D”PI: Identifying Malware through Deep Packet Inspection with Deep

Learning
Ronald Cheng, rscheng@cs.umd.edu
Gavin Watson, gkwatson@cs.umd.edu
University of Maryland, College Park

Abstract - Malicious contents’ main means of
distribution are through the Internet. Common
and effective security measures that detect and
can signal the prevention of malicious content
propagation are Network Intrusion Detection
Systems (NIDS) such as Snort. In this paper, we
propose D?PI, a novel way of identifying network
traffic with malware by performing deep packet
inspection with a Convolutional Neural Network.
D?PI is a neural network architecture that uses
character embeddings followed by deep
convolutional networks trained upon the payloads
of packets from the dataset and functions as an
NIDS. In an evaluation that uses a dataset of 127
distinct malwares and a sampling of over 16GB of
benign traffic, our D’PI outperforms the popular
open source intrusion detection system Snort by
more than 17% in F1 score. Furthermore, D?PI
should lend itself well to integration with other
NIDS techniques or systems to further improve
accuracy and might be more effective at
identifying zero-day attacks than current state of
the art commercial NIDS.

Introduction

Network traffic classification is an important
task in modern communication networks due to
the rapid growth of high throughput, traffic
demands, and the security concerns that arises
with network traffic. Attackers take advantage of
this growing Internet connectivity to access
computers over the network to do things like
encrypt important data (ransomware), install
backdoors (trojan horses), and send self-
propagating programs that infect more machines
(worms). Static analysis of malware in machines
often occurs too late; the malware has had time to
execute arbitrary code already [1]. An area of
security research that arose to detect such attacks

in real time by analyzing the traffic itself is called
network intrusion detection (NID).

A network intrusion detection system (NIDS) is
composed of software and/or hardware designed to
detect unwanted attempts to access, manipulate,
and/or disable computer systems. An NIDS is used
to detect several types of malicious behaviors that
can compromise the security and trust of a
computer’s system. These threats are various, and
include network attacks against wvulnerable
services, data driven attacks on applications, and
host based attacks such as privilege escalation,
unauthorized accesses, and malware (viruses,
worms) [2][3].

These detection systems can be categorized
into two methods: (1) Auditing packet
information and signatures available to classify
traffic, and (2) Observing traffic directly using
packet filters or other detection schemes. These
detection systems are usually equipped with static
analyzers and feature extractors that leverage
things like deep packet inspection, which
examines packet payloads [4][5]. They use
malware scanners that dynamically use run-time
information in memory to identify behavior that
appears malicious or statically extract features
from disk of files that may be malware [6].

However, these approaches defend best when
malware signatures are explicitly known, so they
are generally ineffective against zero-day attacks
and amorphous malwares. They also require great
investments of security expert time to identify
features that effectively classify the types of
attacks that are known. It is not unusual for these
systems to leverage hundreds of hand-selected
features, and new ones often have to be defined to
deal with emerging malware vectors. We propose
a new approach of identifying malware by using a
Convolutional Neural Network (CNN) that does

not require prior knowledge of malware
operations or extracting features of network traffic
because it automatically learns features. This is
not only a more economical approach to intrusion
detection, but it is also likely to be more robust in
detecting existing malware that is altered to avoid
detection and easier to adapt to emerging threats
because it could be retrained with the inclusion of
newly discovered malwares. This does require
keeping the entire training set, identifying new
malware, and letting the system automatically
retrain on the the new extended set over at least
several hours if not days depending on the set
size.

Related Work

Traditional defense against malware that
propagates through the internet uses techniques
such as signature detection, feature extraction, and
deep packet inspection. Others inspect the
behavior of possible malware binaries with static
analysis [7]. The NIDS of traditional approaches
emphasize heavily upon low rate of falsely
identifying benign traffic as malicious, but the
tradeoff is that the system only alerts on malicious
traffic that the system is very convinced is
malicious. This is ideal in a system where falsely
identifying benign content and being aggressive in
identifying malicious content might hinder
productivity and annoy users to ignore the alerts.
Some work has been done in terms of machine
learning on features extracted for intrusion
detection systems [8] [9], but the this work still
fundamentally relies on feature extraction and
only leverages machine learning as an automatic
weighting vector for features. We are, to our best
knowledge, the first to apply machine learning
concepts into separating malicious and benign
traffic without feature extraction.

