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Abstract

A technique that radiologists use to diagnose breast cancer
involves first finding suspicious sites in the mammograms
and then comparing the left and right breasts to reduce the
number of false positives. The symmetry of the human body
is utilized to increase the accuracy of the diagnosis through
visual registration of the mammograms. We emulate this
technique by combining both computer vision and learning
approaches, thus capturing the diagnosis of the radiologist.
First, the suspicious sites are found and ranked using a fil-
tering method, and then the top candidates are sorted into a
point set. Second, the point sets of the left and right breast
mammograms are compared by learning a spatial symmetry
method that utilizes clustering to bypass direct registration.
Clustered comparisons that are space-defined are found to
compare favorably against clustered comparisons that are
data-defined in this application. The space-defined clus-
tered comparison process determines the presence of can-
cer 97% of the time, outperforming commercial systems,
thus making it a strong classifier which should significantly
improve computer-aided breast cancer detection systems.

1 Introduction

Contextual and spatial comparisons can be combined to
determine image similarity, which has been often uti-
lized for content-based image retrieval (CBIR) from image
databases [12, 7, 10]. Medical image databases have also
used image similarity, from rule-based systems for chest ra-
diographs [23] to anatomical structure matching for 3D MR
images [13] to learning techniques [11]. However, the fo-
cus is often on the non-cancerous structures, while it is the
cancerous structures that are of principle interest. In this
paper we apply image similarity concepts to the problem of
detecting breast cancer in mammograms.

Breast cancer remains a leading cause of cancer deaths
among women in many parts of the world. In the United
States alone, over forty thousand women die of the disease
each year [1]. Mammography is currently the most effective
method for early detection of breast cancer [19]. For two-
thirds of the women whose initial diagnosis of their mam-
mogram is negative but who actually have breast cancer, the
cancer is evident upon a second diagnosis of their mammo-
gram [19]. Computer-aided detection (CAD) of mammo-

grams could be used to avoid these missed diagnoses, and
has been shown to increase the number of cancers detected
by more than nineteen percent [9]. Measuring asymmetry,
which consists of a comparison of the left and right breast
images [8], is a technique that could be used to improve
the accuracy of CAD. An automated prescreening system
only classifies a mammogram as either normal or suspi-
cious, while CAD picks out specific points as cancerous [4].
One of the most challenging problems with prescreening is
the lack of sensitive algorithms for the detection of asym-
metry [3].

The majority of work on CAD analysis of mammograms
has focused on determining the contextual similarity to can-
cer, finding abnormalities in a local area of a single im-
age [14, 21]. The primary methods used range from filters
to wavelets to learning methods, but a detailed discussion
of various imaging techniques is beyond the scope of this
paper. Problems arise in using filter methods [14] because
of the range of sizes and morphologies for breast cancer, as
well as the difficulty in differentiating cancerous from non-
cancerous structures. The size range problem has been ad-
dressed by using multi-scale models [21]. Similar issues af-
fect wavelet methods, although their use has led to reported
good results [17] with the size range issue being improved
through the use of a wavelet pyramid [18]. Learning tech-
niques have included support vector machines [5] and neu-
ral networks [17].

Detecting breast cancer in mammograms is challeng-
ing because the cancerous structures have many features
in common with normal breast tissue. This means that a
high number of false positives or false negatives are possi-
ble. Asymmetry can be used to help reduce the number of
false positives so that true positives are more obvious. Pre-
vious work utilizing asymmetry has used wavelets or struc-
tural clues to detect asymmetry with correct results as often
as 77% of the time [8, 20]. Additional work has focused
on bilateral or temporal subtraction, which is the attempt to
subtract one breast image from the other [25, 28]. This ap-
proach is hampered by the necessity of exact registration
and natural asymmetry of the breasts. Bilateral subtrac-
tion is good because it does try to utilize the multiple im-
ages taken with the same machine by the same technician
and analyzed using the same process in an effort to reduce
the systematic differences that can be introduced. We be-
lieve that developing ways to better utilize asymmetry is
consistent with a philosophy of trying to use methods that



Figure 1: Mammograms of left and right breasts with cancerous
area outlined. The similarity of texture between cancerous and
normal tissue makes asymmetry an important tool in cancer detec-
tion.

can capture measures deemed important by doctors thereby
building upon their knowledge base, instead of trying to
supplant it. However, measuring asymmetry involves reg-
istration and comparing multiple images, and thus it is a
more complicated process.

