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Abstract - Malicious contents’ main means of 

distribution are through the Internet. Common 

and effective security measures that detect and 

can signal the prevention of malicious content 

propagation are Network Intrusion Detection 

Systems (NIDS) such as Snort. In this paper, we 

propose D
2
PI, a novel way of identifying network 

traffic with malware by performing deep packet 

inspection with a Convolutional Neural Network. 

D
2
PI is a neural network architecture that uses 

character embeddings followed by deep 

convolutional networks trained upon the payloads 

of packets from the dataset and functions as an 

NIDS. In an evaluation that uses a dataset of 127 

distinct malwares and a sampling of over 16GB of 

benign traffic, our D
2
PI outperforms the popular 

open source intrusion detection system Snort by 

more than 17% in F1 score. Furthermore, D
2
PI 

should lend itself well to integration with other 

NIDS techniques or systems to further improve 

accuracy and might be more effective at 

identifying zero-day attacks than current state of 

the art commercial NIDS. 

 

Introduction 

Network traffic classification is an important 

task in modern communication networks due to 

the rapid growth of high throughput, traffic 

demands, and the security concerns that arises 

with network traffic. Attackers take advantage of 

this growing Internet connectivity to access 

computers over the network to do things like 

encrypt important data (ransomware), install 

backdoors (trojan horses), and send self-

propagating programs that infect more machines 

(worms). Static analysis of malware in machines 

often occurs too late; the malware has had time to 

execute arbitrary code already [1]. An area of 

security research that arose to detect such attacks 

in real time by analyzing the traffic itself is called 

network intrusion detection (NID).  

A network intrusion detection system (NIDS) is 

composed of software and/or hardware designed to 

detect unwanted attempts to access, manipulate, 

and/or disable computer systems. An NIDS is used 

to detect several types of malicious behaviors that 

can compromise the security and trust of a 

computer’s system. These threats are various, and 

include network attacks against vulnerable 

services, data driven attacks on applications, and 

host based attacks such as privilege escalation, 

unauthorized accesses, and malware (viruses, 

worms) [2][3]. 

These detection systems can be categorized 

into two methods: (1) Auditing packet 

information and signatures available to classify 

traffic, and (2) Observing traffic directly using 

packet filters or other detection schemes. These 

detection systems are usually equipped with static 

analyzers and feature extractors that leverage 

things like deep packet inspection, which 

examines packet payloads [4][5]. They use 

malware scanners that dynamically use run-time 

information in memory to identify behavior that 

appears malicious or statically extract features 

from disk of files that may be malware [6]. 

However, these approaches defend best when 

malware signatures are explicitly known, so they 

are generally ineffective against zero-day attacks 

and amorphous malwares. They also require great 

investments of security expert time to identify 

features that effectively classify the types of 

attacks that are known. It is not unusual for these 

systems to leverage hundreds of hand-selected 

features, and new ones often have to be defined to 

deal with emerging malware vectors. We propose 

a new approach of identifying malware by using a 

Convolutional Neural Network (CNN) that does 
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not require prior knowledge of malware 

operations or extracting features of network traffic 

because it automatically learns features. This is 

not only a more economical approach to intrusion 

detection, but it is also likely to be more robust in 

detecting existing malware that is altered to avoid 

detection and easier to adapt to emerging threats 

because it could be retrained with the inclusion of 

newly discovered malwares. This does require 

keeping the entire training set, identifying new 

malware, and letting the system automatically 

retrain on the the new extended set over at least 

several hours if not days depending on the set 

size. 

 

Related Work 
Traditional defense against malware that 

propagates through the internet uses techniques 

such as signature detection, feature extraction, and 

deep packet inspection. Others inspect the 

behavior of possible malware binaries with static 

analysis [7]. The NIDS of traditional approaches 

emphasize heavily upon low rate of falsely 

identifying benign traffic as malicious, but the 

tradeoff is that the system only alerts on malicious 

traffic that the system is very convinced is 

malicious. This is ideal in a system where falsely 

identifying benign content and being aggressive in 

identifying malicious content might hinder 

productivity and annoy users to ignore the alerts. 

Some work has been done in terms of machine 

learning on features extracted for intrusion 

detection systems [8] [9], but the this work still 

fundamentally relies on feature extraction and 

only leverages machine learning as an automatic 

weighting vector for features. We are, to our best 

knowledge, the first to apply machine learning 

concepts into separating malicious and benign 

traffic without feature extraction.  