The most relevant work to ours was done by
Lotfollahi et al. [10] [11] who classified types of
encrypted traffic such as VPN vs non-VPN traffic
by using a similar CNN structure and Saxe et al.
[12] who classified malicious and benign URLs
with another similar CNN. The former
concentrate more on blocking types of traffic

unwanted by company policy rather than identify
security risks, and the latter are specifically
concerned with URLs. Our focus is on intrusion
detection, but we take great confidence from the
previous success of CNNs on these other tasks.
Our network’s embedding layer is not as
sophisticated as these networks, however, which
may be a future source of improvement.

Threat Model and Goals

The attacker has total control over the network
packets transmitted to the user’s computer, which
is protected by our CNN firewall. The attacker
does not have control over this firewall or the
user’s computer in any way. However, the user
will receive any packet that the attacker wants the
user to receive. In particular, we have chosen to
focus on malicious binaries sent over TCP by the
attacker in our analysis, but we believe that our
approach could be extended to other types of
attacks like SQL injection if trained with
appropriate datasets.

Our goal is to identify malware and flag a a

session as suspicious or malicious in real time
after being trained on a sufficiently adequate
dataset. We should then be able to detect malware
with good accuracy without being trained on or
aware of the specific attack (which may be a zero-
day attack). Although our classifier has not been
used on a live system at the time of this paper, we
believe that our analysis shows that it could
perform well in such an environment.
Goals that are out of scope of what we are
accomplishing are identifying behavior of what
the attacker is doing, detecting botnet traffic, DOS
attacks, scanning attacks, and anything that
doesn’t rely on transferring packet payloads.

Solution Overview

Our proposed solution to this malware
classifying problem is a neural network
architecture that is trained on the payloads of
downloads of known malware executables and the
payloads of general, known benign packets. This
network leverages techniques that have been used
in natural language processing like character

embeddings followed by deep convolutional
networks because of our underlying assumption
that executable code and other attacks have
similar feature constructs to natural languages. It
Is trained and predicts on sessions of internet
traffic between the host and clients and functions
as an Intrusion Detection System (IDS). That is to
say that it does not take any security action upon
predicting that a client has sent a malicious
executable; it defers any such action to an
underlying policy that is determined by the host’s
administrator.

As control group to evaluate our classifier
against a metric, we used Snort, for which we also
go into detail in the section below. We evaluated
the accuracy rate of our classifier using
anonymized datasets that we both got from public
sources and created by ourselves. We open these
dataset to the public for interested parties. Our
evaluation plan is also gone through in detail
below.

D?PI Network Design

Our neural model’s main workhorse called the
a payload classifier, which consists of a character
embedding layer that’s followed by four
convolutional and pooling layers that are followed

by a two classification softmax layer as shown in
Figure 1. They were all programmed in Python
through the Keras library on top of Tensorflow
[13][14]. Most of the parameters like number of
layers, sliding window size, number of kernels,
activation functions, and pooling layer sizes are
based on the designs of previous effective works
or initial testing with a small dataset, and there
may well be room for improvement by sampling
different combination of these.