Registration is the matching of points, pixels, or struc-
tures in one image to another image. Registration of
mammograms is difficult because mammograms are projec-
tions of compressed three-dimensional structures. Primary
sources of misregistration are differences in positioning and
compression, which manifests itself in visually differentim-
ages. The problem is more complex because the breast is
elastic and subject to compression. Additional sources of
difficulties include lack of clearly defined landmarks and
normal variations between breasts. Strictly speaking, pre-
cise mammogram registration is intractable. However, an
approximate solution is possible [24]. Warping techniques
have been used [22], as well as statistical models [27] or
mutual information as a basis for registration [26]. In this
paper we learn image comparison models based upon clus-
tering that encapsulate an approximate registration and use
them to compare the mammograms of the left and right
breasts.

Comparing multiple mammograms using learning tech-
niques has been shown to be effective in CBIR [7]. Neural
nets can be an effective supervised learning technique [2].
Our application lends itself well to supervised learning be-
cause the data set has already been screened for cancer and
thus classified by expert radiologists. However, care must
be taken since the expert classification is known not to be
perfect [19].

The rest of this paper is organized as follows. Section 2

presents our method for measuring similarity between the
mammogram images. Section 3 discusses the evaluation of
the performance of the measure. Section 4 compares the
results with other work, while Section 5 discusses the con-
clusions that can be drawn from this work.

2 Measuring Similarity

Our work utilizes filtering followed by spatial symmetry
analysis to determine an overall measure of similarity by
combining the contextual similarity of the filtering with the
spatial similarity of the analysis. This can be a useful mea-
sure for prescreening mammograms since only an overall
determination is required. We believe that many of the
techniques described here can also be adapted for use in
CAD analysis. A secondary goal of our work is to deter-
mine the importance of similarity or asymmetry in the com-
puter analysis of mammograms. Figure 1 shows why spatial
asymmetry is important in finding cancers in mammograms
since we see that the texture and appearance of cancer are
both very similar to the texture and appearance of normal
tissue in the breast.
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Figure 2: Relative brightness and spiculation detection filters:
the left filter calculates the percent of the pixels in the outer ring
that are less bright than the least bright of the pixels in the inner
disk. The filter highlights the areas of the image that have bright
cores, a characteristic of spiculated lesions. Multiple sizes are used
because the sizes of the cancers vary. The right filter is used to
detect spiculation, or radiating lines out of the core.

Our analysis starts with filtering to find the contextually
similar suspicious points that could be cancers in the mam-
mograms. The filter highlights the areas of the image that
have bright cores, a characteristic of spiculated lesions. The
filter calculates the percent of the pixels in the outer ring that
are less bright than the least bright of the pixels in the in-
ner disk to produce a suspiciousness value, and an example
is given in Figure 2. This suspiciousness value represents
the degree to which the surrounding region of a point radi-
ally decreases in intensity, and is done over several sizes.
This is focusing on the bright central core of the cancer and
ignoring the radiating lines of spiculation. A second filter
can be used to detect the radiating lines of spiculation, as
shown in Figure 2 on the right, but a combined filter that
detects both the cores and the spiculation should improve
the performance, especially if the relative weighting of the



measurements is learned on an appropriate data set.

