure only different by the multiplied constant
and dimension. In my tests I used discretizations of five different functions for
f , described below. For simplicity I used only Dirichlet boundary conditions
u(0) = u0 and u(1) = u1.

5

The test function I used as the right hand side, with respective boundary
conditions and exact solution found analytically were:

Table 1: Test Functions

f u(0) u(1) u
1 100 ∗ cos(πx) 0 0 100∗(cos(πx)+2x−1)

π2

2 192− 384x −6 6 (4x− 1)(4x− 2)(4x− 3)
3 900π2 sin(30πx) 1 1 sin(30πx) + 1
4 −ex 1 e ex

5 sin(10πx)(100π2x2−2)
10πx3

+ 2 cos(10πx)
x2

1 0 sin(10πx)
10πx

The underlying algorithm I used to solve this problem with this novel do-
main decomposition scheme was by Gaussian elimination (or in other words
LU factorization of the matrix), since I wasn’t testing for performance, only for
correctness. The performance advantage of complete communication avoidance
is clear.

5 Results
The metrics used to examine the quality of the results were the L2 and H1

norms of the error u − uh. For the test functions I used, I know the exact
continuous solution u, and the continuous version of the discrete solution uh
is basically a linear interpolation between the calculated values for the grid
points. The L2 norm is defined as follows:

||u− uh||L2 =

√∫
Ω
|u(x)− uh(x)|2dx

And the H1 norm:

||u− uh||H1 =

√∫
Ω

(|u(x)− uh(x)|2 + |u′(x)− u′h(x)|2)dx

5.1 Non Iterative Method
At first I ran the original method without an iterative process and got the
results listed in the following table. The first column is the function serial

6

number, the second shows the number of grid points used in the fine grid, the
third is the error of a numeric solution found using a regular solver, the other
columns named "CDD - n" are the errors of the solutions found using the
complete domain decomposition method with "n" subdomains. The content of
each cell in the table is either the L2 norm of the error or the H1 norm of the
error (respectively) for that specific run.

Table 2: Noniterative Method - L2 Errors

n Solution CDD - 2 CDD - 4 CDD - 8 CDD - 16 CDD - 32

1
64 3.070E-04 3.070E-04 6.440E-02 1.880E-02 4.860E-03 1.230E-03
256 1.920E-05 1.920E-05 6.430E-02 1.870E-02 4.860E-03 1.220E-03
1024 1.200E-06 1.200E-06 6.420E-02 1.870E-02 4.860E-03 1.220E-03

2
64 2.950E-15 1.530E-15 2.040E-16 4.350E-16 4.860E-16 8.520E-16
256 2.110E-14 1.620E-14 1.010E-14 4.230E-15 3.780E-16 8.590E-16
1024 1.080E-13 6.240E-14 4.870E-14 2.240E-14 1.260E-14 4.790E-15

3
64 1.430E-01 1.430E-01 1.600E+02 1.580E+02 1.580E+02 6.130E-01
256 8.040E-03 8.040E-03 1.600E+02 1.580E+02 1.580E+02 4.990E-01
1024 4.990E-04 4.990E-04 1.600E+02 1.580E+02 1.580E+02 4.910E-01

4
64 3.140E-06 2.500E-03 7.600E-04 1.980E-04 5.010E-05 1.260E-05
256 1.960E-07 2.500E-03 7.590E-04 1.980E-04 5.010E-05 1.260E-05
1024 1.230E-08 2.500E-03 7.590E-04 1.980E-04 5.010E-05 1.260E-05

5
64 8.850E-02 3.030E-01 2.66 5.000E-01 1.160E-01 9.010E-02
256 4.420E-02 2.920E-01 2.66 4.930E-01 8.740E-02 4.760E-02
1024 2.210E-02 2.900E-01 2.66 4.920E-01 7.850E-02 2.820E-02

Table 3: Noniterative Method - H1 Errors

n Solution CDD - 2 CDD - 4 CDD - 8 CDD - 16 CDD - 32

1
64 2.280E-03 2.280E-03 4.490E-01 1.230E-01 3.070E-02 7.270E-03
256 1.430E-04 1.430E-04 4.500E-01 1.240E-01 3.160E-02 7.890E-03
1024 8.910E-06 8.910E-06 4.500E-01 1.240E-01 3.160E-02 7.950E-03

