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Abstract

The semantics of probabilistic logic programs (PLPs) is usually given through a possible
worlds semantics. We propose a variant of PLPs called action probabilistic logic programs or
ap-programs that use a two-sorted alphabet to describe the conditions under which certain real-
world entities take certain actions. In such applications, worlds correspond to sets of actions
these entities might take. Thus, there is a need to find the most probable world (MPW) for ap-
programs. In contrast, past work on PLPs has primarily focused on the problem of entailment.

This paper quickly presents the syntax and semantics of ap-programs and then shows a
naive algorithm to solve the MPW problem using the linear program formulation commonly
used for PLPs. As such linear programs have an exponential number of variables, we present
two important new algorithms, called HOP and SemiHOP to solve the MPW problem exactly.
Both these algorithms can significantly reduce the number of variables in the linear programs.
Subsequently, we present a “binary” algorithm that applies a binary search style heuristic in
conjunction with the Naive, HOP and SemiHOP algorithms to quickly find worlds that may
not be “most probable.” We experimentally evaluate these algorithms both for accuracy (how
much worse is the solution found by these heuristics in comparison to the exact solution) and
for scalability (how long does it take to compute). We show that the results of SemiHOP are
very accurate and also very fast: more than 1027 worlds can be handled in a few minutes.

1 Introduction

Probabilistic logic programs (PLPs) [NS92] have been proposed as a paradigm for probabilistic
logical reasoning with no independence assumptions. PLPs used a possible worlds model based on
prior work by [Hai84], [FHMO90], and [Nil86] to induce a set of probability distributions on a space
of possible worlds. Past work on PLPs [NS91, NS92] focuses on the entailment problem of checking
if a PLP entails that the probability of a given formula lies in a given probability interval.

However, we have recently been developing several applications for cultural adversarial reason-
ing [SAM107, Bha07] where PLPs and their variants are used to build a model of the behavior
of certain socio-cultural-economic groups in different parts of the world. Our research group has
thus far built models of approximately 30 groups around the world including tribes such as the
Shinwaris and Wagziris, terror groups like Hezbollah and the PKK, political parties such as the
Pakistan People’s Party and the Harakat-e-Islami as well as nation states. Of course, all these
models only capture a few actions that these entities might take. Such PLPs contain rules that
state things like

“There is a 50 to 70% probability that group g will take action(s) a when condition C
holds in the current state.”

TSubmitted to the Department of Computer Science, University of Maryland College Park, in partial fulfilment
of the requirements for degree of Master in Science in Computer Science. The work described here is based on
work done in collaboration with V.S. Subrahmanian, Dana Nau, Samir Khuller, Maria Vanina Martinez, and Amy
Sliva [SSNS06, KMN*07b, KMN*t07a, SMSS07, SAM™*07].
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In such applications, the problem of interest is that of finding the most probable action (or sets of
actions) that the group being modeled might do in a given situation. This corresponds precisely
to the problem of finding a “most probable world” that is the focus of this paper.

In Section 2, we define the syntax and semantics of action-probabilistic logic programs (ap-
programs for short). This is a straightforward variant of PLP syntax and semantics from [NS91,
NS92] and is not claimed as anything dramatically new. We describe the most probable world
(MPW) problem by immediately using the linear programming methods of [NS91, NS92] —these
methods are exponential because the linear programs are exponential in the number of ground
atoms in the language. The new content of this paper starts in Section 4 where we present the
Head Oriented Processing (HOP) approach; HOP reduces the linear program for ap-programs, and
we show that using HOP, we can often find a much faster solution to the MPW problem. We define
a variant of HOP called SemiHOP that has slightly different computational properties, but are still
guaranteed to find the most probable world. Thus, we have three exact algorithms to find the most
probable world.

Subsequently, in Section 5, we develop a heuristic called the Binary heuristic that can be applied
in conjunction with the Naive, HOP, and SemiHOP algorithms. The basic idea is that rather than
examining all worlds corresponding to the linear programming variables used by these algorithms,
only some fixed number k£ of worlds is examined. This leads to a linear program whose number of
variables is k. Finally, Section 6 describes a prototype implementation of our ap-program framework
and includes a set of experiments to assess combinations of exact algorithm and the heuristic. We
assess both the efficiency of our algorithms, as well as the accuracy of the solutions they produce.
We show that the SemiHOP algorithm with the binary heuristic is quite accurate (at least when
only a small number of worlds is involved) and then show that it scales very well, managing to
handle situations with over 1027 worlds in a few minutes.

2 Syntax and Semantics of ap-programs

Action probabilistic logic programs (ap-programs) are an immediate and obvious variant of the
probabilistic logic programs introduced in [NS91, NS92]. We assume the existence of a logical
alphabet that consists of a finite set L.,ns of constant symbols, a finite set Lp..q of predicate
symbols (each with an associated arity) and an infinite set V' of variable symbols: function symbols
are not allowed in our language. Terms and atoms are defined in the usual way [L1087]. We assume
that a subset Lyt of Lycq are designated as action symbols —these are symbols that denote some
action. Thus, an atom p(ty,...,t,), where p € L, is an action atom. Every atom (resp. action
atom) is a well-formed formula (wff) (resp. an action well-formed formula, or action wff). If F, G
are wifs (resp. action wifs), then (F' A G), (F V G) and —F are all wffs (resp. action wifs).

Definition 2.1 If F is a wff (resp. action wff) and p = [a, 5] C [0,1], then F : p is called a
p-annotated wff (resp. ap-annotated—short for “action probabilistic” annotated wff). p is called
the p-annotation (resp. ap-annotation) of F.

Without loss of generality, throughout this paper we will assume that F' is in conjunctive
normal form (i.e. it is written as a conjunction of disjunctions). Notice that wffs are annoted with
probability intervals rather than point probabilities. There are three reasons for this. (i) In many
cases, we are told that an action formula F' is true in state s with some probability p plus or minus
some margin of error e — this naturally translates into the interval [p — e, p+ e€]. (ii) As shown by
[FHM90, NS92], if we do not know the relationship between events eq, es, even if we know point
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1. kidnap: [0.35,0.45] «— interOrganizationConflicts.
. kidnap: [0.60, 0.68] — unDemocratic A internalConflicts.
3. armed_attacks: [0.42,0.53] <«  typeLeadership(strongSingle) N

orgPopularity(moderate).
4. armed_attacks: [0.93,1.0] «—  statusMilitary Wing(standing).

Figure 1: Four simple rules for modeling the behavior of a group in certain situations.

probabilities for eq, eo, we can only infer an interval for the conjunction and disjunction of eq, es.
(iii) Interval probabilities generalize point probabilities anyway, so our work is also relevant to point
probabilities.