The embedding layer is a pre-trained character-
character matrix of 128x128 values that encode a
vector of the context for each of the possible 128
ASCII characters. All of the training payloads are
run through with a sliding context window of
three characters, and the vector representing the
middle character is given plus one in weight at the
index of the other characters seen in the window.
Each vector in the embedding matrix is then
normalized to a magnitude of one. This is a
relatively simple embedding model that could
well be improved by switching to a word2vec
model that operated on characters instead of
words [15]. When the payload classifier is
actually used after this pre-training, a payload is
converted into a 1500x128 matrix before being
input to the convolutional layers by converting

_ Character Embedding hatrix
Take the -
ASCII-converted

’ \ pavload
‘ PCAP }—»ﬂ Packet |—»

Labelled either "Malicious"
or "Benign”

One zession at a time as this 13
how we'll ultimately classifi ®

Padded eurtailed to
zome max length

Figure 1

Payload Classifier

Convohitional Laver

More Convolution
and Pooling B

\ Pooling Laver
e 00>
/ Softmax Probability
Distribution:
Iz malware or
13 benign

each character into its learned embedding and
appending all of the embeddings onto each other
in the same order as the payload. If payloads are
larger or smaller than 1500 characters, this matrix
iIs curtailed or padded to zeros. They should not be
longer than this by convention according to
Lotfollahi et al., so this should not highly affect
results [10].

The kernels in the convolutional layers each
span four entire character vectors and use rectified
linear unit activation. The four layers have 32, 64,
128, and 128 kernels respectively, and each is
followed by a max pooling layer over four entire
character vectors, except for the last one that
pools over sixteen vectors. The last pooling layer
is then connected to a sixteen node rectified linear
unit layer, which is then connected to a two node
softmax layer. The output of this layer
corresponds to a percentage of confidence that
input payload was malicious or benign.

Building upon this payload classifier, we have
a slightly larger network to actually train and
predict things for sessions of multiple packets
although the payload classifier has to be trained
before this network can be trained. This session
classifier inputs up to 10,000 packets at a time
from the same session, passes all the non-empty
TCP packets through the payload classifier to get
predictions, and then aggregates these predictions
into a malware score by adding all of the
malicious prediction percentages and subtracting
all of the benign prediction percentages. What we
end up with is a single number score in the range
(-10,000, 10,000) that corresponds to how strong
a prediction the the network has on the session as
to whether it is malicious or not with positive
scores meaning malicious, negative scores
meaning benign, and scores near zero either
corresponding to unseen data, low confidence
predictions, or sessions without many packets.
This score, however, is not directly used to
predict; we run the all the scores of the same
sessions on which we trained the payload
classifier through another single perceptron that
learns the decision boundary for malware and
benign. In our results, this perceptron learns a

boundary around zero and does not help more
than a manual cutoff, but it is a convenient
placeholder for possibly combining our payload
classifier with other features extracted from
packets in the future to create an even more robust
predictor.

For our test runs, we predicted sessions that
were larger than 10,000 packets in non-
overlapping increments of 10,000 packets, and we
took the increment that had the highest malware
score and therefore looked the most malicious as
the de facto score for the session because we
assume that if a session has 10,000 packets
anywhere in it that look like malware, it’s
probably malicious. It is possible we could have
gotten better malicious predictions with a sliding
window, over the sessions’ packets, but we expect
this would be prohibitively expensive in practice.
As it was, our system already took around 2.2
minutes to predict on 10,000 packets, which is
slightly slower than Snort’s 1.6 minutes in our
tests.

It is worth noting that this same architecture
could define an anomalous or unsure prediction
zone around the malware score of zero, but we
have not qualitatively analyzed such a zone at this
time.

Baseline: Snort

Our classifier was compared to Snort, the most
popular open source Intrusion Detection System
that classifies traffic based on rules and signatures
and is updated by the SourceFire team monthly
[16]. We set up Snort in Network Intrusion
Detection System Mode with live capture mode
off, and fed it pcaps from our datasets that were
stored in a local directory instead of analyzing
live traffic. We also equipped Snort with a wealth
of additional detection schemes from Emerging
Threats that has over 2,100,000 signature 1Ds, and
Bro’s Team Cymru’s malware hash registry. This
allows us to further emulate commercial firewalls
in practice.

Datasets

As with any machine learning applications, the
datasets used to train and predict are very
important in evaluating the performance of the
application. For malicious traffic pcaps, we pulled
127 distinct samples of malware executables from
an online repository known as Contagio, which
accounted for nearly half a gigabyte in traffic
[17]. We limited the problem space to executable
malware, and sampled the malware families that
we believe are a good representation of the
malicious content rampant on the Internet as of
now. These include: trojan programs, worms, and
exploit kits among others.