2
64 3.910E-03 3.910E-03 3.910E-03 3.910E-03 3.910E-03 3.910E-03
256 2.440E-04 2.440E-04 2.440E-04 2.440E-04 2.440E-04 2.440E-04
1024 1.530E-05 1.530E-05 1.530E-05 1.530E-05 1.530E-05 1.530E-05

3
64 6.43 6.43 1.120E+03 1.030E+03 1.010E+03 4.940E+01
256 3.780E-01 3.780E-01 1.120E+03 1.030E+03 1.010E+03 5.330E+01
1024 2.350E-02 2.350E-02 1.120E+03 1.030E+03 1.010E+03 5.360E+01

4
64 1.850E-05 9.010E-03 2.580E-03 6.600E-04 1.640E-04 4.110E-05
256 1.150E-06 9.010E-03 2.580E-03 6.650E-04 1.670E-04 4.170E-05
1024 7.210E-08 9.010E-03 2.580E-03 6.650E-04 1.670E-04 4.190E-05

5
64 9.220E-02 1.04 1.360E+01 5.03 8.230E-01 2.020E-01
256 4.420E-02 1.04 1.360E+01 5.04 8.410E-01 2.090E-01
1024 2.210E-02 1.04 1.360E+01 5.05 8.410E-01 2.070E-01

From these results one can read several interesting conclusions. In almost all
cases, the error, both L2 and H1, depends solely on the number of subdomains,

7

or in other words it is proportional to the coarse grid width H and is not at
all proportional to number of fine grid points, and fine grid width h. This
makes sense, since the boundary conditions created by the coarse solver have
introduced an error proportional to H, so there was no realistic hope to get
anything better than that.

A few exceptions to the above conclusion are (a) the polynomial function
got a very good solution in every configuration. That is probably due to the
fact that polynomials are very easy to solve accurately enough even with the
coarse grid width, so it didn’t really matter, and I got good results for every
mesh width. And (b) for the two trigonometric functions (labeled 1 and 3) the
decomposition to two subdomains produced an accurate result as well, that
does depend on the number of fine grid points. The reason for that is probably
pure luck, as these functions happen to have both boundary conditions and
mid point value (hence boundary for subdomains) that have the same value,
therefore the coarse grid solver, probably solve it as a constant, which was
coincidentally correct for the mid point. That leads to an accurate subdomain
boundary condition, leading to very good final results.

5.2 Iterative Method
These results lead me to the iterative version of the method as described above.
Here are the L2 and H1 error results I got for the iterative method runs, with
the exact same configurations.

Table 4: Iterative Method - L2 Errors

n Solution CDD - 2 CDD - 4 CDD - 8 CDD - 16 CDD - 32

1
64 3.070E-04 3.070E-04 3.070E-04 3.070E-04 3.070E-04 3.070E-04
256 1.920E-05 1.920E-05 1.920E-05 1.919E-05 1.920E-05 1.920E-05
1024 1.200E-06 1.200E-06 1.200E-06 1.199E-06 1.200E-06 1.200E-06

2
64 2.950E-15 3.670E-16 8.170E-16 1.824E-15 1.710E-15 5.810E-15
256 2.110E-14 4.860E-15 3.030E-15 2.410E-15 1.510E-14 2.270E-14
1024 1.080E-13 7.850E-15 3.950E-14 2.464E-14 9.930E-15 3.540E-14

3
64 1.430E-01 1.430E-01 1.430E-01 1.429E-01 1.430E-01 1.430E-01
256 8.040E-03 8.040E-03 8.040E-03 8.041E-03 8.040E-03 8.040E-03
1024 4.990E-04 4.990E-04 4.990E-04 4.994E-04 4.990E-04 4.990E-04

4
64 3.140E-06 3.140E-06 3.140E-06 3.142E-06 3.140E-06 3.140E-06
256 1.960E-07 1.960E-07 1.960E-07 1.964E-07 1.960E-07 1.960E-07
1024 1.230E-08 1.230E-08 1.230E-08 1.227E-08 1.230E-08 1.230E-08

5
64 8.850E-02 8.850E-02 8.850E-02 8.849E-02 8.850E-02 8.850E-02
256 4.420E-02 4.420E-02 4.420E-02 4.420E-02 4.420E-02 4.420E-02
1024 2.210E-02 2.210E-02 2.210E-02 2.210E-02 2.210E-02 2.210E-02

