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ABSTRACT 
   

No visualization currently enables both a clear overview 
and details of associations between elements in large 
categorical data sets.  Many approaches have been taken to 
address the problem, but each has produced limited results 
due to the inherent challenge in visualizing many-
dimensional data sets.  In computer and social networks, for 
example, every node has potential connections to each of 
the other nodes, and so every node is a dimension in the 
dataset.  Many visualizations, including the popular node-
link representation, quickly become occluded as networks 
grow beyond a trivial size. 

While no single visualization has succeeded in providing a 
complete insight into categorical data, several approaches 
are successfully used to view specific aspects of the 
domain.  Interesting features that are occluded in one 
visualization may become readily apparent in another.  
With this understanding, the Information Visualization tool 
developed in conjunction with this research provides 
multiple coordinated views that present an organized 
visualization into categorical data sets.  Each view takes a 
different approach to identifying clusters in the domain, and 
each uses size, position, color, and shading elements to 
communicate associations within and between clusters.  
Combined with the interactive features to explore and 
dynamically alter the canvas, the visualization system is 
named ConceptMap.  The application includes two main 
innovations:  First, a modified approach to hierarchical 
clustering that arranges nodes within a cluster at the same 
time it aggregates higher levels of cluster groupings.   And 
second, A dendrogram coordinated with a reordered 
adjacency matrix in a fashion that the overview, clusters, 
and elements are visible simultaneously.  

Keywords:  
Information Visualization, Dendrogram, Hierarchical 
Clustering, Adjacency Matrix, Categorical Data, Tabular 
Data  

1.INTRODUCTION/MOTIVATION 
 

Large, high dimensional data sets are inherently difficult to 
understand and categorize into groupings that can be 
expressed and understood visually.  Information 
visualization techniques allow an increasingly larger 
volume of dimensions to be communicated by using 
increasingly sophisticated combinations of size, color, 
location, shape, texture, and other basic visual elements.  
But the dimensionality communicated is still small 
compared to the high dimensionality of contemporary data 
sets such as social networks or text corpuses.   

The tool presented here offers a combination of data 
visualizations that abstract the dimensionality away by 
clustering objects and producing a similarity based 
ordering.  While data element dimensions are not directly 
represented in the visualizations, the increasing number of 
matching dimensions between objects causes the objects to 
cluster increasingly closer together.  Through such 
clustering, a complex data set can be analyzed and 
interesting features identified. 

The tool, called ConceptMap, was created to both display a 
novel combination of information visualization techniques, 
and to explore the corpus of published research in the 
information visualization field.   The primary data set 
analyzed, therefore, is the set of terms listed as keywords 
from information visualization related papers published by 
the ACM. 

Following the introduction, the paper is organized as 
follows:  Section 2 recaps related research into both 
clustering and visualizations.  Section 3 describes the 
functional design and novelties in ConceptMap.  Section 4 
describes the technical details of the clustering and 
visualization algorithms.  Section 5 analyzes the 
visualizations created by the tool, to highlight interesting 
results in the clustering of the Information Visualization 
corpus of research.  Section 6, in order to show the ability 
to apply the ConceptMap design to other data sets, analyzes 
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visualizations of Senate voting records.  Finally, section 7 
proposes future research and refinements to the application. 

 

2. RELATED WORK 
 

The content of published research is inherently a categorical 
domain.  The relationships among key concepts is not easily 
discovered or represented in a visualization.  Many 
approaches have been taken to the problem of showing the 
relationships among categorical data sets, a task isomorphic 
to visualizing computer and social networks.  Several 
challenges exist in the network visualization area.  One of 
the chief problems is the many-dimensional nature of the 
data.  Every new node in a network has potential 
connections to each of the other nodes, and so every node 
adds a dimension to the dataset.  In many networks, there is 
no inherent order to the nodes, which poses a problem in 
arranging the data following an order that viewers will 
recognize.  The lack of order, however, also grants the 
visualization tool an amount of freedom to rearrange the 
data in order to make it more understandable. 