A further improvement might be possible by first trans-
forming the data before filtering, such as applying wavelet
analysis to the images before simply thresholding or apply-
ing the filter. This has been successfully attempted previ-
ously [8] with good results. However, an optimal solution
would first combine all of the various filtering and trans-
form methods which create meaningful suspicious points,
and then learn an effective analysis from them. This is sim-
ilar to the effective combination of weak classifiers into a
single strong classifier through ensemble learning methods
like boosting, which has been successfully used before in
tumor classification [6].

Points with a high suspiciousness value have a higher
chance of corresponding to an occurrence of cancer. The
centroid of each local maxima in the filtered image is ini-
tially marked as a candidate detection site with its suspi-
ciousness value. This collection of sites is then sorted in
decreasing order of suspicion. All suspicious sites that are
closer than 5mm from a more suspicious site are removed.
This yields a set of potential detection sites that can be an-
alyzed for asymmetry. This technique was advanced by
Heath [14]. Although it may not be the optimal choice of
either filtering or ranking, the spatial analysis that we used
can be applied to any technique that can rank the suspicious-
ness of areas. The number of points returned by the filtering
step is one of the variables that is learned to optimize the
analysis. Alternatively, we can also make use of a threshold
on the suspiciousness value instead of taking the top few.
However, we chose to take the top few in order to to try to
be insensitive to image processing choices that might bias
the analysis.

The analysis for similarity or asymmetry that we used
performs a comparison of clusters of suspicious points in
order to avoid an exact registration. We experimented with
three models, two that are built using a space-defined clus-
tering with pre-set cluster registration, and one that is built
using a data-defined clustering with no pre-set registration.
A space-defined clustered comparison can be seen in Figure
3, where the points are assigned to clusters that are defined
by large tracts of space and have a set spatial relationship
between each other. The clusters have a pre-set registration
with their sister cluster in the other image. For simplicity,
the clusters are assumed to be non-overlapping and space-
filling, but this is not required. Additionally, the sister clus-
ters are assumed to contain the same areas in the images
of the left and right breasts out of symmetry. This reduces
the number of parameters and increases the ability of the
model to be generalized to a larger data set, based on the as-
sumption that there is no important anatomical differences
between the left and right breasts and that breast cancer is
equally as likely to be in the left or right breast.

In a space-defined clustered comparison, a cluster is as-
signed all of the suspicious points in the space that the
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Figure 3: Space-Defined Clustered Comparison. The suspicious
points are the small circles, with the points on the left coming from
the image of the left breast and the points on the right coming
from the image of the right breast. The clusters are the large boxy
shapes containing the points, and sister clusters have the same size
and border. The points are assigned to clusters that are defined by
large tracts of space and have a set spatial relationship between
each other. The clusters have a pre-set registration with their sister
cluster in the other image.
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Figure 4: Data-Defined Clustered Comparison. The suspicious
points are the small circles, with the points on the left coming from
the image of the left breast and the points on the right coming from
the image of the right breast. The clusters are the larger circles.
This method searches for small clumps of suspicious points and
then assigns a cluster there, comparing the number of clusters in
the two images.



Figure 5: The two breasts are shown, with the suspicious points
indicated by circles. The two hand-drawn circles (one inside the
other) in the right breast are the radiologist’s diagnosis of cancer.
The asymmetry is demonstrated by the presence of considerably
fewer suspicious points in the matching area in the left breast — that
is, the distribution of suspicious points changes slightly from one
breast to the other when there is cancer. Note that there are circles
within the hand-drawn circles, showing that the filtering does find
the cancer and that the suspicious points do tend to cluster around
the cancer. This was the motivation for the data-defined clustered
comparison method. The large boxy outlines are like the clusters
used in the two-cluster space-defined model.

cluster spans. Exact registration of the suspicious points
is avoided by using the clusters for the comparisons as they
are registered with their sister cluster. A comparison of the
number of suspicious points contained within the cluster is
done with the sister cluster, and the absolute value of the
differences between sister clusters are combined and com-
pared against an optimized threshold. A variation on this
approach could learn a threshold for each pair of sister clus-
ters, and which has the advantage of being able to empha-
size the importance of some areas in the breast over others.
This could be used to distinguish noisy areas in the breasts
where many spurious suspicious points are found from im-
portant areas where even small variations are indicative of
malignant cancer. This technique of learning important ar-
eas in images using clustered comparisons can be thought
of as an image enhancement technique.

