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Abstract. Image customization has been extensively studied in text-to-
image (T2I) di!usion models, leading to impressive outcomes and appli-
cations. With the emergence of text-to-video (T2V) di!usion models, its
temporal counterpart, motion customization, has not yet been well inves-
tigated. To address the challenge of one-shot video motion customization,
we propose Customize-A-Video that models the motion from a single ref-
erence video and adapts it to new subjects and scenes with both spatial
and temporal varieties. It leverages low-rank adaptation (LoRA) on tem-
poral attention layers to tailor the pre-trained T2V di!usion model for
specific motion modeling. To disentangle the spatial and temporal in-
formation during training, we introduce a novel concept of appearance
absorbers that detach the original appearance from the reference video
prior to motion learning. The proposed modules are trained in a staged
pipeline and inferred in a plug-and-play fashion, enabling easy extensions
to various downstream tasks such as custom video generation and editing,
video appearance customization and multiple motion combination. Our
project page can be found at https://customize-a-video.github.io.

Keywords: Video Motion Customization · Text-to-Video Di!usion Mod-
els · Low-Rank Adaptation

1 Introduction

Replicating an iconic motion in novel scenes is highly desirable for video cre-
ation. Recent large-scale di!usion-based text-to-video (T2V) generation mod-
els [5, 45] demonstrate impressive outcomes in generating imaginative videos
based on text depictions. However, they struggle with precise motion control and
often demand extensive prompt engineering. Another thread of work on video
editing [4, 9, 47, 50] leverages large image generative models for appearance al-
teration, and introduces frame-wise precise controls via DDIM inversion [32,42]
or ControlNet [54]. While achieving promising motion transfer results with vari-
ations in appearance and texture, these methods rigidly adhere to the reference
frame structure and layout and fail to provide variability in the motion itself,
such as new positions, intensities, camera views, or quantity of subjects.

Image customization of T2I models has been widely explored [10, 39] where
a specific unique appearance is modeled and composed into novel roles and

https://customize-a-video.github.io
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Fig. 1: Customize-A-Video takes as input a single reference video (top left) and trans-
fers its motion onto new generated videos with plausible variance. (1) Transferring the
dancing twirling from the lady onto Ironman with two random output variants. (2)
Transferring the motion onto multiple subjects. (3) Combining multiple motion cus-
tomization together, i.e., both dancing twirling and with aerial camera flight over. (4)
Combining proposed motion customization and existing image customization methods
( [21] in the example) to support both appearance and motion customization.

scenes. These modules are trained on a small set of images that share the same
concept. They are then able to reproduce the desired concept needless of complex
prompt engineering, while also allowing for diversity in poses, views, lighting,
etc. compared to direct stitching and editing approaches. Inspired by this, we
introduce a new task of video motion customization and present a novel one-shot
method named Customize-A-Video (Fig. 1) built upon T2V di!usion models. It
customizes the pre-trained model with the motion learned from the reference
video, enabling it to be easily adapted to new subjects and scenes. This includes
not only precise transfer but also variations in motion intensities, positions,
quantity of subjects, and camera views. These variations make the output videos
more dynamic and engaging, as opposed to the robotic rhythm or unnatural
appearance of frame-wise tampering.

Specifically, we start from utilizing a common customization technique, Low-
Rank Adaptation (LoRA) [19], applied on a pre-trained T2V di!usion model [45]
to capture the motion signature in the reference video. Applying LoRA directly
to the entire T2V models proves less e!ective in motion preservation, as spatial
and temporal characteristics are intricately entangled and both will be learned
simultaneously. Therefore, we apply LoRA only on temporal cross-frame atten-
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tion layers, creating Temporal LoRA (T-LoRA), which is more concentrated
on capturing motion dynamics from the video. In comparison to other popular
customization algorithms, LoRA also o!ers a portable model size and requires
minimal training data, as well as the simplicity of plug-and-play for easy exten-
sibility to collaborate with additional customization modules.

While LoRA works well on few-shot customization tasks through the residual
module weights, a portion of spatial features still leak into it when trained on a
single reference video. Concurrent e!orts attempt to address this challenging yet
significant issue by either demanding a small dataset with diverse appearances
and the consistent motion [31, 48], or stopping training early and supplement-
ing the underfit temporal modules with direct control signals from the reference
video [20]. To tackle this issue and facilitate one-shot video customization, we in-
troduce an innovative Appearance Absorber module to further decompose static
signals from dynamics. The key idea of this module is to absorb the appearance
out of the reference video, leaving only the desired motion information for the
Temporal LoRA to model.