Research into this area includes several types of 
visualizations including self-organizing maps, node-link 
diagrams, and adjacency matrices.  This is an open field of 
research because the existing visualizations are able to 
communicate an aspect of the categorical data, but none 
have yet been able to communicate all aspects of the data.  
Of the published research, the following papers related the 
most useful and novel approaches: 

In, “A Comparison of the Readability of Graphs Using 
Node-Link and Matrix-Based Representations,” by   
Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe 
Castagliola, the concept of using an adjacency matrix is 
presented and compared with a node-link diagram.[1]  
While the node-link diagram is more understandable by 
novice viewers, it becomes positively unreadable as the 
number of nodes and links gets larger than a trivial set.  
Their adjacency matrix is useful for looking row by row (or 
column by column) at nodes to see their connectivity.  This 
paper did not address re-ordering the adjacency matrix, so 
their adjacency matrix is not very useful for looking across 
the entire network by itself.   

Harri Siirtola published several important works in this 
area, and was the first attempt to organize an adjacency 
matrix by permuting the rows and columns.  Applications 
of Siirtola’s reorderable matrix are discussed across several 
papers, including his own work, “Interaction with the 
Reorderable Matrix,” [2] and "The Barycenter Heuristic 
and the Reorderable Matrix," co-authored by Harri Siirtola 
and Erkki Mäkinen. [3] 

In more recent research, the MatrixExplorer application 
offers coordinated views between a clustered adjacency 
matrix and a node-link representation to depict social 
networks [4].  As Nathalie Henry and Jean-Daniel Fekete 

describe, the crosswalk between visualizations offered in 
MatrixExplorer provided key insights to the sociologist 
users of the tool.  The success in presenting multiple 
visualizations reinforced the similar approach developed 
into ConceptMap. 

The multiple visualizations of this approach, as well as the 
hierarchical clustering method to approximate the optimal 
ordering of elements in less than non-deterministic 
polynomial time came from the Hierarchical Clustering 
Explorer application by Jinwook Seo and Ben Shneiderman 
[5].   An earlier work, by Stephen P. Borgatti [6] was also 
instrumental for the hierarchical clustering algorithm.  For 
the adjacency matrix and dendrogram, this work adopts the 
hierarchical clustering approach, but a new distance metric 
was designed to measure the similarity of relationships 
between categorical data elements. 

Papers on keyword extraction and vectorization of 
documents were also explored. Of note, Seung-Shik Kang 
[7] provided a novel method of weighting the keywords 
based on both the document frequency and the term 
frequency. This allows better vectorization of documents 
and could lead to an improved representation. In [8], Lance 
Parsons describes several approaches to cluster high 
dimensional data. This document was also referenced for 
dimensionality reduction using feature transformation and 
feature selection. 

A unique representation that could be directly applied to the 
dendrogram was presented in “HD-Eye: Visual Mining of 
High Dimensional Data”[9] The HD-Eye visualization is a 
3D surface where the height of the graph is proportional to 
the density of the cluster. This novel representation allows 
users to quickly estimate the cardinality of the cluster they 
are choosing.  

       

3. APPROACH TO THE CONCEPT MAP DESIGN  
 

Relationships that are occluded in one visualization may be 
readily apparent in another.  With a goal of visualizing 
complex categorical data, the core design feature of 
ConceptMap is providing multiple visualizations.  The two 
interdependent visualizations take highlight clusters of 
relationships in distinct ways.  Each uses visual elements of 
size, position, color, and shading elements to communicate 
associations within and between clusters.  Also, each 
visualization provides interactive features to explore and 
dynamically alter the graphic.   

The sample domain used in the application is the collection 
of keyword concepts listed in ACM published papers. 
Research concepts are words, and many visualizations such 
as TextArc reveal how difficult it is to make useful 
visualizations that contain many words [10].  Likewise, 
many visualizations such as Vister, [11] show the limited 
value of node-link visualizations when the number of nodes 
and links grows beyond a relatively trivial size.  Apart from 
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the limited success of node link applications, several studies 
show the node link limitations in the abstract [1].  So, the 
approach in ConceptMap is to aggregate data up to 
“meaningfully sized” clusters based on the size of the 
canvas and relative volume of published work about the 
concept. “Meaningfully sized” is relative to the user’s 
needs, and is therefore user configurable so that a 
completely detailed map will be available by setting the 
aggregate level to 1. 

The atomistic level is the list of concepts, which is taken as 
the list of keywords from the metadata of information 
visualization research papers available from the Association 
of Computing Machinery (ACM).  Taken together, the 
keyword lists of published research represent a categorical 
data set.  This data shows variations in the frequency of 
various concepts, with many terms repeated between papers 
that discuss different aspects of the same topics. 