. We test two space-defined clustered comparisons. The
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Figure 6: The comparison of the analysis on the training and test
data for the two cluster space-defined clustered comparison. The
Y-axis is the ratio of the number of correctly classified mammo-
grams to the total number, while the X-axis is the position of the
bottom of the top cluster. This data corresponds to the situation
when cancerous and non-cancerous cases equally weighted. Since
the two cluster analysis worked well, a three cluster analysis was
tried and is shown in Figure 7.

simplest model assigns the suspicious points to one of two
clusters and then compares the clusters in the left and right
breasts, as shown in Figure 5. The second model was an ex-
tension of the first, using three cluster areas instead of two
and shown in Figure 3. These models were motivated by
the observation that the cancer would change the distribu-
tion of the suspicious points, leading to a different cluster-
ing and thus an indication of cancer. An improvement to
the method would be to adaptively determine the optimal
number of clusters through a split-and-merge type method-

ology [16].

The third model that we tried does not set the number of
clusters arbitrarily, but instead learns the number of clusters
from the data. These data-defined clustered comparisons
search for small clumps of suspicious points and then as-
sign a cluster there, as shown in Figure 4. The maximum
distance between points and the minimum points needed to
define a cluster are learned on a training set. The clusters
were also defined to be centered on a suspicious point be-
cause we believed that small clumps of suspicious points
tended to form around the central cancer. This assumption
may be incorrect, and having cluster centers free from that
constraint may improve the performance. Exact registration
is avoided again by registering the clusters instead of the
image or the suspicious points. Comparing the number of
clusters in the right image versus the number of clusters in
the left image is a first cut at registering the clusters since a
difference in the numbers of clusters implies some clusters
cannot be registered. Improving the cluster registration may
improve the performance of the method. This data-defined
clustered comparison was motivated by the data, where we
observed a small cluster of suspicious points at a cancer site
as shown in Figure 5.

For diagnosing breast cancer, the importance of correct
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Figure 7: The comparison of the analysis on the training and test
data for the three cluster space-defined clustered comparison. The
Y-axis is the ratio of the number correctly classified mammograms
to the total number, while the X-axis is the position of the top of
the middle cluster. For this plot, the bottom of the top cluster is set
at 645, the high end of the range. Thus the performance improves
as the second cluster gets smaller, pushing up on the boundary at
the high end. Since a small area is given immense importance by
the learning process, we can come to the conclusion that it is a
very important area in the diagnosis of breast cancer. Note that the
three-cluster comparison does provide improved results over the
two-cluster comparison.
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Figure 8: The comparison of the analysis on the training and
test data for the data-defined clustered comparison. The Y-axis is
the ratio of the number correctly classified mammograms to the
total number, while the X-axis is the maximum distance allowed
from the center of the cluster, or the size. This plot shows that
the analysis is poor across the range of sizes. The space-defined
clustering vastly outperforms the more conventional data-defined
clustering
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Figure 9: The comparison of the analysis on the training and test
data for the two cluster space-defined clustered comparison. The
Y-axis is the ratio of the number correctly classified mammograms
to the total number, while the X-axis is the number of suspicious
points used in the clustered comparison. Note that points do not
get fed into the learning algorithm, just the cluster differences, so
there is no effect from the learning based on the number of data
points. Only one or maybe a few points should be associated with
the cancer, and usually that is within the top eight points, so the
comparison performs better with more points that are not cancer
related.

classification of the cancerous cases is much more impor-
tant than the non-cancerous cases. To reflect this, the asso-
ciated weighting of the cancerous cases was varied, and we
evaluate the performance of various weightings.