We introduce a staged training and inference pipeline as illustrated in Fig. 2
to connect all the components we have proposed while keeping them indepen-
dent. In the first stage, we build and train the appearance absorber on unordered
reference video frames to capture frame-wise spatial information, such as the
subject appearance and the background scene. In the second stage, we load the
trained appearance absorber in frozen state, and construct the Temporal LoRA
on the temporal layers of the T2V model to train. The appearance absorber has
encoded the static frames and therefore helps the Temporal LoRA focus primar-
ily on temporal signals, minimizing the spatial information leakage into motion
customization modules. During the inference stage, we remove the appearance
absorber and load solely the trained Temporal LoRA. Given a text prompt con-
taining novel subjects and scenes, our model not only accurately transfers the
learned motion signature to the new appearance, but also produces diverse mo-
tions in terms of their intensities, positions, and camera views.

To summarize, our contributions involve:

– We present a novel one-shot motion customization method for single refer-
ence video based on pre-trained text-to-video di!usion models;

– We introduce Temporal LoRA to learn the motion from a single reference
video, facilitating motion transfer with not only accuracy but also variety;

– We propose the general class of Appearance Absorbers to dedicatedly decom-
pose the spatial information out of the reference video, e!ectively excluding
it from the motion customization process;

– Our modules feature the plug-and-play and staged fashion and can be smoothly
extended to various downstream applications.

2 Related Work

Text-to-Video Generation Models. Text-to-video (T2V) generation task gener-
ates videos from given text prompts specifying the expected appearances and
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motions. It has been widely explored previously using GANs [23, 25, 35] and
transformers [11,18,44,49,52]. With the boost of T2I di!usion models, T2V dif-
fusion models become subsequently under fast development. [22] reprogram the
2D spatial attentions into 3D temporal attentions to handle the new temporal
dimension. [3, 6, 14, 16, 17, 27, 41, 45, 62] insert spatio-temporal 3D convolutions
and/or cross-frame attentions to regulate the output temporal consistency from
the random input noise. [12,22,27,29] design explicitly disentangled noise prior
between key frames and residues to enforce temporal coherency. T2V models
designate the generated content through text prompts, demanding significant
engineering e!ort to prompt it to produce desired motions in details.

T2I-based Video Editing. Leveraging the control signal directly from a reference
video by editing it into new appearances is an e"cient practice to precisely trans-
fer the motion and has been studied by various methods. [13,28,37,40,46,50,58]
leverage the inverse denoising process or degradation of the reference video
frames to maintain the desired motion while altering its appearance through
T2I generation. [1, 8, 9, 26, 30, 47, 56] adopt controllable image generation ap-
proaches [34, 54] and extract the low-level reference signals such as their depth
or edge maps to guide the generation process. [4, 7, 53, 59, 61] make use of the
combination of above techniques. However, such methods fall short as they focus
more on adopting novel appearances, and merely duplicate the original motion
exactly but with no temporal diversity to vary in the motion intensity and ve-
locity, subject position and quantity etc.

Video Motion Customization. Model customization is the task of adapting the
original output to a new specific domain by adjusting the pre-trained model
weights. It was first introduced for T2I models to personalize in spatial aspects
such as identity, art style or pose [10, 24, 39]. Recently, the idea of customizing
the motion given reference videos has also been emerging and evolving rapidly.
[28, 40, 50, 58] add temporal attentions from scratch on pre-trained T2I models
and finetune them on a single video. Concurrent work [20,31] tunes the temporal
layers in place in a pre-trained T2V model with either a regularization set or a
frame residual loss to reduce the impact of training videos’ appearances. Instead,
our method appends residual weights to the original model using LoRA [19] and
enables ligthweight training strategy and flexible inference utility.

[33] represents the first attempt to finetune the spatial and temporal atten-
tions independently for the appearance and motion of a reference video, which
have however entangled inference. Concurrent work [57] employs two parallel
UNets and tune one of them with an appearance normalization loss to disen-
tangle the motion as well as maintain the generalization ability on new appear-
ances. Another concurrent work [48] adds adapters conditioned on one frame
to decompose pure motion from its appearance, requiring additional input of
an image when inference while ours asks for the minimal input of text prompt
only. Concurrent work [60] applies dual-path LoRAs and trains them jointly
with an appearance-debiased loss. In contrast, our approach adopts a staged
training pipeline with independent tuning configurations, where our appearance
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Fig. 2: Our Temporal LoRA, Appearance Absorbers and their training and inference
processes. All noise and denoising schedules are omitted for simplicity. (1) We bypass
all temporal layers in a base T2V di!usion model and apply appearance absorber such
as S-LoRA or Textual Inversion on its spatial attention layers. The module is trained
on unordered video frames. (2) We apply T-LoRA on all temporal attentions in the
full base T2V model. The trained appearance absorber is also loaded and frozen. The
module is trained on the target video. (3) During inference, only the trained T-LoRA
is loaded. A new video with the customized motion is generated by a prompt describing
the new appearance and the target motion.

absorber class can be easily extended to more candidates than LoRA, or reusing
third-party modules pre-trained on in-the-wild images or videos.

3 Method

We present a novel motion customization method based on pre-trained T2V
di!usion models for a single reference video. We suggest learning the motion
concept from the reference video through a LoRA module designed for temporal
layers of the T2V model. Given the challenging nature of working with a single
datum, we develop a staged training strategy with an appearance absorber mod-
ule to disentangle spatial information from motion. Fig. 2 shows an illustration
of each proposed module and its connection to the base T2V model.

