

1

D2PI: Identifying Malware through Deep Packet Inspection with Deep

Learning
Ronald Cheng, rscheng@cs.umd.edu

 Gavin Watson, gkwatson@cs.umd.edu

University of Maryland, College Park

Abstract - Malicious contents’ main means of

distribution are through the Internet. Common

and effective security measures that detect and

can signal the prevention of malicious content

propagation are Network Intrusion Detection

Systems (NIDS) such as Snort. In this paper, we

propose D
2
PI, a novel way of identifying network

traffic with malware by performing deep packet

inspection with a Convolutional Neural Network.

D
2
PI is a neural network architecture that uses

character embeddings followed by deep

convolutional networks trained upon the payloads

of packets from the dataset and functions as an

NIDS. In an evaluation that uses a dataset of 127

distinct malwares and a sampling of over 16GB of

benign traffic, our D
2
PI outperforms the popular

open source intrusion detection system Snort by

more than 17% in F1 score. Furthermore, D
2
PI

should lend itself well to integration with other

NIDS techniques or systems to further improve

accuracy and might be more effective at

identifying zero-day attacks than current state of

the art commercial NIDS.

Introduction

Network traffic classification is an important

task in modern communication networks due to

the rapid growth of high throughput, traffic

demands, and the security concerns that arises

with network traffic. Attackers take advantage of

this growing Internet connectivity to access

computers over the network to do things like

encrypt important data (ransomware), install

backdoors (trojan horses), and send self-

propagating programs that infect more machines

(worms). Static analysis of malware in machines

often occurs too late; the malware has had time to

execute arbitrary code already [1]. An area of

security research that arose to detect such attacks

in real time by analyzing the traffic itself is called

network intrusion detection (NID).

A network intrusion detection system (NIDS) is

composed of software and/or hardware designed to

detect unwanted attempts to access, manipulate,

and/or disable computer systems. An NIDS is used

to detect several types of malicious behaviors that

can compromise the security and trust of a

computer’s system. These threats are various, and

include network attacks against vulnerable

services, data driven attacks on applications, and

host based attacks such as privilege escalation,

unauthorized accesses, and malware (viruses,

worms) [2][3].

These detection systems can be categorized

into two methods: (1) Auditing packet

information and signatures available to classify

traffic, and (2) Observing traffic directly using

packet filters or other detection schemes. These

detection systems are usually equipped with static

analyzers and feature extractors that leverage

things like deep packet inspection, which

examines packet payloads [4][5]. They use

malware scanners that dynamically use run-time

information in memory to identify behavior that

appears malicious or statically extract features

from disk of files that may be malware [6].

However, these approaches defend best when

malware signatures are explicitly known, so they

are generally ineffective against zero-day attacks

and amorphous malwares. They also require great

investments of security expert time to identify

features that effectively classify the types of

attacks that are known. It is not unusual for these

systems to leverage hundreds of hand-selected

features, and new ones often have to be defined to

deal with emerging malware vectors. We propose

a new approach of identifying malware by using a

Convolutional Neural Network (CNN) that does

2

not require prior knowledge of malware

operations or extracting features of network traffic

because it automatically learns features. This is

not only a more economical approach to intrusion

detection, but it is also likely to be more robust in

detecting existing malware that is altered to avoid

detection and easier to adapt to emerging threats

because it could be retrained with the inclusion of

newly discovered malwares. This does require

keeping the entire training set, identifying new

malware, and letting the system automatically

retrain on the the new extended set over at least

several hours if not days depending on the set

size.

Related Work
Traditional defense against malware that

propagates through the internet uses techniques

such as signature detection, feature extraction, and

deep packet inspection. Others inspect the

behavior of possible malware binaries with static

analysis [7]. The NIDS of traditional approaches

emphasize heavily upon low rate of falsely

identifying benign traffic as malicious, but the

tradeoff is that the system only alerts on malicious

traffic that the system is very convinced is

malicious. This is ideal in a system where falsely

identifying benign content and being aggressive in

identifying malicious content might hinder

productivity and annoy users to ignore the alerts.