3 Evaluation

The filtering and the clustered comparisons were applied
to the mediolateral oblique (MLO) mammogram views of
both the left and right breast of patients that were diag-
nosed with cancer and patients that were diagnosed as nor-
mal, or free from cancer. The analysis was performed over
test and training data sets, with cases that were roughly
split between normal mammograms and mammograms with
malignant spiculated lesions from the Digital Database for
Screening Mammography [15]. The focus was on one type
of breast cancer which creates spiculated lesions in the
breasts. Spiculated lesions are defined as breast cancers
with central areas that are usually irregular and with ill-
defined borders. Their sizes vary from a few millimeters
to several centimeters in diameter and they are very difficult
cancers to detect [18].

The training set had 39 non-cancerous cases and 37 can-
cerous cases, while the test set had 38 non-cancerous cases
and 40 cancerous cases. The data is roughly spread across
the density of the breasts and the subtlety of the cancer. The
breast density and subtlety were specified by an expert ra-
diologist. The subtlety of the cancer shows how difficult
it is to determine that there is cancer. The training data set
was used to determine optimal parameters for classification.
These cases indicated that a difference in the clusters of one
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Figure 10: The comparison of the analysis on the training and
test data for the three cluster space-defined clustered comparison
for only cancerous cases. The Y-axis is the ratio of the number
correctly classified cancerous mammograms to the total number
of cancerous mammograms, while the X-axis is the position of the
top of the middle cluster. For this plot, the bottom of the top cluster
is set at 645, the high end of the range. The general flatness of the
data suggest that adding the third cluster is not that important for
the diagnosis of cancer.

or more suspicious points indicated cancer. The mammo-
gram in Figure 5 shows how the spatial distribution of sus-
picious points is changed by the presence of a cancer.

4 Results

Our results are good on all cases of the test set, correctly
classifying 80% on the test set and 79% on the training set
for the two-cluster model as shown in Figure 6. The three-
cluster model achieved correct classification 84% and 81%
of the time, respectively, as shown in Figure 7, while the
small-clusters model results as shown in figure 8 were not
much better than a simple Naive Bayes approach. The re-
sults are summarized in Table 1. However, it is much more
important to correctly classify the cancerous cases, and by
heavily weighting the importance of the cancerous cases,
we correctly classified 97% of the cancerous cases and 42%
of the non-cancerous cases with the two-cluster model. Nei-
ther the subtlety nor the density of the cancer had an ef-
fect on the results. On the training set, the cancerous cases
were correctly classified 100% of the time while the non-
cancerous cases were classified correctly just 33% of the
time.

The comparison with a commercial system shows that
the results are surprisingly good. Correct classification
results of 96% of the cancerous cases and 33% of non-
cancerous cases are possible using the R2 ImageChecker
system [3] when doing pre-screening. Our method showed
correct classification results on 97% of cancerous cases and
42% of the non-cancerous cases. This demonstrates the
importance of asymmetry and image comparisons in pre-
screening. The inclusion of additional factors other than
asymmetry in the clustering method should improve the
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Figure 11: The comparison of the analysis on the training and
test data for the three cluster space-defined clustered comparison
for only cancerous cases. The Y-axis is the ratio of the number
correctly classified cancerous mammograms to the total number
of cancerous mammograms, while the X-axis is the position of the
top of the middle cluster. For this plot, the bottom of the top cluster
is set at 645, the high end of the range. The strong response of the
data suggest that adding the third cluster is very important for the
diagnosis of normality. Upon inspection of the data we found that
this region is actually very empty in many normal mammograms,
implying that our analysis has determined an important area for
the diagnosis as non-cancerous in mammograms.

results. However, the data sets used are different, as the
R2 ImageChecker data contains all cancer types and our
method has only the difficult to detect spiculated lesions.
The R2 ImageChecker data set also had a much higher pro-
portion of non-cancerous mammaograms to cancerous cases.

