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Abstract
FASTQ sequencing reads, due to their respectable size, are often stored in a GZIP format. This strategy
is compact for storage, but also poses significant challenges to efficient parsing. We present a FASTQ
parsing library that significantly improves the decompressing and parsing speed of a GZIP compressed
FASTQ file, by generating a corresponding index file that enables parallel parsing.
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Introduction
Ever since the advent of multi-core CPU, parallel
computing has become a feasible concept that offers
numerous advantages over the traditional synchronous
routine, at the cost of requiring specialized variants of the
already-complicated algorithm to handle domain-specific
challenges. For example, a bottleneck scenario could
occur during a critical section(7), where multiple threads
demand a shared resource that is slow to retrieve and is
designed to serve only one thread at a time.

Another additional complication is the number of
running threads. Counter-intuitively, instantiating more
threads than necessary could hamper the performance by
introducing extra overhead during the initialization phase,
as well as additional pressure on the operating system’s
thread scheduling capability.

Due to these inherent flaws, parallel computing,
although beneficial, is not prevalent in small utilities
and hobbyist programs. However, in the context of
bio-informatics, where performance and efficiency are
regarded as top priorities, parallelism can not be ignored
even to the slightest degree. Thus we propose our own

library for fully utilizing the potential of parallelism. Our
benchmarking suggests a significant speedup of up to 7
times faster compared to a sequential decompressor4. The
extra index-building phase is also performant, consuming
less than a minute when building for a 4.1 GB file. In
addition, the library incorporates a lightweight API that
encapsulates concurrent resource management so that the
compressed FASTQ records behave as if they were in an
already-decompressed collection.

Background
FASTQ format is one of the most widely adopted
sequencing data formats in the realm, despite its
noticeable flaws. In terms of size, the nature of being a
plain text file rather than a compressed binary file means
it is prone to redundant information. Since sequences are
bound to share multiple occurrences of repetitive patterns,
file sizes could snowball while the information entropy is
low. Thus, it is a common practice to compress a huge
FASTQ file into a GZIP file for storage. In this way,
file size is significantly reduced at the cost of additional
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decompression time. This is less than ideal, however, due
to the fact that decompression can not happen in parallel,
thus rejecting the potential speedup of utilizing multiple
CPU threads. A naive attempt could be made to partition
the file into chunks and decompress them individually.
However, it is not viable because in order to inflate a
chunk of data compressed using deflate algorithm, not
only a sliding window of symbols is required, but block
type information must also be set correctly(14).

This is not a recent issue, and there has been
a competitive solution. The bgzip utility, following
the SAM specification(17), is an improvement over the
established GZIP as it uses the same deflate algorithm
and produces a corresponding index file. The index
comprises checkpoints that record decompressor states at
the said point, hence allowing the decompressor to jump
to the respective point directly, set its states, and start
decompressing. This procedure can happen in parallel,
therefore significantly improving the performance.

Being a relatively novel data format comes with one
inherent drawback: backward compatibility. The majority
of FASTQ files are still in GZIP format, unable to enjoy
the benefit brought by bgzip. In fact, by doing a simple
search, most, if not all, recent sequencing data in SRA
database are still using the old GZIP format. Although
technically it is possible to convert every relevant GZIP
file into the newer format, bgzip, it would not be effective
at all, considering the sheer amount of files waiting to be
processed. Thus a practical solution would be to apply the
gist of bgzip utility to GZIP format, by implementing a
similar index builder for it.

There are also similar tools that adopt the idea
of parallelism using indexing, such as gztool(5),
indexed_gzip(? ) and zindex, all providing indexing with
built-in support for parallel decompression for general-
purpose random accessing. However, since they are not
optimized for FASTQ file format, and the range of
requested decompressed text can be arbitrary, there are
inevitable but unnecessary overheads.

CIndex(1), on the other hand, is a specialized tool
for this exact purpose. It combines various mainstream
compression techniques to minimize the compressed
file size, and also provides excellent file indexing
performance(1). Unfortunately, it is not compatible with
existing GZIP-compressed FASTQ files either.