Some work has been done in terms of machine

learning on features extracted for intrusion

detection systems [8] [9], but the this work still

fundamentally relies on feature extraction and

only leverages machine learning as an automatic

weighting vector for features. We are, to our best

knowledge, the first to apply machine learning

concepts into separating malicious and benign

traffic without feature extraction.

The most relevant work to ours was done by

Lotfollahi et al. [10] [11] who classified types of

encrypted traffic such as VPN vs non-VPN traffic

by using a similar CNN structure and Saxe et al.

[12] who classified malicious and benign URLs

with another similar CNN. The former

concentrate more on blocking types of traffic

unwanted by company policy rather than identify

security risks, and the latter are specifically

concerned with URLs. Our focus is on intrusion

detection, but we take great confidence from the

previous success of CNNs on these other tasks.

Our network’s embedding layer is not as

sophisticated as these networks, however, which

may be a future source of improvement.

Threat Model and Goals

The attacker has total control over the network

packets transmitted to the user’s computer, which

is protected by our CNN firewall. The attacker

does not have control over this firewall or the

user’s computer in any way. However, the user

will receive any packet that the attacker wants the

user to receive. In particular, we have chosen to

focus on malicious binaries sent over TCP by the

attacker in our analysis, but we believe that our

approach could be extended to other types of

attacks like SQL injection if trained with

appropriate datasets.

Our goal is to identify malware and flag a a

session as suspicious or malicious in real time

after being trained on a sufficiently adequate

dataset. We should then be able to detect malware

with good accuracy without being trained on or

aware of the specific attack (which may be a zero-

day attack). Although our classifier has not been

used on a live system at the time of this paper, we

believe that our analysis shows that it could

perform well in such an environment.

Goals that are out of scope of what we are

accomplishing are identifying behavior of what

the attacker is doing, detecting botnet traffic, DOS

attacks, scanning attacks, and anything that

doesn’t rely on transferring packet payloads.

Solution Overview

Our proposed solution to this malware

classifying problem is a neural network

architecture that is trained on the payloads of

downloads of known malware executables and the

payloads of general, known benign packets. This

network leverages techniques that have been used

in natural language processing like character

3

embeddings followed by deep convolutional

networks because of our underlying assumption

that executable code and other attacks have

similar feature constructs to natural languages. It

is trained and predicts on sessions of internet

traffic between the host and clients and functions

as an Intrusion Detection System (IDS). That is to

say that it does not take any security action upon

predicting that a client has sent a malicious

executable; it defers any such action to an

underlying policy that is determined by the host’s

administrator.

As control group to evaluate our classifier

against a metric, we used Snort, for which we also

go into detail in the section below. We evaluated

the accuracy rate of our classifier using

anonymized datasets that we both got from public

sources and created by ourselves. We open these

dataset to the public for interested parties. Our

evaluation plan is also gone through in detail

below.

D
2
PI Network Design

Our neural model’s main workhorse called the

a payload classifier, which consists of a character

embedding layer that’s followed by four

convolutional and pooling layers that are followed

by a two classification softmax layer as shown in

Figure 1. They were all programmed in Python

through the Keras library on top of Tensorflow

[13][14]. Most of the parameters like number of

layers, sliding window size, number of kernels,

activation functions, and pooling layer sizes are

based on the designs of previous effective works

or initial testing with a small dataset, and there

may well be room for improvement by sampling

different combination of these.

The embedding layer is a pre-trained character-

character matrix of 128x128 values that encode a

vector of the context for each of the possible 128

ASCII characters. All of the training payloads are

run through with a sliding context window of

three characters, and the vector representing the

middle character is given plus one in weight at the

index of the other characters seen in the window.

Each vector in the embedding matrix is then

normalized to a magnitude of one. This is a

relatively simple embedding model that could

well be improved by switching to a word2vec

model that operated on characters instead of

words [15]. When the payload classifier is

actually used after this pre-training, a payload is

converted into a 1500x128 matrix before being

input to the convolutional layers by converting

4

each character into its learned embedding and

appending all of the embeddings onto each other

in the same order as the payload. If payloads are

larger or smaller than 1500 characters, this matrix

is curtailed or padded to zeros. They should not be

longer than this by convention according to

Lotfollahi et al., so this should not highly affect

results [10].