3.1 Preliminary

Text-to-Video Di!usion Models. A text-to-video (T2V) di!usion model trains a
3D UNet to generate videos in a series denoising steps conditioned on a input text
prompt. The 3D UNet usually consists of spatial self- and cross-attentions, 2D
and 3D convolutions, and temporal cross-frame attentions. Given the F frames
x1...F of a video, the 3D UNet ω is trained by minimizing

Lω = Ex1...F ,ε,t[→ε↑ εω(x
1...F
t , t, ϑv(y))→] (1)
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at every denoising step t = T, ..., 0. ε is Gaussian noise and εω is the UNet
prediction, ϑ is the text encoder with token sets v, and y is the text prompt.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) [19] was proposed for
adapting pre-trained large language models to downstream tasks. It has also
been widely developed for image customization models. LoRA applies a residue
path of two low-rank matrices ωB ↓ Rd→r, ωA ↓ Rr→k on an attention layer,
whose original weight is ω0 ↓ Rd→k, r ↔ min(d, k). The new forward path is

ω = ω0 + ϖϱω = ω0 + ϖωBωA. (2)

where ϖ is a coe"cient adjusting the strength of the added LoRA.

3.2 Customize-A-Video

We proposed two critical modules to customize the pre-trained T2V model for
a single reference video. Temporal LoRA is introduced to learn motion from
a reference video, whereas Appearance Absorbers are crafted to improve the
separation of spatial and temporal information within the single reference video.

Temporal LoRA Inspired by [19], we introduce Temporal LoRA (T-LoRA),
a technique for capturing motion characteristics from input videos and enabling
motion customization for new appearance via text prompts. We apply LoRAs on
all temporal cross-frame attention layers of the base T2V model [45] to maximize
modeling motion signals. Our ablation studies reveal that T-LoRA outperforms
applying LoRA to other non-temporal attention layers, as T-LoRA targets at
preserving motion while discarding unnecessary input appearance (see Sec. 4.2).

Appearance Absorbers To separate spatial signals from temporal signals
within a single video, we abstract the general class of Appearance Absorbers.
Its objective is to absorb the spatial information, including the identity, texture,
scene, etc., out of the training video, such that the reference motion can be
exclusively modeled by our T-LoRA. To achieve this, we construct the absorbers
leveraging a set of image customization modules, and use them in an inverse
manner compared to their original role:

Image Model + Image Customization Module ↗ Image Custom Model;
Video Model → Appearance Absorber︸ ︷︷ ︸

remove spatial signals from training video

+T-LoRA ↗ Video Custom Model.

Our appearance absorbers can be built upon including but not limited to:

– Spatial LoRA. We apply LoRA on only the spatial attention layers in a
T2V model to adopt solely the spatial information out of the video frames.
LoRA modules are injected in all self-attention layers of the frames and cross-
attention layers between frames and the text prompt. We call it spatial LoRA
(S-LoRA) to distinguish from our T-LoRA for temporal modeling.
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– Textual Inversion. We utilize textual inversion [10] as another approach to
collect spatial features from the training video. It creates learnable place-
holder tokens, initialized with briefly depicting words of the video appear-
ance, to assimilate relevant spatial information through the text tokenizer.

These image customization modules are adept at modeling appearance sig-
nals from limited number of frames of a single video in a few-shot manner, and
thus we prefer less finetuning-based customization methods such as [39] since
they require a considerable amount of training and regularization data. All types
of appearance absorbers can be employed individually or jointly.

Training and Inference Pipelines Our motion customization pipeline in
Fig. 2 consists of two training stages for appearance absorbers and T-LoRA
respectively, and one inference stage to finally generate output videos with novel
text prompts. Our configurable pipeline has dedicated stage for each module and
is universal for extensive types of its components.

First training stage. We train appearance absorber modules first. Since they are
originated from T2I models, we propose to specially train them by bypassing all
temporal layers in the T2V model, including temporal attention layers and 3D
convolution layers in the denoising UNet. We train them with the appearance
description yS cut out of the full caption so that they focus on learning the
spatial information. The training images are unordered frames of the reference
video. We follow their native loss as in [10,19] to train each type of appearance
absorber. Formally, for S-LoRA ϱωS :

LϑωS = Ex,ε,t[→ε↑ εω0+ϑωS (x
f
t , t, ϑv0(yS))→], (3)

and for textual inversion ϱv:

Lϑv = Ex,ε,t[→ε↑ εω0(x
f
t , t, ϑv0+ϑv(yS))→]. (4)

Second training stage. We inject above trained appearance absorbers into the
T2V model and maintain their frozen state. Our T-LoRA is meanwhile injected
into the temporal attention layers of the T2V model. It is trained with the
reference video and full ground truth caption consisting of both motion verbs
and appearance nouns, by which the appearance absorber is also triggered to
yield spatially customized content in static frames. We train T-LoRA ϱωT using
the standard reconstruction loss as in di!usion models [38]:

LϑωT = Ex1...F ,ε,t[→ε↑ (εω→+ϑωT (x
1...F
t , t, ϑv→(y)))→] (5)

where ω↑ = ω0 +ϱωS and v↑ = v0 +ϱv if respective AAs are employed.
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Inference stage. During the final inference stage, solely the trained T-LoRA is
loaded onto the base T2V model. Given a new text prompt depicting the refer-
ence motion with new appearances and scenes, the customized model generates
novel videos animated by the desired motion following the standard denoising
process. As a result of the customized weights in T-LoRA, our output video
transfers the reference motion faithfully as well as with diversity in motion in-
tensities, positions, and camera views etc.

4 Experiments

Base T2V models. Our methods are applicable to general T2V di!usion models.
In the following experiments, we hire the ModelScope T2V model [45] as the pre-
trained base model. All videos are pre-processed and generated for 2 seconds, 8
FPS and 256 ↘ 256 resolution. Training hyperparameters, model size statistics
and time consumption analyses are detailed in the supplementary material.

Datasets. We select videos from mixed sources, including LOVEU-TGVE-2023 [51],
WebVid-10M [2] and DAVIS [36] datasets to evaluate our method. [51] provides
ground truth captions and target editing prompts, while we create those for
videos from other sources. We also apply our method on in-the-wild videos and
demonstrate its generalization ability.

Comparison methods. As of a new task of one-shot video motion customization,
we mainly compare to Tune-A-Video [50] and Video-P2P [28], which append raw
temporal layers to pre-trained T2I models and finetune them on a single reference
video. It is worth noting that they additionally rely on DDIM inverted reference
video latent as the input during inference and thus only produce temporally
deterministic videos with fixed frame layout and view angle, so we also evaluate
their variants removing this condition. We also compare our method against the
pre-trained T2V model, i.e. ModelScope, to prove that our method enhances
the base foundation model to produce faithful motions following the reference
video that are not trivial to depict via prompt engineering. Besides, we run
the concurrent work MotionDirector [60] using their released training code with
the same configuration as ours, including the same base T2V model and LoRA
hyperparameters for fair comparison.

Quantitative metrics. We measure the performance quantitatively over a sub-
set containing 53 videos out of [51] of 2-3 seconds with standard original and
editing captions. We consider comparisons in terms of three metrics: text align-

ment between the generated video frames and the inference prompt gauges both
generated appearance and motion accuracy, in the form of CLIPScore [15] that
associates text and image in a unified space; temporal consistency between
consecutive frames of the generated video indicates the generated motion qual-
ity, in the form of LPIPS [55] that measures deep feature distance; diversity

among multiple generated videos with the same prompt and di!erent random
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Fig. 3: Results of one-shot motion customization. (1-left) Reference video. (2-left)
ModelScope [45] fails to transfer the reference motion faithfully with only text guidance.
(1-right & 2-right) Tune-A-Video [50] and Video-P2P [28] rely on DDIM inverted
latent input and duplicate the original frame structure deterministically. (3) Concur-
rent work MotionDirector [60] also generates various output following the reference
motion while there exist some appearance and motion artifacts especially for hard ex-
amples with complex or intensive movements. (4) Our methods generate motion with
both accuracy and variety in details such as view perspective and frame layout. Two
variants generated with random noise are shown for MotionDirector and Ours.
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Table 1: Quantitative comparisons on [51] dataset. → w/o DDIM Inversion represents
the above method without DDIM inverted latent input. Video-P2P outputs video clips
of 4 FPS with 512↑512 resolution. MotionDirector is a concurrent work to ours and is
tested with either the same LoRA rank or comparable amount of parameters to ours.

Method Text Alignment↓ Temporal Consistency↔ Diversity↓

ModelScope [45] 31.705 0.175 0.636

Tune-A-Video [50] 31.149 0.185 -
→ w/o DDIM Inversion 30.304 0.206 0.348
Video-P2P [28] 31.001 0.162 -
→ w/o DDIM Inversion 30.876 0.251 0.469

MotionDirector [60] 32.500 0.163 0.606
→ w/ comparable #params 31.842 0.166 0.595

Ours No AA 31.687 0.166 0.613
Ours S-LoRA AA 31.913 0.163 0.618
Ours TextInv AA 32.632 0.160 0.621
Ours Dual AA 32.193 0.164 0.631

noise involves both spatial and temporal diversity by collating aligned frames at
the same timestamp, in the form of LPIPS. It is calculated on 4 random samples
per reference video.

User Study. We conduct a human user study among five algorithms with stochas-
tic output: ModelScope, Tune-A-Video and Video-P2P without DDIM inverted
latent, our method with both S-LoRA and textual inversion as the appearance
absorbers, and MotionDirector. Every participant is presented 10 random ref-
erence videos from [51] and their output videos. Each algorithm outputs two
videos, and participants are asked to assess their motion fidelity and motion di-
versity respectively, from 1 (worst) to 5 (best) stars. Details of the questionnaire
design is provided in the supplementary materials.