- This data provides a means to define variations in the 
popularity of terms, by the number of times each term is 
listed as a keyword across the set of papers.   

- Associations between different terms in the set are defined 
by the concepts appearing together within a piece of 
published research.  This conclusion forces the assumption 
that there is a unity in theme of each published paper, and 
therefore that the key terms within a paper are related. 

As the data is processed, related concepts cluster together to 
build a map of associations and distinctions.  The user 
interface of the design includes two frames, the larger frame 
being a canvas of the visualization and the smaller frame 
containing a series of menu items and filters. 

The design also includes interactive features, including an 
interactive visualization that allows users to click on 
clusters to see their contents in the menu frame.   

 

4. CONCEPT MAP IMPLEMENTATION  
 

The Dendrogram and Clustered Adjacency Matrix 
visualizations of ConceptMap were coded in Matlab. The 
core functionality in creating both the clustered adjacency 
matrix and the Dendrogram is a hierarchical clustering 
algorithm tailored with a distance metric designed to 
calculate distance as the similarity of values between rows 
or columns of an adjacency matrix. 

 

 

Figure 1. User Interface of the Dendrogram and 
Adjacency Matrix ConceptMap Application 

 

The algorithm first processes the source data of papers and 
keywords to build an adjacency matrix (A).  Matrix A is 
populated by traversing all keywords listed across all 
papers.  Defining N as the number of unique keywords, the 
cardinality of A is N by N.  For the sake of processing 
speed and matrix readability, the cardinality has been 
trimmed down in this application to show only keywords 
that exist in multiple papers, 338 keywords out of the total 
set of 1677.  For each pair of keywords listed in a paper 
(arbitrarily, the keyword represented by row/column i and 
the keyword represented by row/column j), the value at Aij 
is incremented by 1.   

The clustering algorithm uses 2 additional data structures: a 
distance table, storing how similar/different 2 rows are, and 
a ‘cluster’ data structure, containing the data fields 
necessary to build the hierarchy of clusters in a binary tree.  

The clustering algorithm was adapted from the design 
employed in Hierarchical Clustering Explorer and a general 
clustering design described by Stephen P. Borgatti in [8].  
Initially, each row is made into its own cluster.  A distance 
table is created, storing the distances between each of the 
clusters.   

Hierarchical clustering requires a distance metric to decide 
which clusters are nearest to each other.  Euclidean distance 
is meaningless in a categorical dataset, so distance is 
calculated as a measure of similarity between clusters in the 
adjacency matrix.  The similarity is calculated to be a value 
between zero and one.  The smaller the value, the more 
alike the two rows are in their values (i.e., there’s less 
distance between them). Each location in the distance 
matrix, distance(x,y), is calculated as the distance from 
cluster x to cluster y with the following equation: 
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At each pass of a clustering loop, the two clusters with the 
minimum distance are identified and merged together.  In 
the Adjacency Matrix, the rows that were merged together 
are deleted, and a new row representing the new merged 
cluster is added.  The value of the new cluster is calculated 
as a weighted average of the nodes within that cluster, i.e., a 
cluster of 5 rows merged with a cluster of 2 rows will have 
a value of (5*Cluster1 + 2*Cluster2)/7.  During the 
clustering process, the distances between merged clusters is 
saved in the data structure and used to scale the height of 
each bar in the dendrogram. 

The visual quality of performance of the general clustering 
algorithm was improved quite dramatically by the addition 
of a step to evaluate the four distinct ways that two clusters 
can be merged.  By comparing the left and right ends of 
each cluster in a “First, Outer, Inner, Last” (FOIL) fashion, 
the clusters were merged with the most similar edges 
touching.  This involved additional computing time to 
calculate the four distances and frequently reverse the order 
of one of the clusters, but the impact is visible in the 
following before/after images of the adjacency matrix.  The 
matrix is less “noisy” in the after image, but the noise is 
migrated significantly closer to the diagonal where the 
clusters are identified.  This effect is highlighted in figure 2. 

Storing a separate distance table saves the work of re-
calculating all distances after every clustering merge.  After 
each clustering pass, only the distances between the new 
cluster and the remaining clusters needs to be calculated.  
The clustering loop continues until only one cluster 
remains. 

After the hierarchical clustering process, the leaf nodes of 
the cluster data structure are traversed in order to extract the 
permutation vector.  The last node added is inherently the 
root of the dendrogram binary tree.  Starting with this node, 
the algorithm drills down to the leftmost child first, then 
walks to the right, going up and down the tree to visit every 
leaf node. 