The most relevant work to ours was done by 

Lotfollahi et al. [10] [11] who classified types of 

encrypted traffic such as VPN vs non-VPN traffic 

by using a similar CNN structure and Saxe et al. 

[12] who classified malicious and benign URLs 

with another similar CNN. The former 

concentrate more on blocking types of traffic 

unwanted by company policy rather than identify 

security risks, and the latter are specifically 

concerned with URLs. Our focus is on intrusion 

detection, but we take great confidence from the 

previous success of CNNs on these other tasks. 

Our network’s embedding layer is not as 

sophisticated as these networks, however, which 

may be a future source of improvement. 

 

Threat Model and Goals 

The attacker has total control over the network 

packets transmitted to the user’s computer, which 

is protected by our CNN firewall. The attacker 

does not have control over this firewall or the 

user’s computer in any way. However, the user 

will receive any packet that the attacker wants the 

user to receive. In particular, we have chosen to 

focus on malicious binaries sent over TCP by the 

attacker in our analysis, but we believe that our 

approach could be extended to other types of 

attacks like SQL injection if trained with 

appropriate datasets. 

Our goal is to identify malware and flag a a 

session as suspicious or malicious in real time 

after being trained on a sufficiently adequate 

dataset. We should then be able to detect malware 

with good accuracy without being trained on or 

aware of the specific attack (which may be a zero-

day attack). Although our classifier has not been 

used on a live system at the time of this paper, we 

believe that our analysis shows that it could 

perform well in such an environment. 

Goals that are out of scope of what we are 

accomplishing are identifying behavior of what 

the attacker is doing, detecting botnet traffic, DOS 

attacks, scanning attacks, and anything that 

doesn’t rely on transferring packet payloads. 

 

Solution Overview 

Our proposed solution to this malware 

classifying problem is a neural network 

architecture that is trained on the payloads of 

downloads of known malware executables and the 

payloads of general, known benign packets. This 

network leverages techniques that have been used 

in natural language processing like character 
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embeddings followed by deep convolutional 

networks because of our underlying assumption 

that executable code and other attacks have 

similar feature constructs to natural languages. It 

is trained and predicts on sessions of internet 

traffic between the host and clients and functions 

as an Intrusion Detection System (IDS). That is to 

say that it does not take any security action upon 

predicting that a client has sent a malicious 

executable; it defers any such action to an 

underlying policy that is determined by the host’s 

administrator. 

As control group to evaluate our classifier 

against a metric, we used Snort, for which we also 

go into detail in the section below. We evaluated 

the accuracy rate of our classifier using 

anonymized datasets that we both got from public 

sources and created by ourselves. We open these 

dataset to the public for interested parties. Our 

evaluation plan is also gone through in detail 

below. 

 

D
2
PI Network Design 

Our neural model’s main workhorse called the 

a payload classifier, which consists of a character 

embedding layer that’s followed by four 

convolutional and pooling layers that are followed 

by a two classification softmax layer as shown in 

Figure 1. They were all programmed in Python 

through the Keras library on top of Tensorflow 

[13][14]. Most of the parameters like number of 

layers, sliding window size, number of kernels, 

activation functions, and pooling layer sizes are 

based on the designs of previous effective works 

or initial testing with a small dataset, and there 

may well be room for improvement by sampling 

different combination of these. 

The embedding layer is a pre-trained character-

character matrix of 128x128 values that encode a 

vector of the context for each of the possible 128 

ASCII characters. All of the training payloads are 

run through with a sliding context window of 

three characters, and the vector representing the 

middle character is given plus one in weight at the 

index of the other characters seen in the window. 

Each vector in the embedding matrix is then 

normalized to a magnitude of one. This is a 

relatively simple embedding model that could 

well be improved by switching to a word2vec 

model that operated on characters instead of 

words [15]. When the payload classifier is 

actually used after this pre-training, a payload is 

converted into a 1500x128 matrix before being 

input to the convolutional layers by converting 
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each character into its learned embedding and 

appending all of the embeddings onto each other 

in the same order as the payload. If payloads are 

larger or smaller than 1500 characters, this matrix 

is curtailed or padded to zeros. They should not be 

longer than this by convention according to 

Lotfollahi et al., so this should not highly affect 

results [10]. 