4.1 Motion Customization from Single Video

Qualitative Results. Fig. 3 illustrates the comparative visual results of one-shot
motion customization. The base ModelScope T2V model fails to accurately repli-
cate the specific motions as reference guided by simply the text prompt. On
the other hand, Tune-A-Video [50] and Video-P2P [28] leverage DDIM inverted
latents extracted from reference videos and produce temporally deterministic
output with structural constraints by the reference frame layouts. In contrast to
both of them, our approach demonstrates the capability to transfer the reference
motion to new scenarios and subjects while introducing temporal variations via
random noise input. Our outcomes not only exhibit diverse subject appearances
and background scenes but also showcase variability in motion attributes such as
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action range, intensity, velocity, and camera perspective. Concurrent MotionDi-
rector [60] is also able to generate adapted output with variety, while for the hard
examples with complex or intensive motion, such as the juggling and firework in
Fig. 3, it yields less competitive visual quality than ours. Our T-LoRA is always
trained with well-optimized AAs, while MotionDirector might have appearances
leaked into the temporal module when their spatial path is jointly being tuned.
We also notice that real-world videos usually have divergent spatial and tem-
poral complexity, and our dedicated tuning procedures with independent steps
and other schedules for each module reach their individual optimal.

Quantitative Results. The quantitative results and comparisons are listed in
Tab. 1. Our methods outperform the base ModelScope [45], Tune-A-Video [50],
Video-P2P [28] and concurrent MotionDirector [60] on both text alignment and
temporal consistency. ModelScope [45] provides the highest comprehensive diver-
sity as a foundation model and loses in motion fidelity with text guidance only.
Our methods sacrifice it subtly to gain significant improvements in faithfully
customizing the exemplar motion, as well as retaining rich varieties in motion
details. Tune-A-Video [50] and Video-P2P [28] have the minimal diversity as
strictly constrained by frame structures, although at the cost of which they can
achieve acceptable temporal consistency. MotionDirector [60] shows comparable
text alignment and temporal consistency to ours but its diversity falls behind.

User Study. We involved 20 evaluators participating our user study and collected
153 and 156 valid ratings per algorithm on each benchmark. The averaged scores
are listed in Tab. 2. Our method leads on both motion fidelity and motion diver-
sity. We asked users to rate pure motion fidelity and diversity which are hard to
assess by automatic metrics in need of generic motion representations irrespec-
tive to spatial structures. These results are complementary to the text alignment
and diversity measured in Tab. 1 that mix spatial and temporal signals.

Table 2: Human user study results on [51] dataset. Methods are evaluated from 1
(worst) to 5 (best) stars on each benchmark.

Method Motion Fidelity↓ Motion Diversity↓

ModelScope [45] 2.03 2.97
Tune-A-Video [50] w/o DDIM Inversion 2.29 2.23
Video-P2P [28] w/o DDIM Inversion 2.29 2.01

MotionDirector [60] 3.33 3.50

Ours (w/ dual AA) 3.72 3.72
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Fig. 4: Left: Ablations on applying LoRAs on di!erent attention layers. S-LoRA mem-
orizes the indoor furniture and wall decorations and T-LoRA converts paintings to en-
trances and sofas to pool benches. Right: Ablations on training T-LoRAs with di!erent
types of appearance absorbers. No AA adds stylish glasses and the logo but remains
most the original appearance. S-LoRA AA and TextInv AA significantly boost the
quality while resulting in the strips on the wall and the partially white sleeves. Dual
AA reaches best spatial clearance with clear costume and background.

4.2 Ablations Studies

LoRAs on Non-temporal Attentions. While it is intuitive to apply LoRA on only
temporal attention layers to learn video motions without original appearance,
we also validate the e!ects of applying LoRA on the spatial attentions only
(S-LoRA), or on both spatial and temporal attentions (ST-LoRA) in the base
T2V model. Fig. 4 left displays the visualizations in which adding LoRA to
spatial attentions significantly impairs the motion modeling. The models with
spatial elements primarily memorize the video by its spatial layout, resulting in
a substantial degradation of both appearance and motion adaptation.

Comparisons among Appearance Absorber Types. We explore four di!erent con-
figurations of Appearance Absorbers (AA). No AA: no appearance absorber is
used, S-LoRA AA: a spatial LoRA based appearance absorber is used, Tex-

tInv AA: a textual inversion based appearance absorber is used, and Dual AA:
two appearance absorbers of both above types are used. The comparison results
are unveiled by Fig. 4. No AA remains some original appearance in addition
to modeling the motion. S-LoRA AA and TextInv AA are both able to cap-
ture the pure action with minimal appearance leakage. We notice that S-LoRA
AA is easier to overfit and sometimes causes spatial artifacts while TextInv AA
might tend to underfit and leave spatial residues on the other hand. We attribute
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Fig. 5: Left: Video appearance customization with both T-LoRA and existing pre-
trained S-LoRA (from [43]). Right: Multiple motion combination with two T-LoRAs
loaded at the same time. When the robot is slowly jogging, it fast zooms in while the
background trees rapidly zoom out (dolly zoom).

these properties to the spatial structure of S-LoRA weights inside U-Net blocks
while textual inversion works via a 1D learnable embedding as new tokens. Dual
AA unites their advantages and leads to a comprehensive result with both the
reference motion and new appearance clearly reflected.