This permutation vector is used to reorder the rows and 
columns of the original Adjacency Matrix, causing the most 
affiliated elements to appear as clusters of higher values 
along the diagonal. 

The visualization displays the dendrogram aligned over the 
adjacency matrix, so the user can compare values between 
them. 

 

 

 

 

Figure 2. Adjacency Matrix Before (top) and After 
(bottom) adding the FOIL calculation to clustering  

 

In the visualization, the quantity in each matrix element is 
represented by colors, with white showing empty space, 
blue showing 1 association, and colors growing from blue 
to red as the number of associations increases up to a 
maximum value of 38.  The dendrogram levels are blue, 
with exception of the root of a cluster, that is signified by 
being drawn in red.   

The application’s interface contains controls to affect the 
graphics displayed and the algorithm’s performance.   The 
following list highlights key functionality: 

- First, a slider allows users to define the minimum number 
of closely associated elements to be treated as a cluster 
instead of outliers between clusters.   

- Next, a slider allows users to define the maximum 
distance between elements within a cluster.  This is best 
visualized as the height of the dendrogram bar containing a 
cluster.   

- When populated with many small clusters, the names 
obscure the visualization, so a checkbox allows users to 
show and hide the cluster names. 

- Clicking on a cluster filters the list of keywords in the 
listbox, and clicking on a keyword in the listbox causes the 
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keyword’s location to be highlighted in the matrix and 
dendrogram. 

- A drop-down menu allows users to zoom into the 
visualizations and pan across them, while they remained 
linked by keyword. 

- Finally, an ‘Update Graphics’ command button applies the 
changes from the controls and re-executes the clustering 
algorithm. 

 

 

5. ANALYSIS OF THE VISUAL FEATURES IN THE 
DENDROGRAM AND ADJACENCY MATRIX 
 

The significant volume of white space in the upper and 
lower triangular matrices just a few steps away from the 
diagonal shows the disconnected breadth of research in the 
field.   The original corpus of papers included 1677 distinct 
keywords.  Even after trimming the cardinality down to the 
338 keywords that exist in multiple papers, the adjacency 
matrix is extremely sparse.  The interesting visualizations, 
therefore, occur along the diagonal in the matrix.  Noise off 
of the diagonal and three distinct types of clusters are 
described in the following subsections. 

 

5.1.  STRONG CLUSTERS 
 

The adjacency matrix visualizes strong clusters as solid 
rectangles.  The rectangle indicates that every keyword is 
associated through published papers to every other 
keyword.  A node-link diagram of these terms would be 
fully populated.  A cluster is made stronger if it has a solid 
border of white (empty) space around it.  In addition to 
every term having a strong relationship with every other 
term, the presence of white space around the cluster 
indicates that other concepts are not related to the terms in 
this cluster.  The branching pattern in the associated 
dendrogram shows that the cluster is built incrementally, in 
most levels up the dendrogram tree add one keyword to 
either side of the cluster.  In only the root level is a second 
cluster of size 2 added to the overall cluster. 

In the order they appear along the diagonal, the example 
given in the figure below shows the cluster of the following 
terms: 'empirical evaluation', 'color', 'scientific 
visualization', 'icon', 'preattentive', 'target detection', 
'cognitive psychology', 'boundary detection', 'human vision', 
'orientation', 'multidimensional data', and 'multivariate 
data.' 

The overview of the adjacency matrix shows that this data 
set contains few strong clusters.  

 

5.2.  BIMODAL CLUSTERS 
 

Bimodal clusters are identified by a characteristic sideways 
hourglass shape.  In this cluster, one or more keywords are 
strongly associated with two groups that have nothing else 
in common. The distance calculation between clusters is 
sufficiently reduced by the association with keywords in the 
hourglass middle, causing the unfamiliar clusters to be 
drawn together.  The branching pattern in the associated 
dendrogram shows that the cluster is built as 2 clusters that 
are pulled together by the elements in the hourglass middle. 

In the example bimodal cluster, the terms: 'information 
presentation',  'expressiveness', 'presentation tool', 
'effectiveness', 'composition algebra', 'automatic 
generation', and 'graphic design' are linked to 'empirical 
study', 'overview', and '3D information visualization.'  The 
hourglass center drawing the sub-clusters together consists 
of: 'Adobe Acrobat'(Highlighted with the red + and yellow 
square), 'Windows Media Player', 'Real Player', and 
'QuickTime.' 