8

Table 5: Iterative Method - H1 Errors

n Solution CDD - 2 CDD - 4 CDD - 8 CDD - 16 CDD - 32

1
64 2.280E-03 2.280E-03 2.280E-03 2.280E-03 2.280E-03 2.280E-03
256 1.430E-04 1.430E-04 1.430E-04 1.430E-04 1.430E-04 1.430E-04
1024 8.910E-06 8.910E-06 8.910E-06 8.910E-06 8.910E-06 8.910E-06

2
64 3.910E-03 3.910E-03 3.910E-03 3.910E-03 3.910E-03 3.910E-03
256 2.440E-04 2.440E-04 2.440E-04 2.440E-04 2.440E-04 2.440E-04
1024 1.530E-05 1.530E-05 1.530E-05 1.530E-05 1.530E-05 1.530E-05

3
64 6.43 6.43 6.43 6.43 6.43 6.43
256 3.780E-01 3.780E-01 3.780E-01 3.780E-01 3.780E-01 3.780E-01
1024 2.350E-02 2.350E-02 2.350E-02 2.350E-02 2.350E-02 2.350E-02

4
64 1.850E-05 1.850E-05 1.850E-05 1.850E-05 1.850E-05 1.850E-05
256 1.150E-06 1.150E-06 1.150E-06 1.150E-06 1.150E-06 1.150E-06
1024 7.210E-08 7.210E-08 7.210E-08 7.210E-08 7.210E-08 7.210E-08

5
64 9.220E-02 9.220E-02 9.220E-02 9.220E-02 9.220E-02 9.220E-02
256 4.420E-02 4.420E-02 4.420E-02 4.420E-02 4.420E-02 4.420E-02
1024 2.210E-02 2.210E-02 2.210E-02 2.210E-02 2.210E-02 2.210E-02

One can easily see that the iterative process converges to the same results
up to machine precision as one gets by solving the original fine grid problem
without any decomposition, which is obviously exact solution up to discretiza-
tion error which cannot be avoided. Yet, this doesn’t tell the whole story. Not
only does this process converge, but for all tests ran the process reached con-
vergence within two iterations, regardless of number of grid points, number of
subdomains or function type.

6 Higher Dimensions
In higher dimension the process gets complicated, as the domains and grids
geometry affects the results. I tried several different approaches for the two
dimensional problem; each can be easily extended to higher dimensions.

The problem I used for testing is the immediate extension of the above
one-dimensional problem to two dimensions:

−∆u = f ⇔ −(uxx + uyy) = f on domain Ω = [0, 1]× [0, 1]

6.1 Linear Interpolation
For this approach, the idea was to discretize the grid with fine width h in
both directions, and as the coarse grid consider the grid with width H in both
directions. Now, I encountered a new problem. When I solved the coarse grid
problem I didn’t get an approximation for the boundary condition of the entire
subdomain, but only an approximation to the values at the subdomain’s four

9

corners. To get boundary conditions for the fine grid subdomain problems, I
used linear interpolation along the subdomain’s (parallel to the axis) boundary.

The results of this approach had one thing in common with those of the
one-dimensional approach, and that was that the error estimates have con-
verged after exactly two iterations. Unlike the one-dimensional case, it did not
converge to zero. In other words, I got a stagnating process.

The reason for these results is not entirely clear. My assumption is that
the iterative domain decomposition worked exactly like in the one-dimensional
case, however another type of error was introduced by the linear interpolation
for the boundaries, which led to an error that wouldn’t go away even with
further iterations.

6.2 Finite Differences With NonuniformMeshWidths
Another approach was to discretize the coarse grid differently. As I did not
want to use interpolation, I had to discretize the coarse grid in a way that a
solution to the coarse-grid problem will yield the entire boundary conditions for
the fine subdomain problem. To do that I used as a coarse grid, the entire "wire
basket" of the union of subdomain boundaries. I tried two different approaches
here, one where the domain is cut into k stripes as wide as the entire domain
Ω and as high as Ω’s height divided by k. The other approach was to divide Ω
into k squares (assuming that k is a perfect square, and Ω is a square as well,
Otherwise, there is a need to find subdomains as close in shapes to squares as
possible in order to minimize the boundary length with respect to the interior
area, hence minimizing the boundary’s affect on the result). Both approaches
lead to similar results, so I chose to present them together here.