Our project thus aims to reconcile the conflict by
providing a compressed index for existing files and
supplementing them with parallel parsing capability.

Methods
The basic idea of achieving parallel decompressing is
to distribute checkpoints across the compressed file,
where each checkpoint contains the required information
for decompressors. Thus multiple decompressors can
be instantiated concurrently, with each initialized with
the given information of the relevant checkpoints. As
a general-purpose parallel decompressing tool, gzindex
distributes the checkpoints in a somewhat uniform
manner, so that for any arbitrary decompression task, it
is within constant time to jump to the nearest checkpoint
and begin the actual procedure.

In our implementation, the positions of the
checkpoints are determined by a parameter named
chunkSize, which describes the ideal number of FASTQ
records between two adjacent checkpoints. In order to
determine the position of checkpoints during the index-
building phase, a naive approach would be to carefully
and precisely inflate everything up to the point where
the immediate output is certain records away from the
last checkpoint, and then make this a new checkpoint.
However, since the amount of decompressed output
produced by inflate method can not be manipulated, an
inflate block boundary is unlikely to coincide with the
chunk boundary. In this case, the retrievable decompressor
state is not correlated to the desired state. Therefore we
took the approach of allowing an inflate iteration to stop
at a block boundary that is slightly ahead or behind the
ideal record checkpoint, and then use the approximate
point as a checkpoint, rounding to the nearest byte that
is the beginning of the next record.

In this way, each checkpoint in the index consists of:

• an offset in the input stream
• an offset in the output stream
• a sliding window containing 32,768 bytes of uncompressed

data preceding the checkpoint
• a small sequence of bytes spanning from the start of

the last incomplete record in the block to the block
boundary

With the above information of each checkpoint
stored in the index, we implemented a method called
ExtractDeflateIndex to extract the data between two
adjacent checkpoints. We can simply pass two adjacent
checkpoints, along with the required compressed data
determined by the input offset of the two checkpoints,
into the method for data extraction. The method will
use the output offset of the two checkpoints to determine
the length of the data that needs to be decompressed,
and then initialize the decompression library from the
former checkpoint’s sliding window. Subsequently, the
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method will use inflate to decompress the input data
until all the input bytes have been read and decompressed,
and then return the uncompressed data between the two
checkpoints.

Assuming the total size of a FASTQ record follows a
uniform distribution from 256 bytes to 1024 bytes, the
expected length is, therefore, 640 bytes. The theoretical
size of the index file is thus (32768+640)n = 33408n bytes,
where n is the number of checkpoints. For a sufficiently
large file with relatively sparse checkpoints, the extra
space taken by the index file is negligible.

Although having a fully parallelizable decompressor
is a great achievement, this does not mark the end
of our project since the ultimate goal is to produce
a library capable of automatically orchestrating a
multi-threaded decompressor. Thus, in addition to
the ExtractDeflateIndex method mentioned above, we
also implemented a supplementary data structure that
encapsulates the low-level details of parallelism. The basic
idea is to create an iterator that returns one record at a
time per request, while continuously performing the IO
actions, decompressing, and parsing in the background
using multiple threads. To achieve this, the data structure
BatchedFASTQRecords maintains two caches for the parsed
records and file buffers respectively, which are read
chunk by chunk in a concurrent manner that exploits
the concurrent IO capability of modern SSD. However, it
is worth noticing that reading concurrently is extremely
inefficient on an HDD due to physical constraints. Thus,
we also provide an option to turn off SSD optimization.
To further reduce the overhead when claiming resources,
threads and buffers are drawn from a pool, and then
returned when the designated work is done. It is worth
noticing that, BatchedFASTQ employs the lazy evaluation
strategy, which only parses new records if there are not
enough records in the cache. At the same time, it also frees
used records from memory to reduce memory pressure
further.