Definition 2.2 (ap-rules) If F' is an action formula, Ay, As, ..., Ay, are action atoms, By, ..., B,
are non-action atoms, and [, fi1, ..., by a7e ap-annotations, then F' : p«— A1 :uy A Ag o A o A
Ap i pim N By A ... By, is called an ap-rule. If this rule is named ¢, then Head(c) denotes F : p,
Body®t(c) denotes Ay : 1 A Ag:ps A ... N Ayt i, and Body®*t(c) denotes B1 A ... B,.

Intuitively, the above ap-rule says that an unnamed entity (e.g. a group g, a person p etc.) will
take action F with probability in the range p if By, ..., By, are true in the current state (we will
define this term shortly) and if the unnamed entity will take each action A; with a probability in
the interval p; for 1 <i <mn.

Definition 2.3 (ap-program) An action probabilistic logic program (ap-program for short) is a
finite set of ap-rules.

Figure 1 shows a small rule base consisting of some rules we have derived automatically about
Hezbollah using behavioral data from [WAJT07]. The behavioral data in [WAJT07] has tracked
over 200 terrorist groups for about 20 years from 1980 to 2004. For each year, values have been
gathered for about 150 measurable variables for each group in the sample. These variables include
conditions such as tendency to commit assassinations and armed attacks, as well as background
information about the type of leadership, whether the group is involved in cross border violence, etc.
Our automatic derivation of these rules was based on a data mining algorithm we have developed,
but is not covered in this work. We show four rules we have extracted for the group Hezbollah
in Figure 1. For example, the third rule says that when Hezbollah has a strong, single leader and
its popularity is moderate, its propensity to conduct armed attacks has been 42 to 53%. However,
when it has had a standing military, its propensity to conduct armed attacks is 93 to 100%.

Definition 2.4 (world/state) A world is any set of ground action atoms. A state is any finite
set of ground non-action atoms.

Example 2.1 Consider the ap-program from Figure 1; there are two ground action atoms: kidnap
and armed_attacks, and there are therefore a total of 22 = 4 possible worlds. These are: wy = 0,
w1 = {kidnap}, we = {armed_attacks}, and ws = {kidnap, armed_attacks}. The following are
two possible states:

s1 = {statusMilitary Wing(standing), unDemocratic, internal Conflicts},
s9 = {interOrganizationConflicts, orgPopularity(moderate)}
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1. d: [0.52,0.82] - .
2. b A a:[0.55069 <« d:[0.48,0.89].

Figure 2: A simple example of an ap-program with action atoms in the body of the rules, which is
already reduced with respect to a certain state.

Note that both worlds and states are just ordinary Herbrand interpretations. As such, it is
clear what it means for a state to satisfy Body*@t.

Definition 2.5 Let II be an ap-program and s a state. The reduction of Il w.r.t. s, denoted by Il
is {F : p « Body® | s satisfies Body*t®® and F : u < Body®® A Body*'® is a ground instance
of a rule in II}.

Note that 11 never has any non-action atoms in it. The following is an example of a reduction
with respect to a state.

Example 2.2 Let II be the ap-program from Figure 1, and suppose we have the following state:
s = {statusMilitary Wing(standing), unDemocratic, internalConflicts}
The reduction of I1 with respect to state s is:

Iy = {kidnap : [0.60, 0.68], armed_attacks : [0.93,1.0]}.

Key differences. The key differences between ap-programs and the PLPs of [NS91, NS92| are
that (i) ap-programs have a bipartite structure (action atoms and state atoms) and (ii) they allow
arbitrary formulas (including ones with negation) in rule heads ([NS91, NS92] do not). They can
easily be extended to include variable annotations and annotation terms as in [NS91]. Likewise, as
in [NS91], they can be easily extended to allow complex formulas rather than just atoms in rule
bodies. Due to space restrictions, we do not do either of these in this paper. However, the most
important difference between our paper and [NS91, NS92] is that this paper focuses on finding most
probable worlds, while those papers focus on entailment, which is a fundamentally different problem.

Throughout this paper, we will assume that there is a fixed state s. Hence, once we are given
IT and s, I, is fixed. We can associate a fixpoint operator 711, with II, s which maps sets of ground
ap-annotated wifs to sets of ground ap-annotated wifs as follows. We first define an intermediate
operator Ut (X).

Definition 2.6 Suppose X is a set of ground ap-wffs. We define U, (X) = {F : p | F : p «—
Ay iy Ao AN At i 1S a ground instance of a rule in g and for all 1 < j < m, there is an
Aj n; € X such that n; C pj}.

Intuitively, U, (X ) contains the heads of all rules in IIy whose bodies are deemed to be “true”
if the ap-wffs in X are true. However, U, (X) may not contain all ground action atoms. This
could be because such atoms don’t occur in the head of a rule —Ur, (X) never contains any action
wif that is not in a rule head. The following is an example of the calculation of U, (X).
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Example 2.3 Consider the simple program depicted in Figure 2, and let X = {d :[0.5,0.55]}.
In this case, U (X) ={d :[0.52,0.82],b A a:[0.55,0.69]}.

In order to assign a probability interval to each ground action atom, we use the same procedure
followed in [NS91]. We use Uy, (X) to set up a linear program CONSy (11, s, X) as follows.

Definition 2.7 Let II be an ap-program and s be a state. For each world w;, let p; be a variable
denoting the probability of w; being the “real world”. As each w; is just an Herbrand interpretation
(where action symbols are treated like predicate symbols), the notion of satisfaction of an action
formula F by a world w, denoted by w +— F, is defined in the usual way.

1. If F:[lu) € Un, (X), then £ < Xy, —r pi < u is in CONSy (11, s, X).

2. Xy, pi = 1 is in CONSy (11, s, X).
We refer to these as constraints of type (1) and (2), respectively.
The following is an example of how these constraints look.

Example 2.4 Let II be the ap-program from Figure 2, and X = {d :[0.5,0.55]}. The possible
worlds are: wg = 0, w1 = {d}, we = {b}, wy = {a}, wy = {d, b}, ws = {d,a}, wg = {b,a}, and
wr = {d,b,a}. In this case, the linear program CONSy (11, s, X) contains the following constraints:

0.52 < p1 +ps+ps+pr <082
0.55 < pg + pr < 0.69

po+p1+p2+p3+pstpst+pstpr=1

To find the lower (resp. upper) probability of a ground action atom A, we merely minimize (resp.
maximize) ¥,,4p; subject to the above constraints. We also do the same w.r.t. each formula
F that occurs in Uy, (X) —this is because this minimization and maximization may sharpen the
bounds of F. Let ¢(F) and u(F) denote the results of these minimizations and maximizations,
respectively. Our operator 71, (X) is then defined as follows.