The kernels in the convolutional layers each

span four entire character vectors and use rectified

linear unit activation. The four layers have 32, 64,

128, and 128 kernels respectively, and each is

followed by a max pooling layer over four entire

character vectors, except for the last one that

pools over sixteen vectors. The last pooling layer

is then connected to a sixteen node rectified linear

unit layer, which is then connected to a two node

softmax layer. The output of this layer

corresponds to a percentage of confidence that

input payload was malicious or benign.

Building upon this payload classifier, we have

a slightly larger network to actually train and

predict things for sessions of multiple packets

although the payload classifier has to be trained

before this network can be trained. This session

classifier inputs up to 10,000 packets at a time

from the same session, passes all the non-empty

TCP packets through the payload classifier to get

predictions, and then aggregates these predictions

into a malware score by adding all of the

malicious prediction percentages and subtracting

all of the benign prediction percentages. What we

end up with is a single number score in the range

(-10,000, 10,000) that corresponds to how strong

a prediction the the network has on the session as

to whether it is malicious or not with positive

scores meaning malicious, negative scores

meaning benign, and scores near zero either

corresponding to unseen data, low confidence

predictions, or sessions without many packets.

This score, however, is not directly used to

predict; we run the all the scores of the same

sessions on which we trained the payload

classifier through another single perceptron that

learns the decision boundary for malware and

benign. In our results, this perceptron learns a

boundary around zero and does not help more

than a manual cutoff, but it is a convenient

placeholder for possibly combining our payload

classifier with other features extracted from

packets in the future to create an even more robust

predictor.

For our test runs, we predicted sessions that

were larger than 10,000 packets in non-

overlapping increments of 10,000 packets, and we

took the increment that had the highest malware

score and therefore looked the most malicious as

the de facto score for the session because we

assume that if a session has 10,000 packets

anywhere in it that look like malware, it’s

probably malicious. It is possible we could have

gotten better malicious predictions with a sliding

window, over the sessions’ packets, but we expect

this would be prohibitively expensive in practice.

As it was, our system already took around 2.2

minutes to predict on 10,000 packets, which is

slightly slower than Snort’s 1.6 minutes in our

tests.

It is worth noting that this same architecture

could define an anomalous or unsure prediction

zone around the malware score of zero, but we

have not qualitatively analyzed such a zone at this

time.

Baseline: Snort

Our classifier was compared to Snort, the most

popular open source Intrusion Detection System

that classifies traffic based on rules and signatures

and is updated by the SourceFire team monthly

[16]. We set up Snort in Network Intrusion

Detection System Mode with live capture mode

off, and fed it pcaps from our datasets that were

stored in a local directory instead of analyzing

live traffic. We also equipped Snort with a wealth

of additional detection schemes from Emerging

Threats that has over 2,100,000 signature IDs, and

Bro’s Team Cymru’s malware hash registry. This

allows us to further emulate commercial firewalls

in practice.

5

Datasets

As with any machine learning applications, the

datasets used to train and predict are very

important in evaluating the performance of the

application. For malicious traffic pcaps, we pulled

127 distinct samples of malware executables from

an online repository known as Contagio, which

accounted for nearly half a gigabyte in traffic

[17]. We limited the problem space to executable

malware, and sampled the malware families that

we believe are a good representation of the

malicious content rampant on the Internet as of

now. These include: trojan programs, worms, and

exploit kits among others.

 For benign traffic pcaps we sampled the ISCX

IDS 2012 benign traffic pcaps created by

Canadian Institute for Cybersecurity of UNB [18].

This is a simulated dataset that is intended to

mimic real-world traffic without the need for

anonymization and is derived from real traffic for

the HTTP, SMTP, SSH, IMAP, POP3, and FTP

protocols. In particular, we took their first day of

general benign traffic, separated it into session

pcaps, took the 2000 largest sessions, and then

randomly selected 150 of these sessions to reduce

our data to just over 800MB from an

overwhelming ~16GB.