The kernels in the convolutional layers each 

span four entire character vectors and use rectified 

linear unit activation. The four layers have 32, 64, 

128, and 128 kernels respectively, and each is 

followed by a max pooling layer over four entire 

character vectors, except for the last one that 

pools over sixteen vectors. The last pooling layer 

is then connected to a sixteen node rectified linear 

unit layer, which is then connected to a two node 

softmax layer. The output of this layer 

corresponds to a percentage of confidence that 

input payload was malicious or benign. 

Building upon this payload classifier, we have 

a slightly larger network to actually train and 

predict things for sessions of multiple packets 

although the payload classifier has to be trained 

before this network can be trained. This session 

classifier inputs up to 10,000 packets at a time 

from the same session, passes all the non-empty 

TCP packets through the payload classifier to get 

predictions, and then aggregates these predictions 

into a malware score by adding all of the 

malicious prediction percentages and subtracting 

all of the benign prediction percentages. What we 

end up with is a single number score in the range 

(-10,000, 10,000) that corresponds to how strong 

a prediction the the network has on the session as 

to whether it is malicious or not with positive 

scores meaning malicious, negative scores 

meaning benign, and scores near zero either 

corresponding to unseen data, low confidence 

predictions, or sessions without many packets. 

This score, however, is not directly used to 

predict; we run the all the scores of the same 

sessions on which we trained the payload 

classifier through another single perceptron that 

learns the decision boundary for malware and 

benign. In our results, this perceptron learns a 

boundary around zero and does not help more 

than a manual cutoff, but it is a convenient 

placeholder for possibly combining our payload 

classifier with other features extracted from 

packets in the future to create an even more robust 

predictor. 

For our test runs, we predicted sessions that 

were larger than 10,000 packets in non-

overlapping increments of 10,000 packets, and we 

took the increment that had the highest malware 

score and therefore looked the most malicious as 

the de facto score for the session because we 

assume that if a session has 10,000 packets 

anywhere in it that look like malware, it’s 

probably malicious. It is possible we could have 

gotten better malicious predictions with a sliding 

window, over the sessions’ packets, but we expect 

this would be prohibitively expensive in practice. 

As it was, our system already took around 2.2 

minutes to predict on 10,000 packets, which is 

slightly slower than Snort’s 1.6 minutes in our 

tests. 

It is worth noting that this same architecture 

could define an anomalous or unsure prediction 

zone around the malware score of zero, but we 

have not qualitatively analyzed such a zone at this 

time. 

 

Baseline: Snort 

Our classifier was compared to Snort, the most 

popular open source Intrusion Detection System 

that classifies traffic based on rules and signatures 

and is updated by the SourceFire team monthly 

[16]. We set up Snort in Network Intrusion 

Detection System Mode with live capture mode 

off, and fed it pcaps from our datasets that were 

stored in a local directory instead of analyzing 

live traffic. We also equipped Snort with a wealth 

of additional detection schemes from Emerging 

Threats that has over 2,100,000 signature IDs, and 

Bro’s Team Cymru’s malware hash registry. This 

allows us to further emulate commercial firewalls 

in practice. 
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Datasets 

As with any machine learning applications, the 

datasets used to train and predict are very 

important in evaluating the performance of the 

application. For malicious traffic pcaps, we pulled 

127 distinct samples of malware executables from 

an online repository known as Contagio, which 

accounted for nearly half a gigabyte in traffic 

[17]. We limited the problem space to executable 

malware, and sampled the malware families that 

we believe are a good representation of the 

malicious content rampant on the Internet as of 

now. These include: trojan programs, worms, and 

exploit kits among others. 

 For benign traffic pcaps we sampled the ISCX 

IDS 2012 benign traffic pcaps created by 

Canadian Institute for Cybersecurity of UNB [18]. 

This is a simulated dataset that is intended to 

mimic real-world traffic without the need for 

anonymization and is derived from real traffic for 

the HTTP, SMTP, SSH, IMAP, POP3, and FTP 

protocols. In particular, we took their first day of 

general benign traffic, separated it into session 

pcaps, took the 2000 largest sessions, and then 

randomly selected 150 of these sessions to reduce 

our data to just over 800MB from an 

overwhelming ~16GB.  

In addition, we created our own explicitly 

benign executable pcaps by downloading 40 

popular pieces of software (~2GB) and 

monitoring with wireshark. We made this set in 

case it better represented data that a payload 

classifier would have a harder time separating 

than the general case since the malicious set is 

also executables. The softwares that we 

downloaded were about 36% .dmg format for 

Mac and about 64% .exe for Windows. The types 

of software ranged from small tools such as 

winzip to IDEs like eclipse. We tried to find 

benign versions of the trojan softwares that were 

present in Contagio such as bitcoin miners, game 

engines, and wordpress plugins. We then ran them 

through VirusTotal, which checks each for 

malware signatures with multiple anti-virus 

softwares to make sure that they were benign.  