The sole purpose of this structure is to simplify the
iteration. For example, counting the occurrences of a
certain pattern can be written as this:

var records = new BatchedFASTQRecords(index,
pathToGzip);

int count = 0;
foreach (FastqRecord record in BatchedFASTQ)
{

if (record.Sequence.Contains(pattern)) count++;
}

It also supports the functional style:

var count = records.Count(r =>

r.Sequence.Contains(pattern));

However, due to the way that it is implemented, there
is no guarantee of the order among individual records. In
other words, suppose record a precedes b in the original
file.

Results
To better understand the scalability of our library, we
used various file sizes ranging from 8 MB to 32 GB, with
each file being twice the size of its previous one. Initially,
we tried to obtain the test data from SRA but soon
realized that it is extremely time-consuming to find the
file with the exact size. Although SRA Explorer is useful
for downloading some large files, others are only available
through the SRA Tool command line utility. While this
is technically an alternative, it has one major drawback,
that is the files are downloaded in FASTQ format and
need to be compressed on a local machine. There is
another major issue: some records contain @ characters
in the quality strings, which are not compatible with
our index generation algorithm. Considering the potential
implication, we have to abandon this idea and generate
our own mock data.

We chose the ILLUMINA sequencing read as a
template. Our mock data follows a uniform distribution
between 128 and 512, and the base occurrences are
completely random, as we consider this property irrelevant
to our purpose, thus introducing little to no biases. The
quality strings follow a weighted uniform distribution
where ? has a probability of 95% whereas * and ! are
each 2.5%. The number of records in a compressed file
is carefully controlled so that the GZIP file sizes strictly
grow in exponents of 2.

We planned to test the performance against a naive
C# sequential decompressor as a reference. During
benchmarking and performance profiling, we discovered
that the stage of parsing is the most computation-
intensive one; thus for a controlled comparison, the
references must have their parsing methods implemented
in some way. gztool appears to be a good candidate
at first: it is performant and easy to use. However, the
best we can do is to read everything in parallel from a
GZIP file and immediately write it into an output device,
which involves no parsing stage at all. It would be simply
unworthy for us who are not familiar with C language.
indexed-gzip is technically also a valid control group, but
there is a similar issue: we need to implement the parser
in Python, which due to its interpreted runtime, would
not constitute a fair comparison.
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Fig. 1. Mean Time for Building Index with Chunk Size =
10,000

Fig. 2. Mean Time for Building Index with Chunk Size =
20,000

To benchmark the performance of index building, we
used the aforementioned GZIP files ranging from 8 MB
to 32 GB, and built the indexes for each of them with
6 different chunk sizes, 10,000, 20,000, 50,000, 100,000,
200,000, and 1,000,000. We performed each index-building
task at least 10 times and measured the mean time to
run each task and the mean memory allocated for each
task. During data processing, we removed some data for
mean memory allocated for smaller files when the chunk
size is large. This is because under these conditions, the
chunk size is larger than or very close to the total number
of records in the file, resulting in the index only storing
two checkpoints, one immediately after the header and
one at the end of the file. In other words, no meaningful
checkpoints are stored in the index. Fig. 1 to Fig. 12
shows the results of this benchmark.

The results indicate that for all the chunk sizes tested,
the time to build index increases linearly with the increase
in GZIP file size. The GZIP file size and the memory
allocated for building index have a linear relationship as
well. When comparing the mean time and mean allocated
memory for building index across the 6 chunk sizes (Fig.
13 and Fig. 14), we can observe that the time to

Fig. 3. Mean Allocated Memory for Building Index with
Chunk Size = 10,000

Fig. 4. Mean Allocated Memory for Building Index with
Chunk Size = 200,000

Fig. 5. Mean Time for Building Index with Chunk Size =
50,000

build index is only dependent on the GZIP file size and
independent of the chunk size. The memory allocated for
building index is positively correlated with GZIP file size
and negatively correlated with the chunk size. With the
increase in chunk size, the number of records between
two adjacent checkpoints increases, and thus the number
of total checkpoints decreases; consequently, the memory
allocated for building and storing index decreases.
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Fig. 6. Mean Allocated Memory for Building Index with
Chunk Size = 50,000

Fig. 7. Mean Time for Building Index with Chunk Size =
100,000

Fig. 8. Mean Allocated Memory for Building Index with
Chunk Size = 100,000

Next, we tested the performance of the ExtractDeflate
Index method. We measured the mean time for extracting
data using pre-built indexes on GZIP files with various
sizes. The results (Fig. 15) demonstrate that the time to
extract data using indexes and the GZIP file size has a
linear relationship as well.