In addition, we created our own explicitly

benign executable pcaps by downloading 40

popular pieces of software (~2GB) and

monitoring with wireshark. We made this set in

case it better represented data that a payload

classifier would have a harder time separating

than the general case since the malicious set is

also executables. The softwares that we

downloaded were about 36% .dmg format for

Mac and about 64% .exe for Windows. The types

of software ranged from small tools such as

winzip to IDEs like eclipse. We tried to find

benign versions of the trojan softwares that were

present in Contagio such as bitcoin miners, game

engines, and wordpress plugins. We then ran them

through VirusTotal, which checks each for

malware signatures with multiple anti-virus

softwares to make sure that they were benign.

All of our dataset pcaps were transmitted over

TCP regardless of whether they were benign or

malicious. Any other protocols were ignored after

passing it through either snort or our classifier.

This is ideal since 93% of traffic that goes through

common IDS are TCP [2]. This is also essential

since, if there were a protocol bias that was not

TCP, it would reflect poorly on our classifier.

Evaluation

 After initial testing of the percentage of the

number of pcaps from which our classifier

appeared to learn the most, we settled on

randomly selecting 20 malicious pcaps, 10 benign

ISCX pcaps, and 6 benign executable pcaps from

our datasets for the training set for our classifier.

On every run, these pcaps were randomly chosen

and our classifier metrics were only taken from

the test set, which was all of the pcaps from our

datasets that were not used in training. We ran

several tests this way and report the findings of

our best run although we note that many runs did

not work well, which means our network may

need stability improvements.

 Furthermore, when training our network, we

first extracted all of the TCP payloads, randomly

dropped as many payloads as we needed to in

order to make the malicious and benign sets even,

and randomly ordered the remaining payloads

such that benign and malicious ones were mixed

together and kernels would not converge

prematurely to weights that only predicted a few

of the packets well.

 We evaluated the overall effectiveness of our

classifier and Snort with the F1 score metric as

given in Equation 1 in which we considered

classifying malware correctly as true positives.

Our best classifier’s and Snort’s rates of correct

prediction can be seen in Table 1. Our classifier’s

F1 score was 0.7724 while Snort’s was only

0.6003. This is a very promising result for our

classifier although we note, as shown in Table 1,

that Snort was perfect when predicting benign

traffic and our classifier was not. We expect that

this is intentional on the part of Snort for usability

6

on real-world traffic, so our classifier may require

more work to be usable in the same way.

There did not appear to be any pattern between

the malwares that each system predicted correctly.

However, as can be seen in the appendix, there

was a high discrepancy between the malwares that

were predicted correctly between the two systems.

So, a simple two step classifier where we call a

file malware if either of the systems called it

malware would have correctly predicted over 90%

of the malware in our data set without predicting

the benign files any worse that our classifier did

by itself. This epitomizes the possible usefulness

of our classifier in a system with multiple

classification schemes.

 We also clustered the malware scores created

by our classifier for every test pcap in Figure 2,

and while they do not show quite as much

distinction as we might have hoped, there is a

pretty clear line of separation for most of the

pcaps near 0. More sophisticated variations of our

techniques may be able to improve on this

separation.

Conclusions and Future Work

While we know from past work that the

protocols of internet traffic can be differentiated

by similar networks to ours, we believe that our

results show that convolutional neural networks

can make even more nuanced predictions and

identify the differences between things such as

malicious and benign files at a respectable rate.

This is especially convincing in the reasonable

accuracy in Table 1 for the Created Benign and

Malicious datasets. Furthermore, our classifier

outperforms Snort on our realistic dataset as

measured by an F1 score, which implies that it

may be more practical as an NIDS, although it is

not unilaterally better since it predicts more false

negatives.

 The most exciting part about this classifier is

that it only really addresses one part of the packets

that are run through it: the payloads. This is

analogous to Deep Packet Inspection, which is

only one part of similar classifiers, so other parts

of the packets like the IP addresses and metadata

could be leveraged yet to make our classifier even

more robust.