Definition 2.8 Suppose Il is an ap-program, s is a state, and X is a set of ground ap-wffs. Our
operator T, (X) is then defined to be

{F: [(F),w(F)] | Gu) F: p € Un, (X)}U
{A:[l(A),u(A)]| Ais a ground action atom}.

Thus, T11,(X) works in two phases. It first takes each formula F' : p that occurs in U, (X)
and finds F' : [((F),u(F)] and puts this in the result. Once all such F' : [{(F), u(F')]’s have been
put in the result, it tries to infer the probability bounds of all ground action atoms A from these
F :[0(F),u(F)]’s. The following is an example of this process.

Example 2.5 Consider the ap-program presented in Figure 2, with the same state s. For
Ta, T 0, we have X = 0. We first obtain Up, (0) = {d:[0.52,0.82]}. Then, T, (0) =
{d:]0.52,0.82],a:[0,1.0],b:[0,1.0]}.

To obtain Ty, 11 =T, (T, 10), let X = T11, (D). Then we have:
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U, (X)={d:[0.52,0.82],bA a:[0.55,0.69]}, and
Ty, (X) ={d :[0.52,0.82],b A a:[0.55,0.69]}
U{A: [l(A),u(A)]| A is a ground action atom }.

In order to infer the probability bounds for all ground action atoms, we need to build a linear
program using the formulas from Upn, (X) and solve it for each ground atom by minimizing and
mazimizing the objective function of the probabilities of the worlds that satisfy each atom. The
possible worlds are: wo =0, wy = {d}, we = {b}, wy = {a}, wy = {d, b}, ws = {d, a}, we = {b,a},
and w7 = {d,b,a}. The linear program then consists of the following constraints:

0.52 < p1 +ps+ps +pr <0.82
0.55 < pe + pr < 0.69
po+p1+p2+p3+pstpst+pstpr=1

In order to obtain ¢(d) and u(d) (that is, bound the probability value for action atom d),
we minimize and then maximize the objective function p1 + ps + ps + pg subject to the lin-
ear program above, obtaining: d :[0.52,0.82]. Similarly, we use the objective function ps +
ps + pe + pr for atom a, obtaining a:[0.55,1.0], and ps + ps + ps + pr for b, obtaining
b:[0.55,1.0]. Therefore, we have finished calculating Tr, T 1, and we have obtained Tr (X) =
{d:]0.52,0.82],b A a:[0.55,0.69],a:[0.55,1.0],b:[0.55,1.0]}.

Similar computations with X = Ty, (T, (0)) allows us to conclude that Ty, 1 2 = T, T 1,
which means we reached the fixed point.

Given two sets X1, Xo of ap-wifs, we say that X7 < Xs iff for each F} : p1 € Xy, there is an
Fy : po € Xo such that ps C py. Intuitively, X1 < X5 may be read as “X; is less precise than Xs.”
The following straightforward variation of similar results in [NS91] shows that

Proposition 2.1 1. Ty, is monotonic w.r.t. the < ordering.
2. Tn, has a least fizpoint, denoted Ty .

3 Maximally Probable Worlds

We are now ready to introduce the problem of, given an ap-program and a current state, finding
the most probable world. As explained through our Hezbollah example, we may be interested in
knowing what actions a group might take in a given situation.

Definition 3.1 (lower/upper probability of a world) Suppose II is an ap-program and s is a
state. The lower probability, low(w;) of a world w; is defined as: low(w;) = minimize p; subject
to CONSy (1L, s, T; ). The upper probability, up(w;) of world w; is defined as up(w;) = maximize
pi subject to CONSy (11, s, 777 ).

Thus, the lower probability of a world w; is the lowest probability that that world can have in
any solution to the linear program. Similarly, the upper probability for the same world represents
the highest probability that that world can have. It is important to note that for any world w,
we cannot exactly determine a point probability for w. This observation is true even if all rules
in IT have a point probability in the head because our framework does not make any simplifying
assumptions (e.g. independence) about the probability that certain things will happen.
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We now state two simple results that state that checking if the low (resp. up) probability
of a world exceeds a given bound (called the BOUNDED-LOW and BOUNDED-UP problems
respectively) is intractable. The hardness results, in both cases, are by reduction from the problem
of checking consistency of a generalized probabilistic logic program (PLP-CONS). The problem is
in the class EXPTIME.

Proposition 3.1 (BOUNDED-LOW complexity) Given a ground ap-program I1, a state s, a
world w, and a probability threshold py,, deciding if low(w) > py, is N P-hard.

Proof 3.1 We will reduce the PLP-CONS problem to the problem of deciding if a certain world w
is such that low(w) > pu, for a certain probability value py,. Because PLP-CONS was proven to be
N P-hard [FHM90], this reduction will prove that BOUNDED-LOW is N P-hard as well.

Given an instance of PLP-CONS consisting of a program 11 and a state s, we build an instance
of BOUNDED-LOW, consisting of an ap-program II', a state s', a world w, and a probability
threshold py, in the following manner: program II' is equal to I and state s’ is equal to s, world w
is an arbitrary world, and py, = 0. We must now show that this transformation yields a reduction
by proving that 11 is consistent in state s if and only if low(w) > 0 with respect to II' and state s':

e 11 is consistent = low(w) > 0 with respect to 1" in state s': If II is consistent, this means
that CONSy (11, s, Tl‘-*fs) 1s solvable. Therefore, it is clear that any possible world will receive a
probability value greater than or equal to zero.

e low(w) > 0 with respect to I in state ' = 11 is consistent: If low(w) > 0 with respect to II in
state s', this means that w has received a probability value greater than or equal to zero, subject
to CONSy (I, 5, T} ). This is only possible if CONSy (1L, s, T ) is solvable, which means that
IT is consistent (this well known property was proved in [NS92]).

To complete the proof, we note that the transformation from a PLP-CONS instance to a BOUNDED-
LOW instance can be done in polynomial time with respect to the size of the ap-program given for
PLP-CONS.

Proposition 3.2 (BOUNDED-UP complexity) Given a ground ap-program 11, a state s, a
world w, and a probability threshold py,, deciding if up(w) < py, is N P-hard.

Proof 3.2 Analogous to that of Proposition 3.1.

An open problem is to characterize the precise complexity of the BOUNDED-LOW and
BOUNDED-UP problems.

The MPW Problem. The most probable world problem (MPW for short) is the problem where,
given an ap-program II and a state s as input, we are required to find a world w; where low(w;) is
maximal. !

LA similar MPW-Up Problem can also be defined. The most probable world-up problem (MPW-Up) is: given
an ap-program II and a state s as input, find a world w; where up(w;) is maximal. Due to space constraints, we only
address the MPW problem.
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Naive Algorithm.
1. Compute 1Y ; Best = NIL; Bestval = 0;
2. For each world w;,

(a) Compute low(w;) by minimizing p; subject to the set
CONSy (I, 5, Tt; ) of constraints.