5 Applications

With the plug-and-play nature of LoRA and our staged training pipeline, we
present four downstream applications that demonstrate the collaborative poten-
tial of our proposed modules.

Video Appearance Customization Our motion customization module works
on temporal layers and thus can cooperate with image customization approaches
to manipulate both the temporal and spatial layers in the base T2V model at
the same time. In Fig. 5 left, we inject a T-LoRA to present the reference action
as well as an image spatial LoRA to reflect the comic style in one comprehensive
output.

Multiple Motion Combination T-LoRA is applied to the original layers with
residual connections. Therefore we can customize the base model with multiple
T-LoRA modules trained on di!erent source videos to integrate assorted motions
into one outcome. Fig. 5 right demonstrates that our method merges the human
action of jogging and camera movement of dolly zoom into one target scenario
using two T-LoRA modules.
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Fig. 6: Left: Precise frame-wise video editing with DDIM inverted latent as the in-
ference input noise. Right: A third-party Dreambooth UNet pre-tuned on in-the-wild
images of the same subject serves as the appearance absorber to train the T-LoRA.

DDIM Inverted Latent Input Our method can easily incorporate additional
deterministic controls to perform precise video editing. The comparison results
to Tuna-A-Video [50] are shown as Fig. 6 left. Our models prove to be also able
to benefit from the DDIM inverted latent of the reference video and yield output
that reproduces the exact original frame structures.

Third-Party Appearance Absorbers Our staged training pipeline enables
reusing appearance absorbers across videos or loading third-party image cus-
tomization modules as ready appearance absorbers when they share the similar
appearance. This skips the first training stage and extends appearance absorber
categories to those demand more training data. In Fig. 6 right, we finetune the
spatial layers of the UNet following Dreambooth [39] and Eq. 1 on other photos
of the same dog. Our T-LoRA trained with it avoids the leakage of the dog color
to the white wolf, compared to that trained with the original base model.

6 Conclusion

We introduce the one-shot motion customization task that learns the motion
signature from a single reference video and transfers it to new scenes and sub-
jects with variety in both appearance and motion. We propose Temporal LoRA
to model the target motion by adding LoRA residual weights on the tempo-
ral attention layers of a pre-trained text-to-video di!usion model. We further
propose Appearance Absorbers to decouple the spatial information from the
reference video so that Temporal LoRA can focus on motion modeling. Exten-
sive experiments demonstrate that our methods yield faithful and diverse videos
compared to both per-frame video editing approaches and the base T2V model.
Our method’s is plug-and-play nature supports various downstream tasks in-
cluding precise video editing, video appearance customization, multiple motion
combination as well as third-party appearance absorbers.
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A Implementation Details

A.1 Bypassing Temporal Layers in T2V Models

Many di!usion-based T2V models such as [3, 5, 14, 45] have their denoising net-
work structure adapted from T2I UNet with temporal convolution and attention
layers injected. The new temporal layers are usually implemented as residual
connections. The models are also usually trained on image and video datasets
jointly to acquire both appearance and motion generative capability.

Based on this mechanism, we propose to train our appearance absorbers
with the temporal layers bypassed and the model to perform image generation
tasks on static frames. This shared design further enables us to load third-party
image customization models pre-trained on external image data to serve as ready
appearance absorbers or additional spatial customization modules in our video
applications.

A.2 Patch Training of Appearance Absorbers

Some motions are intrinsically highly associated with postures, such as walking,
running and sitting, and one image can primarily represent them. When the
appearance absorbers have modeled the static postures to fit the appearance in
the first training stage, T-LoRA might have little left to learn such as only the
trivial perturbations across frames.

Therefore, we propose to crop the unordered frames into patches and encour-
age the appearance absorbers to mainly capture local shapes and textures in the
first training stage. This prevent our appearance absorbers from overfitting on
the global structures fundamentally. In practice, we find that setting the crop
ratio randomly between 0.33 to 0.67 yields the best e!ect to retain the desired
motion evidently in the second training stage.

A.3 Attentions and LoRAs in T2V Di!usion Models

A base T2V di!usion model involves spatial self-attention (SSA) between a
frame and itself, spatial cross-attention (SCA) between each frame and the text
prompt, and temporal cross-frame attention (TCFA) among a pixel across all
time in each 3D UNet block. We display their computations in Fig. 7. Three
types of input and their corresponding K, Q and V are marked in respective
colors. SSA is calculated between each frame and itself (K, Q, V ). SCA is be-
tween a frame and the text prompt (K, Q, V ). TCFA is among pixels of all
frames (K, Q, V ). Our LoRAs are applied to all attention weights W↓ (ϱWk,
ϱWq, ϱWv).