Other future work that could be done would be

to devise an integrated IDS with a voting scheme

between Snort and our CNN. This would allow us

integrate the pros and cons of both systems, which

might greatly decrease the false positives and

false negatives of our results. Furthermore, our

classifier currently only supports TCP with IPv4

and further work might include UDP and IPv6,

7

and our classifier might be extendable to work on

encrypted protocols since it can automatically

build its own features and the similar classifier

constructed by Lotfollahi et al. was able to

classify on encrypted payloads [10].

8

Acknowledgments

We thank Professor Levin from University of

Maryland CS department for his invaluable

mentorship and guidance on this research. Also,

the dataset kindly provided to us from Mila

Parkour in Vizsec and the researchers at UNB

helped us greatly in evaluating our accuracy rate

of our classifier. Lastly, thanks to all GradSec

classmates who gave us feedback and advice on

the way!

References

[1] Y. Ye et al., “Intelligent file scoring system

for malware detection from the gray list,” in

Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery

and data mining. 2009, ACM: Paris, France. p.

1385-1394.

[2] A. Shabtai, D. Potashnik, Y. Fledel, R.

Moskovitch, and Y. Elovici, “Monitoring,

analysis, and filtering system for purifying

network traffic of known and unknown malicious

content.” Security and Communication Networks,

4(8), pp.947-965, 2010.

[3] Z. Wang, “The Applications of Deep Learning

on Traffic Identification.”

https://www.blackhat.com/docs/us-

15/materials/us-15-Wang-The-Applications-Of-

Deep-Learning-On-Traffic-Identification-wp.pdf

[Accessed 12 Dec. 2017], 2017.

[4] S. Sen, O. Spatscheck, D. Wang, “Accurate,

scalable in‐network identification of p2p traffic

using application signatures” in Proceedings of

the 13th international conference on World Wide

Web. ACM, 2004: 512‐521.

[5] D. Zuev and A.W. Moore, “Traffic

classification using a statistical approach” in

Passive and Active Network Measurement.

Springer Berlin Heidelberg, 2005: 321‐324.

[6] N. Idika and A.P. Mathur, “A Survey of

Malware Detection Techniques.” 2007.

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H.

Gascon and K. Rieck, "Drebin: Effective and

Explainable Detection of Android Malware in

Your Pocket", Proceedings 2014 Network and

Distributed System Security Symposium, 2014.

[8] V. Paxson, "Bro: a system for detecting

network i

[9] F. Střasák and S. Garcia, “Detecting malware

even when it is encrypted.” Brucon 2017.ntruders

in real-time", Computer Networks, vol. 31, no.

23-24, pp. 2435-2463, 1999.

[10] M. Lotfollahi, R. Hossein Zade, M. Jafari

Siavoshani and M. Saberian, "Deep Packet: A

Novel Approach For Encrypted Traffic

Classification Using Deep Learning", ARXIV,

vol. 1709, no. 02656, 2017.

[11] S. Bagui, X. Fang, E. Kalaimannan, S. C.

Bagui, J. Sheehan, Comparison of machine-

learning algorithms for classification of vpn

network traffic flow using time-related features,

Journal of Cyber Security Technology (2017) 1–

19.

[12] J. Saxe, K. Berlin, “eXpose: A Character-

Level Convolutional Neural Network with

Embeddings For Detecting Malicious URLs, File

Paths and Registry Keys", ARXIV, vol. 1702, no.

08568, 2017.

[13] https://keras.io/

[14] https://www.tensorflow.org/

[15] T. Mikolov, K. Chen, G. Corrado, J. Dean,

“Efficient Estimation of Word Representations in

Vector Space,” ARXIV, vol. 1301, no. 3781,

2013.

[16] https://www.snort.org

[17]

http://contagiodump.blogspot.com/2013/04/collec

tion-of-pcap-files-from-malware.html

[18] http://www.unb.ca/cic/datasets/ids.html

9

Appendix: Malware Predictions by File Name

10

11