Before benchmarking the performance of our parallel
decompressor and parser, we need to set a baseline

Fig. 9. Mean Time for Building Index with Chunk Size =
200,000

Fig. 10. Mean Allocated Memory for Building Index with
Chunk Size = 200,000

Fig. 11. Mean Time for Building Index with Chunk Size =
1,000,000

so that we know how much speedup we will gain
compared to sequential reading, decompressing, and
parsing. Therefore, we built a simple decompressor that
can achieve these and measured the meantime for data
extraction and parsing using the simple decompressor.
The results are shown in Fig. 16.

When designing the benchmark to perform on our
parallel parser, we came up with two tasks–counting the
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Fig. 12. Mean Allocated Memory for Building Index with
Chunk Size = 1,000,000

Fig. 13. Mean Time for Building Index for Various Chunk
Sizes

Fig. 14. Mean Allocated Memory for Building Index for
Various Chunk Sizes

total records in the uncompressed data and counting the
occurrences of a pattern in the uncompressed data. Since
counting the total records is achieved by simply calling the
Count() method on the return value of the parallel parser,
we can assume the performance of this task is equivalent
to the performance of parallel parsing using our parallel
parser.

Fig. 15. Mean Time for Extracting Using Index (Chunk Size
= 10,000)

Fig. 16. Mean Time for Decompressing Using Simple
Decompressor

We considered a simple task to try to capture the
fundamentals of processing a sequence of records, which
is to count the occurrence of a given pattern as mentioned
above. We specifically chose the pattern to be a sequence
of 12 random bases, as the number of matches is within
an observable range.

Assume the pattern is of length a. Since a random
string of length a has a probability of 4a to be an exact
match of the said given pattern, as well as the fact that a
string of length n contains exactly n−a+1 substrings, we
can deduce that for a string with length n, the probability
would be 4−a(n−a+1). Assuming the sequences in mock
data follow X ∼ U(128, 512), we have the expectation for
the occurrences in a single sequence:
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Fig. 17. Mean Time for Parallel Parsing (Chunk Size =
10,000)

E(X) =
1

384

512∑
i=128

4−a(i − a + 1) (1)

=
1

4a
·

1
384

512+a−1∑
i=128+a−1

i (2)

=
1

4a
·

1
384

(640 + 2a − 2) · 192 (3)

≃ 320
1

4a
(4)

Because X follows uniform distribution, their addition is
transitive. Thus the number of occurrences in an entire file
with s sequences is simply 320s 1

4a . If we choose a to be
12, then in the smallest sample where there are only 48000
records, the expectation becomes 0.9 which is acceptable.

Similar to benchmarking index building performance,
to test the performance of our parallel parser, we
performed the two tasks on various GZIP files ranging
from 8 MB to 8 GB with 6 different chunk sizes. The
results of the mean time needed to perform these tasks
are shown in Fig. 17 to Fig. 22. From the results we
can observe that with the increase of the GZIP file size,
the time needed to perform both tasks will increase as
well, and overall, pattern lookup requires more time than
keeping track of the count of the records. For larger files,
the percentage of the time pattern lookup requires more
than the time for counting records is also higher.

When we compare the performance of parallel parsing
across different chunk sizes (Fig. 23 and Fig. 24), we
can see that the performance of parallel parsing is also
dependent on the chunk size; larger chunk size would
result in longer time, and this is true for both pattern
lookup and record counting.