Since the neural net that we used to learn the param-
eters of the clusters relies on steepest descent to find the
optimal parameters, there is concern about finding a local
maxima instead of the global maxima. To evaluate the po-
tential of this data set to become trapped in a local maxima,
an exhaustive search over the y position of the top cluster
was performed for the two-cluster model, and the results
shown in Figure 6 demonstrate a clear maxima with rela-
tively shallow local maxima. Additionally, the analysis is
shown to generalize well from training to test data. One
of the parameters that was learned was the optimal number
of suspicious points to use in the analysis, and the results
were always at or near the top of the range that we used,
varying from 29 to 32 points depending on the model and
weightings as shown in Figure 9. This was surprising be-
cause the cancer was usually in the top sixteen if not the
top eight points. However, the suspicious points do tend to
cluster around a cancer, so including more suspicious points
may create a greater distortion of the underlying distribution
than fewer points. The learning algorithm does not get the
number of points directly, only the cluster differences, so
the inclusion of more data should not result in overfitting.
An interesting result from the three-cluster analysis showed
that space-defined clustering could discover important re-
gions in images, and this is demonstrated in Figures 8, 10,
and 11. The analysis found a region of interest for diagnos-



Method Test Cancerous | Test Normal | Training Cancerous | Training Normal
Space-Defined Two Cluster 87% 71% 79% 78%
Space-Defined Two Cluster 97% 42% 100% 33%
Weighted Toward Cancer

Space-Defined Three Cluster 78% 90% 84% 78%
Data-Defined 51% 56% 67% 50%
Naive Bayes 51% 48% 48% 51%
R2 ImageChecker 96% 33% 96% 33%

Table 1: Results Table. The space-defined clustered comparisons performed significantly better than both the data-defined clustered com-
parisons and a Naive Bayes approach. However, the data-defined comparisons barely outperformed the Naive Bayes approach, demon-
strating the inadequacy of this approach as we defined it. Adding a third cluster did improve the overall performance of the space-defined

clustered comparisons.

ing a mammogram as non-cancerous.

Our clustering method makes use of a spatial analysis
of the suspicious points, counting the number of suspicious
points in certain areas or clusters. Its success is an encour-
aging sign for the investigation and utilization of more com-
plicated non-local analysis techniques in medical imaging
and analysis.

5 Conclusion

The overall results of using our techniques are good. Our
experiments on malignant cases yielded 97% accuracy sug-
gesting that asymmetry is an important measure to in-
corporate into prescreening or CAD software. We have
also shown that using the cluster comparisons to determine
asymmetry is insensitive to the parameters of the clusters.
We created and compared three models, demonstrating that
three area clusters worked slightly better than two, and
showed that comparing the number of small clusters was
not an effective technique. The space-defined clusters also
discovered an area of interest in mammogram comparisons
which improved the diagnosis of mammograms that did not
have cancer. More clusters might improve the technique, or,
more importantly, they might lead to the discovery of more
areas of interest. We suggest several ways to improve on
the methods that we used to compare mammograms. One
method is to convert a mammogram into a connected graph
structure of suspicious points and utilize known graph com-
parison methods for the measure. Another is to use reg-
istration of suspicious points from one breast to the other
and reduce the suspiciousness of points that have a similar
counterpart.

Our work has demonstrated the potential of utilizing
techniques like clustered comparisons and other non-local
methods to avoid exact registration and discover interesting
results in medical imaging. We have shown that we can ef-
fectively measure doctor-defined quantities like asymmetry.
We believe that in the future, the combination of using com-

puter vision to capture doctor-defined quantities like asym-
metry and machine learning of parameters could be a pow-
erful method for improving the quality of research in medi-
cal imaging, and this is one of the avenues of research that
we intend to pursue.
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