(b) If low(w;) > Bestval then set Best = w; and
Bestval = low(w;);

3. If Best = NIL then return any world whatsoever, else re-
turn Best.

Figure 3: The Naive algorithm for finding a most probable world.

4 Exact Algorithms for finding a Maximally Probable World

In this section, we develop algorithms to find the most probable world for a given ap-program and
a current state. As the above results show us, there is no unique probability associated with a
world w; the probability could range anywhere between low(w) and up(w). Hence, in the rest of
this paper, we will assume the worst case, i.e. the probability of world w is given by low(w). We
will try to find a world for which low(w) is maximized.

In this section, we study the following problem: given an ap-program II and a state s, find a
world w such that low(w) is maximized. If we replace low(w) by up(w), the techniques to find a
world w such that up(w) is maximal are similar (though not all apply directly). There may also be
cases in which we are interested in using some other value (e.g. the average of low(w) and up(w)
and so on).

A Naive Algorithm. The naive algorithm to find the most probable world is the direct im-
plementation of the definition of the problem, and it basically consists of the steps described in
Figure 3.

The Naive algorithm does a brute force search after computing 77 . It finds the low probability
for each world and chooses the best one. Clearly, we can use it to solve the MPW-Up problem by
replacing the minimization in Step 2(a) by a maximization.

There are two key problems with the naive algorithm. The first problem is that in Step (1),
computing Ty is very difficult. When some syntactic restrictions are imposed, this problem can
be solved without linear programming at all as in the case when II is a probabilistic logic program
(or p-program as defined in [NS92]) where all heads are atomic.

The second problem is that in Step 2(a), the number of (linear program) variables in
CONSy/ (11, s, T; 1‘-‘[’5) is exponential in the number of ground atoms. When this number is, say 20, this
means that the linear program contains over a million variables. However, when the number is say
30 or 40 or more, this number is inordinately large. In this paper, when we say that we are focusing
on lowering the computation time of our algorithms, we are referring to improving Step 2(a).

In this section, we will present two algorithms, the HOP and the SemiHOP algorithms, both of
which can significantly reduce the number of variables in the linear program by collapsing multiple
linear programming variables into one. They both stem from the basic idea that when variables
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always appear in certain groups in the linear program, these groups can be collapsed into a single
variable. As we will see, the basic idea can lead to great savings, but being too ambitious in trying
to collapse all possible sets can be detrimental to our benefits; this last observation is the root of
the second algorithm.

4.1 HOP: Head-Oriented Processing

We can do better than the naive algorithm without losing any precision in the calculation of a most
probable world. In this section we present the HOP algorithm, prove its correctness, and propose
an enhancement that also provably yields a most probable world.

Given a world w, state s, and an ap-program II, let Sat(w) = {F'| ¢ is a ground instance of a
rule in II; and Head(c) = F : p and w — F'}. Intuitively, Sat(w) is the set of heads of rules in Il
(without probability annotations) whose heads are satisfied by w.

Definition 4.1 Suppose Il is an ap-program, s is a state, and w1, wo are two worlds. We say that
w1 and wy are equivalent, denoted wy ~ wa, iff Sat(wy) = Sat(ws).

In other words, we say that two worlds are considered equivalent if and only if the two worlds
satisfy the formulas in the heads of exactly the same rules in II;. It is easy to see that ~ is an
equivalence relation; we use [w;] to denote the ~-equivalence class to which a world w; belongs.
The intuition for the HOP algorithm is given in Example 4.1.

Example 4.1 Consider the set CONSy (11, 5, T; ) of constraints. For evample, consider a situation
where CONSy (I, s, T} ) contains just the three constraints below:

0.7<p2+p3+ps+ps+pr+ps<1 (1)
02<ps+p7+ps<0.6 (2)
pr+p2+p3+pi+ps+ps+pr+ps=1 (3)

In this case, each time one of the variables ps, pr, or ps occurs in a constraint, the other two also
occur. Thus, we can replace these by one variable (let’s call it y for now). In other words, suppose
Yy = ps + p7r + ps. Thus, the above constraints can be replaced by the simpler set

0.7<pa+p3+ps+y<1
0.2<y<0.6

p1+p2t+p3+pit+psty=1

The process in the above example leads to a reduction in the size of the set CONSy (11, s, Tt ).
Moreover, suppose we minimize y subject to the above constraints. In this case, the minimal value
is 0.2. As y = p5s + pr + ps, it is immediately obvious that the low probability of any of the p;’s is
0. Note that we can also group ps, p3, and pg together in the same manner.

We build on top of this intuition. The key insight here is that for any ~-equivalence class
[w;], the entire summation X, c[.,p; either appears in its entirety in a constraint of type (1) in
CONSy (I, 5, T17,) or does not appear at all. This is what the next result states.
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Original linear program Reduced linear programs
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Figure 4: Reducing CONSy(Il,s,Tf{ ) by grouping variables.  The new LPs are called
RedCONSy (11, s, T; ) and S_RedCONSy (11, s, T} ), as presented in Definitions 4.2 and 4.4.

Proposition 4.1 Suppose Il is an ap-program, s is a state, and [w;] is a ~-equivalence class. Then
for each constraint c of the form
L S Ewr»—>F Dr S u (4)

in CONSy (11, s, Tﬁ’s), either every variable in the summation Yy, e[, )P; appears in the summation
in (4) above or mo variable in the summation X, cp,pj appears in the summation in (4).

Proof 4.1 Let ¢ be a constraint of the form (4) and suppose for a contradiction that there exist
two variables, p, and p, such that wy,w, € [w;] and p, appears in the constraint c, while p, does
not. In this case, w, — F' and wy v/ F. However, in this case, wy % w,y, and therefore cannot be
in the same equivalence class [w;], yielding a contradiction.

Example 4.2 Here is a toy example of this situation. Suppose Il; consists of the two very simple
rules:

(aVbVeVvd:[0.1,0.5] «
(aAe):[0.2,0.5] «

Assuming our language contains only the predicate symbols a, b, c, d, e, there are 32 possible worlds.
However, what the preceding proposition tells us is that we can group the worlds into four categories.
Those that satisfy both the above head formulas (ignoring the probabilities), those that satisfy the
first but not the second head formula, those that satisfy the second but not the first head formula,
and those that satisfy neither. This is shown graphically in Figure 4, in which p; is the variable
in the linear program corresponding to world w;. For simplicity, we numbered the worlds according
to the binary representation of the set of atoms. For instance, world {a,c,d, e} is represented in
binary as 10111, and thus corresponds to woz. Note that only three variables appear in the new
linear constraints; this is because it is not possible to satisfy =(aV bV eV dVe) and (a Ae) at the
same time.
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Effectively, what we have done is to modify the number of variables in the linear program from
gcard(Lact) 4 gcard(Ils) g gaving that can be significant in some cases (though not always, and in
some cases it can actually result in an increase in size). The number of constraints in the linear
program stays the same. Formally speaking, we define a reduced set of constraints as follows.