This hourglass offers the insight that information 
visualization papers about Acrobat and the other products 
were either about the cluster of terms on the left side 
(beginning with 'information presentation') or the right side 
(beginning with 'empirical study').   

 

5.3.  WEAK CLUSTERS 
 

With the description of bimodal clusters above, weak 
clusters can be thought of as multi-modal.  Each term is 
associated strongly with the terms immediately to either 
side, but not to the rest of the terms in the cluster.  The 
dendrogram above the adjacency matrix depicts this more 
clearly, where the weak cluster is really a set of rather 
distantly related entities.  This adjacency matrix shows the 
sparseness of relationships between terms not immediately 
adjacent.  In order on the diagonal, the keywords are: 
'occlusion' (no pun intended!), 'data compression', 'edge 
detection', 'image databases', 'searching'. 'self organizing 
maps', 'research', 'spreadsheet programs', 'complex data', 
'information visualization system', 'data types', 'expert 
systems', 'software engineering', 'case study', 'software 
visualization', 'color graphics', and 'object-oriented'  When 
calculating for clusters across categorical data, this result 
shows the need to visually analyze the clustering result and 
tailor the maximum cluster distance and minimum cluster 
size to identify the largest and most complete rectangles 
possible in the data set.   

The combination of adjacency matrix and dendrogram 
offers an insight into the nature of clustering.  The matrix 
shows a strong cluster as a solid rectangle and shows how 
the cluster is built up from a core association by adding one 
node to the core at a time in a manner analogous to the way 
a snowball is rolled into a snowman.  The weak cluster’s 



 6 

dendrogram, by contrast, shows a high “branching factor” 
where two elements or clusters are put together at each 
level.  The balanced nature of the resulting binary tree 
appears to be a way to indicate that the cluster is weak and 
the elements do not really belong together.      

This insight opens the possibility for identifying clusters 
through an approach that does not rely on a minimum size 
and maximum distance.  Rather, clusters of varying size can 
be identified by searching for the snowball effect. 

 

5.4.  NOISE  
 

The dendrogram and adjacency matrix visualizations are 
inherently linear in the presentation of relationships 
between clusters.  A cluster with strong associations to 
more than 2 clusters will not be able to be adjacent to the 
third, and so the association to elements of the third cluster 
appear as “noise,” i.e., non-zero entries away from the 
diagonal.   

With the domain of Information Visualization papers, it is 
not surprising to have visible “+” signs appearing around 
terms common to the entire domain.  Keywords such as 
'information visualization' and 'data visualization' are easily 
identified in the adjacency matrix.  In a higher dimension 
visualization, this these terms may appear as the “gravity” 
that pulls several other clusters together. 

For the Information Visualization keyword domain, this 
noise affect causes an interesting result that the terms 
frequently do not seem to cluster together the way that a 
dictionary or thesaurus would place them.  There are many 
keywords that begin with “3D,” but they are not clustered 
together.  Likewise, “Database” and “query” are in 
different clusters, and 'information visualization' and 
'information visualisation' (English spelling) are not 
adjacent. 

The clustered adjacency matrix and dendrogram were able 
to successfully show clusters in the data, but the domain of 

keywords, even filtered, was too large and sparsely related 
to generate many meaningful insights.  The ability to zoom 
into the visualizations and pan across them, while they 
remained linked by keyword is useful.  The code was not 
optimized, however, so re-rendering the visualizations is 
noticeably slow. 

Perhaps the most useful feature in the application is the 
ability to modify the maximum cluster distance and 
minimum cluster size, and then zoom into the adjacency 
matrix and dendrogram to closely inspect the resulting 
clusters.  This visualization allows users to identify true 
clusters from bimodal and multi-modal imposters.  A mere 
mathematical clustering calculation would not enable this 
insight. 