A.4 Model Hyperparameters and Training Time

LoRA [19] typically features very few additional parameters attached to the
base model. Its rank r controls the shape of the residual matrix, and ϖ repre-
sents its scale when added to the pre-trained model weights. In experiments we
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Fig. 7: (a) Spatial self-attention between each frame and itself; (b) Spatial cross-
attention between each frame and the text prompt; (c) Temporal cross-frame attention
among pixels of all frames in a video. Batch size is omitted for simplicity.

discovered that setting the rank of T-LoRA rT = 4 and the rank of S-LoRA
in the appearance absorber rS = 1 yields satisfactory results. Meanwhile, we
empirically determined the alpha values ϖT = 1 for T-LoRAs and ϖS = 0.5
for S-LoRAs. For textual inversion [10] as the appearance absorber, we set the
length of new learnable tokens to 2-6 depending on the content complexity.

Table 3: Quantitative and model size comparison with concurrent work.

Method Text Temp. Div.↓ LoRA Rank #Params

Align.↓ Consist.↔ Temp. Spat. Temp. Spat.

Ours No AA 31.687 0.166 0.613

4

-

831.5K

-
Ours S-LoRA AA 31.913 0.163 0.618 1 207.5K
Ours TextInv AA 32.632 0.160 0.621 - 4K
Ours Both AA 32.193 0.164 0.631 1 211.5K

MotionDirector [60] 31.842 0.166 0.595 2 1 779.5K 274.5K
MotionDirector [60] 32.500 0.163 0.606 4 1 1559K 274.5K

We run experiments on a single NVIDIA RTX A5000 GPU with half-precision
floats. Our T-LoRA takes approximately 7 minutes to converge. S-LoRA takes
around 0.5 minute and the textual inversion takes 1 minute to converge in the
first training stage. This is comparable to Tune-A-Video [50] (6 minutes), Video-
P2P [28] (8 minutes in fast mode; 14 minutes in full mode on A6000 for bigger
VRAM) and concurrent work MotionDirector [60] (8 minutes) on the same device
for the same frame resolution and clip length. The learning rate is set to 5↘10↔4

for T-LoRA and 5↘ 10↔5 for appearance absorbers to prevent overfitting.
It worth noting that due to the di!erence in LoRA applications between

our method and concurrent work MotionDirector, the quantities of parameters
and module sizes are not aligned with the same LoRA rank. We apply LoRAs
on temporal cross-frame attentions (TCFAs), while MotionDirector moreoever
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add them to the following feed-forward networks (FFNs). This lead to approxi-
mately twice the quantity of parameters to tune. We apply LoRAs on all spatial
attentions including the self-attentions (SSAs) and the cross-attentions (SCAs).
MotionDirector excludes the SCAs and additionally involves the following FFNs.
Thus our spatial LoRAs have comparable amounts of parameters. Tab. 3 expands
the quantitative comparison with these model size di!erences.

B More Visualizations

B.1 Video Generation Results

More video results generated by our models are displayed in Fig. 8. We present
two random output samples for each reference video.

B.2 Appearance Absorber Results

We exhibit the output of our appearance absorbers trained on unorder reference
frames with the spatial text prompt in Fig. 9. The 2nd and 4th rows show the
generation results with the appearance absorbers (S-LoRA and textual inversion
respectively, same below) loaded and all temporal layers bypassed in the base
T2V model, and the spatial part of the text prompt is used. It yields individual
static frame replicating the reference appearances with random postures. The
dynamic information is successfully left for our temporal customization module
to learn in the next stage. The 3rd and 5th rows show the output videos with
the appearance absorbers loaded on the full base T2V model, and the full text
prompt is used. With the temporal description, the model can still only produce
generic motions upon the learned appearances, indicating the necessity and ef-
fectiveness of our temporal customization module training. It can be further
noticed that S-LoRA and textual inversion have di!erent flavors of spatial mod-
eling due to their di!erent mechanisms, and thus loading both of them achieves
the best performance with comprehensive and thorough appearance absorbing.

B.3 Training Schedule Variances

Our modules fit on each reference video individually to model its unique motion
signal. Fig. 10 displays cases whose optimal iterations vary across di!erent ref-
erence videos. In general we observed that the convergence steps increase along
with the complexity the specific reference motion and that of the original ap-
pearance.

We also observed that di!erent types of appearance absorbers may exhibit
di!erent characteristics that a!ect the optimal checkpoint step and the output
details. In Fig. 11 we present some cases where appearance absorbers vary in
their e!ect of assisting following stages to capture the accurate motion or to
generate novel scenes in certain iterations.
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Fig. 8: Additional generation results of our method.
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Fig. 9: Output generated with appearance absorbers loaded only and temporal layers
bypassed. The 2nd and 3rd rows show S-LoRA. The 4th and 5th rows show textual
inversion. The training prompts and special tokens are noted above for each sample.