Definition 4.2 (RedCONSy (I, 5,777 )) For each equivalence class [wi],
RedCONSy (11, s, Tf; ) uses a wariable p; to denote the summation of the probability of each
of the worlds in [w;]. For each ap-wff F' : [{,u] in Ty , RedCONSy(II, s, Ty{ ) contains the
constraint:

0 < VP < U

Here, [w;] — F means that some world in [w;] satisfies F'. In addition, RedCONSy (I, s, T} )
contains the constraint

Spwpi = 1.

When reasoning about RedCONSy/ (11, s, T} 1‘-*1’5), we can do even better than mentioned above. The
result below states that to find the most probable world, we only need to look at the equivalence
classes that are of cardinality 1.

Theorem 4.1 Suppose 11 is an ap-program, s is a state, and w; is a world. If card(Jw;]) > 1, then
low(w;) = 0.

Proof 4.2 Immediate, by observing that there are no restrictions on the values assigned to the
variables that correspond to worlds in the same ~-class. If there is more than one world in a
class [wy], there is always a solution that assigns zero to each variable p; such that w; € [w,], and
therefore low(w;) = 0.

Going back to Example 4.1, we can conclude that low(ws) = low(w7) = low(wg) = 0. As a
consequence of this result, we can suggest the Head Oriented Processing (HOP) algorithm which
works as follows. First we present some simple notation. Let FizedWff(Il,s) = {F | F : u €
Un, (T17,)}- Given a set X C Fized Wff (11, s), we define Formula(X,1I, s) to be

A G A A ed

GeX G’ € Fized Wff (I1,5)— X

Here, Formula(X,11, s) is the formula which says that X consists of all and only those formulas
in FizedWff(I1, s) that are true. Given two sets X1, Xo C Fized Wff (I1, s), we say that X1 ~ Xo if
and only if Formula(Xy, 11, s) and Formula(Xs, 11, s) are logically equivalent.

Theorem 4.2 (correctness of HOP) Algorithm HOP is correct, i.e. it is guaranteed to return a
world whose low probability is greater than or equal to that of any other world.

Proof 4.3 We will prove this property in two stages:

e Soundness: We wish to show that if HOP returns a world wsoy, then there is no other world
w; such that low(w;) > low(wse). Suppose HOP does return wgy but that there is a world
w; such that low(w;) > low(wse). Clearly, [w;] and [wsy] must be different ~-equivalence
classes. In this case, step 3 of the HOP algorithm will consider both these equivalence classes.
As bestval is set to the highest value of low(wj) for all equivalence classes [w;], it follows that
low(wse) < low(w;), yielding a contradiction.



Gerardo I. Simari — University of Maryland College Park 12

HOP Algorithm.
1. Compute 17 . bestval = 0; best = NIL.

2. Let [X1],...,[X}] be the ~-equivalence classes defined above
for I, s.

3. For each equivalence class [X;] do:

(a) If there is exactly one interpretation that satisfies
Formula(X;, 11, s) then:

i. Minimize p; subject to RedCONSy(IL, s, Tt )

where [w;] is the set of worlds satisfying exactly

those heads in X;. Let Val be the value returned.

ii. If Val > best, then {best = w;; bestval = Val}.

4. If bestval = 0 then return any world whatsoever, otherwise
return best.

Figure 5: The Head-Oriented Processing (HOP) algorithm.

e Completeness: We wish to show that if there exists a world Wy, such that low(wWmey) >
low(w;)Vw; € W, then HOP will return a world wsy such that low(wse) = low(Wmaz)-
Similar to the case made for soundness, if there exists a world Wy, with the highest possible
low wvalue, it is either in the same class as the world that is returned by the algorithm, or in
a different class. In the former case, the world returned clearly has the same value as Wiz ;
in the latter, this must also be the case, since otherwise the algorithm would have selected the
variable corresponding to [Wmay] instead.

This concludes the proof, and we therefore have that HOP is guaranteed to return a world whose
low probability is greatest.

Step 3(a) of the HOP algorithm is known as the UNIQUE-SAT problem—it can be easily imple-
mented via a SAT solver as follows.

L If Apex F' N Ngex G is satisfiable (using a SAT solver that finds a satisfying world w) then

(@) I Apex F A Naex G A (Vaew ~0 V Vyep @) is satisfiable (using a SAT solver) then
return “two or more” (two or more satisfying worlds exist) else return “exactly one”

2. else return “none.”

The following example shows how the HOP algorithm would work on the program from Exam-
ple 4.2.

Example 4.3 Consider the program from Example 4.2, and suppose X = {(aVbVeVdVe), (aNe)}.
In Step (3a), the algorithm will find that {a, d, e} is a model of (aVbVeVdVe)A(aNe); afterwards,
it will find {a, c, e} to be a model of (aVbVeVdVe)A(ane)A((maV—-dV—e)V (bVc)). Thus, X
has more than one model and the algorithm will not consider any of the worlds in the equivalence
class induced by X as a possible solution, which avoids solving the linear program for those worlds.
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The worst-case complexity of HOP is, as its Naive counterpart, exponential. However, HOP
can sometimes (but not always) be preferable to the Naive algorithm. The number of vari-
ables in RedCONSy (I, s, T} ) is 2card(ls) which is much smaller than the number of variables
in CONSy/(I1, 5, Tf; ) when the number of ground rules whose bodies are satisfied by state s is
smaller than the number of ground atoms. The checks required to find all the equivalence classes
[X;] take time proportional to 92+card(Ils) T astly, HOP avoids solving the reduced linear program
for all the non-singleton equivalence classes (for instance, in Example 4.3, the algorithm avoids
solving the LP three times). This last saving, however, comes at the price of solving SAT twice for
each equivalence class and the time required to find the [X;]’s. We will now explore a way in which
we can trade off computation time against how many of these savings we obtain, again without
giving up obtaining an exact solution.

4.2 Enhancing HOP: The SemiHOP Algorithm

A variant of the HOP algorithm, which we call the SemiHOP algorithm, tries to avoid computing
the full equivalence classes. As in the case of HOP, SemiHOP is also guaranteed to return a most
probable world. The SemiHOP algorithm avoids finding pairs of sets that represent the same
equivalence class, and therefore does not need to compute the checks for logical equivalence of
every possible pair, a computation which can prove to be very expensive.