 

 

6.  APPLYING THE TOOL TO A SECOND DATA SET  
 

A data visualization tool that is only used to visualize data 
visualization research is vaguely analogous to a self-licking 
ice cream cone.  Applying ConceptMap to the information 
visualization research domain was primarily done for the 
convenience of access to the high dimensional source data.  
To show the tool’s value in other domains, the following 
paragraphs and images show the result of applying the tool 
on a popular contemporary concern in mid-2007.  The 
source data analyzed is that of the voting records of United 
States Senators during the first half of the first session of 
the 110th Congress.  In sum, the source data is 247 roll call 
votes taken between January 2007 and mid-July 07 [13] 

The Senator’s voting records are recorded as a series of 
yes/no/abstain values across a multitude of issues, the 
similarity between senators is able to be displayed as a 
gradient range of bright green to dark red, obviously 
representing the overall vote agreement between 2 senators 
as green, and disagreement as red.  The corpus of 
information visualization produces a research keywords 
adjacency matrix that is sparse, resulting in a visualization 

 

 

 

 

 

 

 

 

 

1. Strong Cluster       2. Bimodal/Hourglass Cluster              3. Weak Cluster                      4. Noise in the Map     

Figure 3.  Comparison of Cluster Types. 
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with clusters of related concepts identifiable along the 
diagonal, but mostly white space in the upper and lower 
triangular matrices.   

 

 

Figure 4. Dendrogram and Adjacency Matrix of the entire 
Senate, showing clusters of Senators with a minimum 
cluster distance.  

 

The collection of Senate roll calls, however, is nearly 
completely populated, with most objects (senators) voting 
on most roll calls.  Rather than white space, the adjacency 
matrix is a fully colored adjacency matrix providing a heat 
map visualization of the overall agreement and 
disagreement of Senator’s votes.  Figure 4 above shows the 
entire Senate, and clusters of Senators with a minimum 
cluster distance.  In this way, small blocks of Senators who 
voted almost identically on every issue are highlighted. 

During this time frame, the Republican party held a slight 
majority of the seats congress.  Without labeling the graph, 
the major party lines could be guessed as the topmost 
division of the set of Senators, with the majority 
represented by the cluster on the left because it is larger.  
The broadly green rectangles reinforce this view, revealing 
where the majority of Senators from one party tend to vote 
together on issues.  The red rectangles off of the diagonal 
show that the block of Senators from one party generally 
disagree with the block of Senators from the other party.   

The interesting result from this graphic, however, is that the 
topmost division of clusters does not break on party lines.  
The larger grouping on the left includes a block of 14 
Republican senators who, by their votes, grouped together, 
and voted more in line with the Democratic Senators than 
with their fellow Republicans.  This block included (in 

cluster order) Senator-Snowe-ME-R, Senator-Collins-ME-
R, Senator-Specter-PA-R, Senator-Smith-OR-R, Senator-
Coleman-MN-R, Senator-Warner-VA-R, Senator-
Domenici-NM-R, Senator-Murkowski-AK-R, Senator-
Stevens-AK-R, Senator-Lugar-IN-R, Senator-Voinovich-
OH-R, Senator-Hagel-NE-R, Senator-Brownback-KS-R, 
and Senator-McCain-AZ-R.  In the graphic below, the 
crosshairs are highlighting the most Republican-like 
Democrat (Senator Nelson from Nebraska).  The cluster of 
14 Republican senators is visible as the right-most grouping 
after Senator Nelson.  The dendrogram and shading of this 
group show that it is a bi-modal cluster, with Senators 
Snowe, Collins, and Specter distinctly more Democrat party 
favoring than the other 11. 

 

 

Figure 5. ConceptMap Interface zooming in on the 
leftmost cluster.  

 

 

7. FUTURE WORK  
 

Given the ability to continue developing this line of 
research, the flowing enhancements to the dendrogram and 
adjacency matrix visualizations would be pursued: 

- Adding a legend to define the meaning of the colors and 
gradients in each of the visualizations.   

- Improving the way individual nodes are labeled in the 
matrix.  Currently, the keyword listbox provides the names 
of the keywords in the map or cluster.  Clicking on a 
keyword causes its location to be highlighted, but the 
keyword name does not appear in the matrix.  

- Enable a search feature to look for keywords without 
scrolling down the alphabetical list. 

- In the cluster focus view, enable a method to jump from 
one cluster to the next. 
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- In addition to the sliders for minimum cluster size and 
maximum distance, add a slider allowing users to adjust a 
parameter for the “minimum support.”  This enhancement 
was recommended after seeing the sparseness of the 
adjacency matrix and quantity of single associations 
between elements of a cluster.   

- Currently the cluster is named by the leftmost/topmost 
element contained within it.  Frequently, none of the 
element names are adequate for naming the group, so a 
recommendation was received to use the default naming 
that currently exists, but allow the user to rename the 
cluster. 
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