One should note that when discretizing a wire-basket grid as displayed here,
every grid point might have different mesh widths in different directions, and
might have different widths than other grid points. For example, in the squares
approach, some of the grid points are on horizontal boundaries, leading to width
h in the horizontal direction, and width H in the vertical direction. Grid points
on the vertical boundaries on the other hand have horizontal width H and
vertical width h. Grid points on the intersection of horizontal and vertical
boundaries (namely the subdomains’ corners) have width h in both directions.

This approach adds a layer of complexity as the coarse grid problem, the fine
grid problem, and fine grid sub-problems, all have different matrices, leading
to a code that is harder to write and debug and generally less clear.

The results of this approach were completely different than those of the
linear interpolation approach. Unlike the interpolation approach, this time I
actually got a converging process, and was able to get to the solution up to any

10

given tolerance (greater than machine precision of course), but unfortunately
the convergence rate was extremely slow.

6.3 Alternating Directions
One thing that was easy to note about this complete domain decomposition,
was that after each iteration (regardless of number of dimensions, or approach
used), when looking at the values of the residual, it was all zeros (up to machine
precision of course), except for the grid points of the coarse grid. This was
rather obvious as the fine subdomain solve enforces these residuals to zero, but
it says nothing about the final error, since the error satisfies: eh = A−1

h rh and
although Ah has a very local structure (only have non zero terms for adjacent
points), A−1

h has no such property, and the residual on the coarse grid points
to errors all over the fine grid points.

This note leads to a totally different approach. Since it is known that after
each iteration the residual outside the coarse grid points is set to zero, and if I
assume that after each iteration, if a residual set to zero it will stay zero after the
following iterations, it suggest that I can try to alternate directions between
iterations. Namely run one iteration with horizontal stripes decomposition
(described above), zeroing the residual everywhere, other than the horizontal
boundaries, then run similar iteration with vertical stripes, zeroing all but the
vertical boundaries, and if the zeros from the previous iteration are preserved,
there would only be non zeros on the coarse grid corners. Now this one is easy
to solve, as it is a simple solve on a course grid with width H.

Unfortunately, when attempting this approach, very quickly I found that
the basic assumption behind this is false, rendering this method as non con-
verging.

6.4 Future Work - Finite Elements on wire basket
The last approach I had in mind, which I didn’t yet implement due to its
complexity was to solve a coarse grid using a finite elements discretization
on the wire-basket. It is my hope that this approach will converge just as the
finite differences with nonuniform mesh width did, but maybe in a much higher
rate. The added complexity in this scenario is the need to apply finite element
discretization using nonuniform mesh sizes and shapes. One discouraging fact
regarding the convergence of such approach, is that common finite elements
error analysis (i.e. [4]) is assuming shape regularity of the elements, which is
not observed in this method.

11

7 Conclusions
I have developed a domain decomposition method that avoids communication
between parallel computing nodes and demonstrated that it works correctly and
very efficiently for one-dimensional elliptic differential equations. So far, all my
attempts to extend this method to higher dimensions either did not converge
to the correct solution, or converged with a very slow convergence rate. Since
one-dimensional problems are usually small enough to solve without parallel
computation, this method will only be useful for real scientific computation if
a fast converging extension to higher dimensions will be found.

References
[1] Tony F. Chan and Tarek P. Mathew (1994). Domain decomposition algo-

rithms. Acta Numerica, 3, pp 61-143. doi:10.1017/S0962492900002427.

[2] M. Dryja and O.B. Widlund (1989). Some domain decomposition algo-
rithms for elliptic problems. Iterative Methods for Large Linear Systems,
pp 273-291

[3] M. Dryja and O.B. Widlund (1992). Additive Schwartz methods for elliptic
finite element problems in three dimensions. Fifth Conference on Domain
Decomposition Methods for Partial Differential Equations, SIAM

[4] Nochetto, Ricardo H. and Siebert, Kunibert G. and Veeser, Andreas(2009).
Theory of adaptive finite element methods: An introduction. Multiscale,
Nonlinear and Adaptive Approximation, pp 409-542. doi: 10.1007/978-3-
642-03413-8_12. http://dx.doi.org/10.1007/978-3-642-03413-8_12

12