Proposition 4.2 Suppose 11 is an ap-program, s is a state, and X is a subset of FizedW[f (11, s).
Then there exists a world w; such that {w | w+— Formula(X,I1, s)} C [w;].

Proof 4.4 Immediate from Definition 4.1.

We now define the concept of a sub-partition.
Definition 4.3 A sub-partition of the set of worlds of Il w.r.t. s is a partition W1, ..., Wy where:

1. Ule W; is the entire set of worlds.

2. For each W;, there is an equivalence class [w;] such that W; C [w;].

The following result, which follows immediately from the preceding proposition, says that we can
generate a subpartition by looking at all subsets of Fized Wff (1L, s).

Proposition 4.3 Suppose 11 is an ap-program, s is a state, and {X1,..., X} is the power set of
FizedWff(11,s). Then the partition W1, ..., Wy where W; = {w | w — Formula(X;,I1,s)} is a
sub-partition of the set of worlds of I w.r.t. s.

Proof 4.5 Immediate from Proposition 4.2.

The intuition behind the SemiHOP algorithm is best presented by going back to constraints 1
and 2 given in Example 4.1. Obviously, we would like to collapse all three variables ps, p7, pg into
one variable y. However, if we were to just collapse p7, pg into a single variable 1/, we would still
reduce the size of the constraints (through the elimination of one variable), though the reduction
would not be maximal (because we could have eliminated two variables). The SemiHOP algorithm
allows us to use subsets of equivalence classes instead of full equivalence classes. We define a
semi-reduced set of constraints as follows.
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SemiHOP Algorithm.
1. Compute T .
2. bestval = 0; best = NIL.
3. For each set X C FizedW[f (11, s) do:

(a) If there is exactly one interpretation that satisfies
Formula(X,11, s) then:
i. Minimize p; subject to S_RedCONSy (11, 5, T1)
where W; is a subpartition of the set of worlds of
II w.r.t. s. Let Val be the value returned.

ii. If Val > best, then {best = w;; bestval = Val}.

4. If bestval = 0 then return any world whatsoever, otherwise
return best.

Figure 6: The SemiHOP algorithm.

Definition 4.4 (S_-RedCONSy (1L, s, T; )) Let Wa, ..., Wy be a subpartition of the set of worlds for
II and s. For each W;, S_-RedCONSy (11, s, T}{,) uses a variable p; to denote the summation of the
probability of each of the worlds in W;. For each ap-wff F': [(,u] in Tf; , S-RedCONSy (11, 5, T1{ )
contains the constraint:

(< Yw,rp; < u.

Here, W; +— F implies that some world in W; satisfies . In addition, S_RedCONSy (I, s, T} )
contains the constraint
Ywipr=1

Example 4.4 Returning to Ezample 4.1, S_-RedCONSy (1L, s, T{{ ) could contain the following con-
straints: 0.7 < po+p3+ps+ps+y <1,02<ps+y <0.6, andpi+p2+p3+ps+ps+ps+y =1
where y' = p7 + ps.

The pseudo-code for the SemiHOP algorithm is depicted in Figure 6. The following theorem
ensures the correctness of this algorithm.

Theorem 4.3 (correctness of SemiHOP) Algorithm SemiHOP is correct, i.e. it is guaranteed
to return a world whose low probability is greater than or equal to that of any other world.

Proof 4.6 The proof is completely analogous to that of Theorem 4.2, with the only difference in
this case being that some of the equivalence classes will be partitioned.

The key advantage of SemiHOP over HOP is that we do not need to construct the set |[w;]
of worlds, i.e. we do not need to find the equivalence classes [w;]. This is a potentially big saving
because there are 2" possible worlds (where n is the number of ground action atoms) and finding the
equivalence classes can be expensive. However, this advantage comes with a drawback, since the size
of the set S_RedCONS; (11, 5, T1; ) can be a bit bigger than the size of the set RedCONSy (I, s, Tt ).
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5 The Binary Heuristic

In this section, we introduce a heuristic called the Binary Heuristic that can be utilized in conjunc-
tion with any of the three exact algorithms described thus far (Naive, HOP, and SemiHOP) in the
paper. The basic idea behind the Binary Heuristic is to limit the number of variables in the linear
programs associated with the Naive, HOP, and SemiHOP algorithms to a fixed number £ that is
chosen by the user.

Suppose we use Vnaive, VHOP, and VsemiHop to denote the set of variables occurring in the linear
programs CONSy (11, s, 717 ), RedCONSy (11, s, Tt} ) and S_RedCONS (11, s, Tt ), respectively. Note
that all these linear programs contain two kinds of constraints:

e Interval constraints which have the form ¢ <p; +---+p;,, <u and

e A single equality constraint of the form p; +---+p, = 1.

Let V¥ vives Viiops Ve minop be some subset of k variables from each of these sets, respectively. Let
CONS be one of CONSy (1L, s, T; ), RedCONSy (I, s, T ), or S_RedCONSy (11, s, T; ). We now
construct a linear program CONS’ from CONS as follows.

e For all constraints of the form
C<piy+-+pi, <u

remove all variables in the summation that do not occur in the selected set of k£ variables and
re-set the lower bound to 0.

e For the one constraint of the form p; + - - - + p, = 1, remove all variables in the summation
that do not occur in the selected set of k variables and replace the equality “=" by “<”.

Example 5.1 Consider the program from Example 4.2, and suppose m = 10 and CONS refers to
the constraints associated with the naive algorithm which has 32 worlds altogether. Then, we can
select a sample of ten worlds such as

Wm = {’UJQ, Wy, Wg, W10, W12, W16, W18, W22, W23, ’UJ25}
Now, CONS/(I1, s, Ty ) contains the following constraints:

0 < p2 + ps + ps + p1o + P12 + P16 + p1s + P22 + P23 + pas < 0.5
0 < pa3+p25 <05

P2 + pa+ pg + p1o + P12 + P16 + P18 + P22 + p23 +p2s < 1

Theorem 5.1 Let 11 be an ap-program, m > 0 be an integer, and s be a state. Then ev-
ery solution of CONS is also a solution of CONS' where CONS is one of CONSy (11, 5, Tt ),
RedCONSy (I1, s, Ty ), or S.RedCONSy (I, s, Ty ) and CONS' is constructed according to the above

construction.
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Proof 5.1 (i) Suppose o is a solution to CONS. For any interval constraint
C<piy+-+Dpi, <u

deleting some terms from the summation preserves the upper bound and clearly the summation still
is greater than or equal to 0. Hence, o is a solution to the modified interval constraint in CONS’.
For the equality constraint p1 + ...+ pn, = 1, removing some variables from the summation causes
the resulting sum (under the solution o) to be less than or equal to 1 and hence the corresponding
constraint in CONS' is satisfied by o.