C User Study Questionnaire Design

We present example questions in our user studies in Fig. 12. Every reference
video is presented with the output videos by random 4 out of 5 algorithms to
be evaluated. For motion fidelity, 1-star represents the most dissimilar and 5-
star represents the most faithful transferred motions w.r.t. the reference video.
For motion diversity, 1-star indicates the most identical and 5-star indicates the
most diverse generated motions among the two output videos.

D Limitation Discussions

Per Instance Finetuning. Our method tunes on each reference video individu-
ally. Similar to comparing approaches [28, 50, 60], our method needs specialized
recipes for di!erent videos of diverse appearances and motions. The training
configurations and iterations depend on the target video and can vary a lot as
analysed in Sec. B.3. The trade-o! balance between the object motion fidelity and
its diversity also relies on dedicated hyperparameters and adjustments between
underfitting and overfitting, like its image customization counterparts [10, 39]
have described. Though, our staged training pipeline and plug-and-play designs
enable reusing both the appearance absorbers and T-LoRAs for future training
and compositional inference, which improve their usability.
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Fig. 10: Examples where di!erent reference videos require di!erent tuning iterations.
(1-2) Simpler motions such as camera movements usually converge faster. (3) More
complex motions such as animal or human actions would demand more tuning steps.
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Fig. 11: Examples where di!erent appearance absorbers exhibit di!erent characteris-
tics. (1) Our Both AA absorbs the original appearance more thoroughly, leading to
more diverse new background generated. (2) Our Both AA may reduce the necessary
convergence step compared to a single appearance absorber. (3) Our Both AA may be
more stable and enable more tuning iterations without collapse to thoroughly clean up
the original art style and generate a new one.
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The original and edited text prompts are:
A brown deer eats leaves watermelons next to a green field.

Please rate the output videos’ motion fidelity:
1-star       2-star        3-star        4-star       5-star

• A             ○ ○ ○ ○ ○
• B             ○ ○ ○ ○ ○
• C             ○ ○ ○ ○ ○
• D   ○ ○ ○ ○ ○

Please rate the output videos’ motion diversity:
1-star       2-star        3-star        4-star       5-star

• A             ○ ○ ○ ○ ○
• B             ○ ○ ○ ○ ○
• C             ○ ○ ○ ○ ○
• D             ○ ○ ○ ○ ○

Motion fidelity measures how faithfully the output videos replicate the reference video's motion.
Motion diversity measures how various the motions are between two output videos, in terms of e.g. motion 
intensity, velocity and camera view etc.

We ask you to rate the motion fidelity based on how closely the movements in the generated videos match 
those in the reference video. Please use a scale from 1 (different) to 5 (similar) stars for your evaluation.
We ask you to rate the motion diversity based on how varied or diverse the generated movements are across 
the 2 output samples. Please use a scale from 1 (similar) to 5 (different) stars for your evaluation.

Reference A

B

C

D

Fig. 12: An example question in the human user study. Participants are asked to rate
each algorithm’s output videos from 1 to 5 stars.
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Spatial Domain Shift. The standalone finetuning of partial layers might have the
risk of breaking the consistency among the pre-trained weights if the appearance
absorbers overfit on static content reconstruction. If the reference frames are out
of the T2V model’s pre-trained generalization capacity, the spatial customization
might shift its output domains during training and the subsequent temporal
layers will be unable to parse the altered feature maps properly in the next
stage. We suggest smaller learning rate and LoRA scale to pick the checkpoint
when the reference video has complex appearances such as uncommon contents
or extraordinary styles. Applying our methods on advanced base T2V models
with leading capabilities also helps.

Text Encoding Conflict. While extensive spatial customization modules can be
alternatively utilized as our appearance absorbers, some of them might encounter
text mapping conflict when collaborating with the temporal customization mod-
ules. For example, we choose not to apply LoRA on the text encoder in T2V
di!usion models although it can enhance the spatial modelling and appearance
decomposition. Modifications on the pre-trained text encoder could tamper the
original mapping from text to its embedding, and then T-LoRA will learn the
motion associated with the altered text tokens. Finally it might not be triggered
properly by the vanilla text encoder without the appearance absorbers during
inference. The null-text prompt training trick for LoRA without triggering words
might help to handle this issue.

E Future Work

Abundant image customization approaches with various tuning techniques have
been developed for T2I di!usion models. We leverage some of them to serve as
our appearance absorbers for their training stability on few-shot learning and
inference simplicity in the staged scheme. In the next step we plan to investigate
more options to discover their characteristics and further enhance our method’s
performance and usability. Besides, generative video foundation models are also
rapidly evolving and our modules are inherently compatible with various types
of temporal attentions, regardless of the specific generation process and input
modalities.
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