All of our dataset pcaps were transmitted over 

TCP regardless of whether they were benign or 

malicious. Any other protocols were ignored after 

passing it through either snort or our classifier. 

This is ideal since 93% of traffic that goes through 

common IDS are TCP [2]. This is also essential 

since, if there were a protocol bias that was not 

TCP, it would reflect poorly on our classifier.  

 

Evaluation 

 After initial testing of the percentage of the 

number of pcaps from which our classifier 

appeared to learn the most, we settled on 

randomly selecting 20 malicious pcaps, 10 benign 

ISCX pcaps, and 6 benign executable pcaps from 

our datasets for the training set for our classifier. 

On every run, these pcaps were randomly chosen 

and our classifier metrics were only taken from 

the test set, which was all of the pcaps from our 

datasets that were not used in training. We ran 

several tests this way and report the findings of 

our best run although we note that many runs did 

not work well, which means our network may 

need stability improvements. 

 Furthermore, when training our network, we 

first extracted all of the TCP payloads, randomly 

dropped as many payloads as we needed to in 

order to make the malicious and benign sets even, 

and randomly ordered the remaining payloads 

such that benign and malicious ones were mixed 

together and kernels would not converge 

prematurely to weights that only predicted a few 

of the packets well. 

 We evaluated the overall effectiveness of our 

classifier and Snort with the F1 score metric as 

given in Equation 1 in which we considered 

classifying malware correctly as true positives. 

Our best classifier’s and Snort’s rates of correct 

prediction can be seen in Table 1. Our classifier’s 

F1 score was 0.7724 while Snort’s was only 

0.6003. This is a very promising result for our 

classifier although we note, as shown in Table 1, 

that Snort was perfect when predicting benign 

traffic and our classifier was not. We expect that 

this is intentional on the part of Snort for usability 
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on real-world traffic, so our classifier may require 

more work to be usable in the same way.  

There did not appear to be any pattern between 

the malwares that each system predicted correctly. 

However, as can be seen in the appendix, there 

was a high discrepancy between the malwares that 

were predicted correctly between the two systems. 

So, a simple two step classifier where we call a 

file malware if either of the systems called it 

malware would have correctly predicted over 90% 

of the malware in our data set without predicting 

the benign files any worse that our classifier did 

by itself. This epitomizes the possible usefulness 

of our classifier in a system with multiple 

classification schemes. 

 We also clustered the malware scores created 

by our classifier for every test pcap in Figure 2, 

and while they do not show quite as much 

distinction as we might have hoped, there is a 

pretty clear line of separation for most of the 

pcaps near 0. More sophisticated variations of our 

techniques may be able to improve on this 

separation. 

 

Conclusions and Future Work 

While we know from past work that the 

protocols of internet traffic can be differentiated 

by similar networks to ours, we believe that our 

results show that convolutional neural networks 

can make even more nuanced predictions and 

identify the differences between things such as 

malicious and benign files at a respectable rate. 

This is especially convincing in the reasonable 

accuracy in Table 1 for the Created Benign and 

Malicious datasets. Furthermore, our classifier 

outperforms Snort on our realistic dataset as 

measured by an F1 score, which implies that it 

may be more practical as an NIDS, although it is 

not unilaterally better since it predicts more false 

negatives.  

 The most exciting part about this classifier is 

that it only really addresses one part of the packets 

that are run through it: the payloads. This is 

analogous to Deep Packet Inspection, which is 

only one part of similar classifiers, so other parts 

of the packets like the IP addresses and metadata 

could be leveraged yet to make our classifier even 

more robust. 

Other future work that could be done would be 

to devise an integrated IDS with a voting scheme 

between Snort and our CNN. This would allow us 

integrate the pros and cons of both systems, which 

might greatly decrease the false positives and 

false negatives of our results. Furthermore, our 

classifier currently only supports TCP with IPv4 

and further work might include UDP and IPv6, 
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and our classifier might be extendable to work on 

encrypted protocols since it can automatically 

build its own features and the similar classifier 

constructed by Lotfollahi et al. was able to 

classify on encrypted payloads [10]. 
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Appendix: Malware Predictions by File Name 
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