A major problem with the above result is that CONS’ is always satisfiable because setting all
variables to have value 0 is a solution. The binary algorithm tries to tighten the lower bound in the
interval constraints involved so that we have a set of solutions that more closely mirror the original
set. It does this by looking at each interval constraint in CONS’ and trying to set the lower bound
of that constraint first to £/2 where ¢ is the lower bound of the corresponding constraint in CONS.
If the resulting set of constraints is satisfiable, it increases it to 3¢/4, otherwise it reduces it to £/4.
This is repeated for different interval constraints until reasonable tightness is achieved. It should be
noted that the order in which the constraints are processed is important - different orders can lead
to different CONS’ being generated. The detailed algorithm is shown in Figure 7. The algorithm
is called with IT' = Tt,, and CONS equal to one of CONSy;, RedCONS, or S_RedCONS.

The Binary algorithm takes a chance. Rather than use a very crude estimate of the lower bound
in the constraints (such as 0, the starting point), it tries to “pull” the lower bounds as close to
the original lower bounds as possible in the expectation that the revised linear program is closer in
spirit to the original linear program. Here is an example of this process.

Example 5.2 Consider the following very simple program:

aNb:[0.8,0.9] .
aNc:[0.2,0.3] .

Let W = {wg = 0,w; = {a},wy = {b}, w3 = {c},ws = {a,b},ws = {a,c},wg = {b,c},wy =
{a,b,c}}, but suppose m = 4 and we select a sample of four worlds W, = {wq, we, we, wr}. Now,
assuming s = (), CONS'(II, s, Ty.) contains the following constraints:

0<pr <09
0<pr<03
po+p2+tps+pr <1

which is clearly solvable, but yielding the all-zero solution. The binary heuristic will then modify
the first constraint so that its lower bound is 0.4 and, since this new program is unsolvable, will
subsequently adjust it to 0.2. At this point, the program is now back to being solvable, and one
more iteration leaves the lower bound at (0.4 + 0.2)/2 = 0.3, which results once again in a solvable
program. At this point, we decide to stop, and the final value of the lower bound is thus 0.3. The
algorithm then moves on to the following constraint, and adjusts its lower bound first to 0.1 and
then to 0.15, and decides to stop. The final set of constraints is then:

0.3<p; <0.9
0.15 < p; < 0.3
po+p2+tps+pr <1
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algorithm Binary(Il', m,e, CONS){

1. CONS’' = new set of linear constraints;

2. W,, = select a set of m worlds in W;

3. for each rule r; in IT {

4. let 7, = F : [{,u] < body;

5. add 0 < Yu.ew,, rwierPi < u to CONS';

6. }

7. for each constraint ¢; € CONS'; {

8. let L be the lower bound in c¢;;

9. let L* be ¢;’s original lower bound in CONS;
10. while not done(CONS' c; €) {

11. L'=(L*+L)/2

12. let ¢, be constraint c; with lower bound L’;
13. if solvable((CONS' —¢;)Udl) {

14. CONS' = (CONS' —¢;)ucl; L=1'
15. }

16. else {

17. L*=1;

17. U= (L -L)/2;

18. if solvable((CONS' —¢;)Udl) {

19. CONS' = (CONS' —¢)ucl; L=1
20. }

21. else { L*=1L'; }

22. }

23. }

24. }

25. add Yy, ew,, pi <1 to CONS';

26. return CONS’;

27. )

Figure 7: The Binary Heuristic Algorithm.

6 Implementation and Experiments

We have implemented several of the algorithms described in this paper—the naive, HOP, SemiHOP,
and the binary heuristic algorithms—using approximately 6,000 lines of Java code. The P-
MPW algorithm has also been implemented, and is described in more detail below. The bi-
nary heuristic algorithm was applied to each of the CONSy (11, s, T} ), RedCONS/ (11, s, Tt ), and
S_RedCONSy (11, s, T; 1‘-‘[’5) constraint sets; we refer to these approximations as the naivey;,, HOPgy;n,
and SemiHOPy;,, algorithms respectively. Our experiments were performed on a Linux computing
cluster comprised of 64 8-core, 8-processor nodes with between 10GB and 20GB of RAM. The
linear constraints were solved using the QSopt linear programming solver library, and the logical
formula manipulation code from the COBA belief revision system and SAT4J satisfaction library
were used in the implementation of the HOP and SemiHOP algorithms.

For each experiment, we held the number of rules constant at 10, where each rule consisted of
an empty body (we assume they are the rules that are relevant in the state, and after computing
the fixpoint) and a number of clauses in the head distributed uniformly between 1 and 5. The
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probability intervals were also generated randomly, making sure that the lower bound was less
than or equal to the upper bound. All random number selection were implemented using the
random number generator provided by JAVA. The experiments then consisted of the following: (i)
generate a new ap-program and send it to each of the three algorithms, (i) vary the number of
worlds from 32 to 16,384, performing at least 10 runs for each value and recording the average
time taken by each algorithm, and (iii) measure the quality of SemiHOP and all algorithms that
use the binary heuristic by calculating the average distance from the solution found by the exact
algorithm. Due to the immense time complexity of the HOP algorithm, we do not directly compare
its performance to the naive algorithm or SemiHOP. In the discussion below we use the metric
ruledensity = mrﬁcf(li%tﬁ) to represent the size of the ap-program; this allows for the comparison of
the naive and HOP and SemiHOP algorithms as the number of worlds increases.

Running time Figure 8 shows the running times for each of the naive, SemiHOP, naivey;nary,
and SemiHOPy;yq,y algorithms for increasing number of worlds. As expected, the binary search
approximation algorithm is superior to the exact algorithms in terms of computation time, when
applied to both the naive and SemiHOP contstraint sets. With a sample size of 25%, naivepnqry and
SemiHOP;pqry take only about 132.6 seconds and 58.19 seconds for instances with 1,024 worlds,
whereas the naive algorithm requires almost 4 hours (13,636.23 seconds). This result demonstrates
that the naive algorithm is more or less useless and takes prohibitive amounts of time, even for
small instances. Similarly, the checks for logical equivalence required to obtain each [w;] for HOP
cause the algorithm to consistently require an exorbitant amount of time; for instances with only
128 worlds, HOP takes 58,064.74 seconds, which is much greater even than the naive algorithm
for 1024 worlds. Even when using the binary heuristic to further reduce the number of variables,
HOPy;,, still requires a prohibitively large amount of time.