Fig. 18. Mean Time for Parallel Parsing (Chunk Size =
20,000)

Fig. 19. Mean Time for Parallel Parsing (Chunk Size =
50,000)

Fig. 20. Mean Time for Parallel Parsing (Chunk Size =
100,000)

We then compared the speed of sequential extracting
and parsing achieved by our simple decompressor with the
speed of parallel parsing (Fig. 25). We were delighted to
see that our parallel parser is about 6 to 7 times faster
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Fig. 21. Mean Time for Parallel Parsing (Chunk Size =
200,000)

Fig. 22. Mean Time for Parallel Parsing (Chunk Size =
1,000,000)

Fig. 23. Mean Time for Parallel Parsing for Various Chunk
Sizes

than the simple decompressor when we set the chunk size
to be 10,000.

To further improve the performance, we implemented
a way to optimize the read speed for SSDs. In short,

Fig. 24. Mean Time for Parallel Parsing and Pattern Lookup
for Various Chunk Sizes

Fig. 25. Mean Time for Extracting and Parsing (Parallel vs
Sequential)

once all the compressed data has been processed, a new
request for reading more will be instantiated, in which 8
new tasks will be spawned and scheduled to unoccupied
threads. Each task will then read a specified and separate
partition. The number of new tasks, in this case, 8, is
an empirical estimate that comes with the optimal file
reading efficiency under ideal circumstances. However,
this deliberate decision is not as effective as we imagined,
as there is no consistent speedup over the unoptimized
version (Fig. 26 and Fig. 27) . An educated guess
would be that the file IO, in our case, actually is not a
bottleneck, considering the parsing phase consumes much
of the running time and computational resources.

Discussion and Future Work
At first, we decided to implement the deflate algorithm
and the decompressor in general in C#, but soon deemed
it too realistic to begin with: our implementation will be
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Fig. 26. Mean Time for Parallel Parsing When SSD
Optimization is On and Off (Chunk Size = 10,000)

Fig. 27. Mean Time for Parallel Parsing and Pattern Lookup
When SSD Optimization is On and Off (Chunk Size = 10,000)

prone to errors and bugs, and the following debugging and
optimization will inevitably occupy a significant portion
of the work, leaving insufficient time for the real problem
that is to devise a scheme for the index file and a thread-
safe decompressor.

Therefore, our actual study started from researching
an existing tool, gztool. It is a command line utility;
therefore, in order to adapt it for our use, we need to first
convert it to a library by removing the main() function
and various command line options, condensing it to the
extreme where only the core feature is present. However,
the code itself is not well documented, and the underlying
program logic is hidden beneath cryptic pointer arithmetic
that we failed to fully comprehend.

On the other hand, the Python utility gzindex offered
an inspiration for us. It is based on the C library, zran.c,
which entails virtually everything we need: a simple and
concise index builder and a decompressor that is able to
perform random read on a GZIP file using the generated
index file. It provides an appropriate template where we

can refer to the comments and notices to modify it to suit
our need.

In general, the performance is within our expectations.
Due to the short span of this final project, we deliberately
made some design decisions and assumptions to simplify
the code logic.

For instance, a FASTQ file could contain ’@’ character
in its quality string while remaining completely valid.
This is, however, not supported by our parser due to the
complication it implies. Thus when encountering such a
case, the parser would intentionally throw an exception,
signaling the end of the parsing procedure to prevent
bogus results from corrupting the FASTQ records.

Another limitation is the maximum size of a chunk,
i.e., the distance between two checkpoints. Due to the
way that C# array is implemented, it is unable to contain
more than 231 entries which is 2 GB of data in our case.
Assuming each record is at most 1024 bytes long, the
max chunk size is thus set to 2 million. Admittedly it
is not difficult to carefully design the code to overcome
this limitation, but we reckon that for our purpose, the
said max limit is more than enough.

Finally, the fact that C# is a GC language constrains
us from many delicate optimizations. Although there
are ways to manually manage memory to minimize the
impact of garbage collection, the core components of
the underlying runtime are beyond our control. For any
potential future plans, it is wise to rewrite the logic using
non-GC languages with minimal runtimes such as C and
C++.

We assume this library would be relatively useful
due to its high performance, user-friendliness, and
extensibility. However, due to its reliance on the native
library, namely zlib, it might not perform as intended on
Windows as neither of us has a Windows machine.
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