At low rule densities, SemiHOP runs slower than the naive algorithm; with 10 rules, SemiHOP
uses 18.75 seconds and 122.44 seconds for 128 worlds, while the naive algorithm only requires
1.79 seconds and 19.99 seconds respectively. However, SemiHOP vastly outperforms naive for
problems with higher densities—358.3 seconds versus 13,636.23 seconds for 1,024 worlds—which
more accurately reflect real-world problems in which the number of possible worlds is far greater
than the number of ap-rules. Because the SemiHOP algorithm uses subpartions rather than unique
equivalence classes in the RedCONSy (1, s, T ) constraints, the algorithm overhead is much lower
than that of the HOP algorithm, and thus yields a more efficient running time.

The reduction in the size of the set of constraints afforded by the binary heuristic algorithm
allows us to apply the naive and SemiHOP algorithms to much larger ap-programs. In Figure 9, we
examine the running times of the naivep;, and SemiHOPy;,, algorithms for large numbers of worlds
(up to 2°0 or about 1.23794 x 10%” possible worlds) with a sample size for the binary heuristic of 2%;
this is to ensure that the reduced linear program is indeed tractable. SemiHOPy;y,q,, consistently
takes less time than naivep;,qry, though both algorithms still perform rather well. For 1.23794 x 1027
possible worlds, naivey;nqry takes an average 26,325.1 seconds while SemiHOP 4,y requires only
458.07 seconds. This difference occurs because |S_RedCONSy (11, s, Tt )| < |[CONSy (IL, s, Ty )|
that is the heuristic algorithm is further reducing an already smaller constraint set. In addition,
because SemiHOP only solves the linear constraint problem when there is exactly one satisfying
interpretation for a subpartition, it performs fewer computations overall. Because of this prop-
erty, experiments running SemiHOP4;p,qr, on problems with very large ap-programs (from 1,000 to
100,000 ground atoms) only take around 300 seconds using a 2% sample rate. However, this aspect
of the SemiHOP algorithm can also lead to some anomolous behavior, where the running time will
appear to decrease as the number of worlds increases. Figure 10 illustrates this anomaly, as the
computation time appears to decrease with very large numbers of worlds. This occurs when we
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Running time of MPW algorithms for an increasing
number of worlds
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Figure 8: Running time of the algorithms for increasing number of worlds.
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Figure 9: Running time of naivey;, and SemiHOPy;, for large number of worlds.

have taken a small sample of subpartitions in a problem with very high rule density, and there are
no subpartitions with a single satisfying interpretation; as a result, no “most probable world” com-
putations are performed, which obviously leads to a drastic reduction in the running time. Further
experimentation is necessary to determine the optimal balance between an efficient running time
and a sample large enough to produce meaningful results.

Quality of solution Figure 11 compares the accuracy of the probability found for the most
probable world by SemiHOP, naivepnqry, and SemiHOP;p,4, to the solution obtained by the naive
algorithm, averaged over at least 10 runs for each number of worlds. The results are given as a
percentage of the solution returned by the naive algorithm, and are only reported in cases where
both algorithms found a solution. The SemiHOP and SemiHOP;,4, algorithms demonstrate near



Gerardo I. Simari — University of Maryland College Park 20

Running time of SemiHop_binary for very large ap-
programs
— SemiHop_binary
400
350
300
=250 -
'5200 1
150 |
100 |
50
0
1000 10000 100000
Ground Atoms

Figure 10: Running time of the SemiHOP;y,q,, algorithm for very large numbers of possible worlds.
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Figure 11: Quality of the solutions produced by SemiHOP, naivey;,, and SemiHOPy;,, as compared
to Naive.

perfect accuracy; this is significant because in the SemiHOP ;4. algorithm, the binary heuristic
was only sampling 25% of the possible subpartitions. However, in many of these cases, both the
naive and the SemiHOP algorithms found most probable worlds with a probability of zero. The
most probable world found by the naivepinqry algorithm can be between 75% and 100% as likely

as those given by the regular naive algorithm; however, the naivep;,qr, algorithm also was often
unable to find a solution.

7 Related Work

Probabilistic logic programming was introduced in [NS91, NS92| and later studied by several au-
thors [NH95, LKI99, LS01, DS97, DPS99]. This work was preceded by earlier—mnon-probabilistic—
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papers on quantitative logic programming of which [vE86] is an example. [NH95] presents a
model theory, fixpoint theory, and proof procedure for conditional probabilistic logic program-
ming. [LKI99] combines probabilistic LP with maximum entropy. [Luk98] presents a conditional
semantics for probabilistic LPs where each rule is interpreted as specifying the conditional prob-
ability of the rule head, given the body. [LS01] develops a semantics for logic programs in which
different general axiomatic methods are given to compute probabilities of conjunctions and disjunc-
tions. [DS97] presents an approach to a similar problem. [DPS99] present a well-founded semantics
for annotated logic programs and show how to compute this well-founded semantics.

However, all works to date on probabilistic logic programming have addressed the problem of
checking whether a given formula of the form F': [L, U] is entailed by a probabilistic logic program
or is true in a specific model (e.g., the well-founded model [DPS99]). This usually boils down to
finding out if all interpretations that satisfy the PLP assign a probability between L and U to F.

Our work builds on top of the gp-program paradigm [NS91]. Our framework modifies gp-
programs in three ways: (i) we do not allow extensional predicates to occur in rule heads, while
gp-programs do allow them, (ii) we allow arbitrary formulas to occur in rule heads, whereas gp-
programs only allow the so-called “basic formulas” to appear in rule heads. (iii) Most importantly,
of all, we solve the problem of finding the most probable model whereas [NS91] solve the problem
of entailment.

8 Conclusions

In this work, we have presented the theory and algorithms of ap-programs. ap-programs are a
variant of probabilistic logic programs and their syntax and semantics is not very different from
them. What we have done, however, is to present the following contributions:

1. Dealing with the problem of reducing the size of the linear programs that are generated by
ap-programs - this problem has not been addressed in the literature for this problem, for any
kind of PLPs.

2. Studying the problem of finding the most probable world, given an ap-program - this problem
has not been addressed in the literature either, for any kind of PLPs.

3. Three algorithms to find the most probable world, along with the Binary heuristic that can
be used in conjunction with any of them.

4. Our theory has produced tangible results of use to US military officers [Bha07, Sub07].

5. Our implementation is the only one we are aware of that can work for large numbers of
ground atoms with reasonable accuracy and levels of efficiency much superior to past efforts
(we could only evaluate accuracy in cases with small numbers of ground atoms).

On the other hand, there are many problems that remain open. First, we need an accurate estima-
tion of the computational complexity of the MPW problem. We have proven NP-hardness results,
but were unable to establish membership in NP. A more accurate classification would be desirable.
Moreover, it would be desirable to come up with efficient parallel algorithms. Third, it would be
nice to get some concrete theoretical results about the accuracy of solutions produced by the binary
heuristic. It is possible also that a judicious selection of variables in the binary heuristic may yield
better results.
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