For benign traffic pcaps we sampled the ISCX
IDS 2012 benign traffic pcaps created by
Canadian Institute for Cybersecurity of UNB [18].
This is a simulated dataset that is intended to
mimic real-world traffic without the need for
anonymization and is derived from real traffic for
the HTTP, SMTP, SSH, IMAP, POP3, and FTP
protocols. In particular, we took their first day of
general benign traffic, separated it into session
pcaps, took the 2000 largest sessions, and then
randomly selected 150 of these sessions to reduce
our data to just over 800MB from an
overwhelming ~16GB.

In addition, we created our own explicitly
benign executable pcaps by downloading 40
popular pieces of software (~2GB) and
monitoring with wireshark. We made this set in
case it better represented data that a payload
classifier would have a harder time separating
than the general case since the malicious set is
also executables. The softwares that we
downloaded were about 36% .dmg format for
Mac and about 64% .exe for Windows. The types
of software ranged from small tools such as
winzip to IDEs like eclipse. We tried to find
benign versions of the trojan softwares that were
present in Contagio such as bitcoin miners, game
engines, and wordpress plugins. We then ran them
through VirusTotal, which checks each for
malware signatures with multiple anti-virus
softwares to make sure that they were benign.

All of our dataset pcaps were transmitted over
TCP regardless of whether they were benign or
malicious. Any other protocols were ignored after
passing it through either snort or our classifier.
This is ideal since 93% of traffic that goes through
common IDS are TCP [2]. This is also essential
since, if there were a protocol bias that was not
TCP, it would reflect poorly on our classifier.

Evaluation

After initial testing of the percentage of the
number of pcaps from which our classifier
appeared to learn the most, we settled on
randomly selecting 20 malicious pcaps, 10 benign
ISCX pcaps, and 6 benign executable pcaps from
our datasets for the training set for our classifier.
On every run, these pcaps were randomly chosen
and our classifier metrics were only taken from
the test set, which was all of the pcaps from our
datasets that were not used in training. We ran
several tests this way and report the findings of
our best run although we note that many runs did
not work well, which means our network may
need stability improvements.

Furthermore, when training our network, we
first extracted all of the TCP payloads, randomly
dropped as many payloads as we needed to in
order to make the malicious and benign sets even,
and randomly ordered the remaining payloads
such that benign and malicious ones were mixed
together and kernels would not converge
prematurely to weights that only predicted a few
of the packets well.

We evaluated the overall effectiveness of our
classifier and Snort with the F1 score metric as
given in Equation 1 in which we considered
classifying malware correctly as true positives.
Our best classifier’s and Snort’s rates of correct
prediction can be seen in Table 1. Our classifier’s
F1 score was 0.7724 while Snort’s was only
0.6003. This is a very promising result for our
classifier although we note, as shown in Table 1,
that Snort was perfect when predicting benign
traffic and our classifier was not. We expect that
this is intentional on the part of Snort for usability

24T ruePos
2:«TrueP os+F alseNeg+F alseP os

Fl=

Equation 1

ISCX Benign Created Benign Malicious
Predicted - Benign 131 (93.57%) 34 (100%) 36 (33.64%)
Predicted - Malicious |9 (6.43%) 0(0%) 71 (66.36%)
Table 1: CNN results
ISCX Benign Created Benign Malicious
Predicted - Benign 140 (100%) 34 (100%) 55 (51.40%)
Predicted - Malicious 0 (0%) 0(0%) 52 (48.60%)

Table 2: Snort Results

on real-world traffic, so our classifier may require
more work to be usable in the same way.

There did not appear to be any pattern between
the malwares that each system predicted correctly.
However, as can be seen in the appendix, there
was a high discrepancy between the malwares that
were predicted correctly between the two systems.
So, a simple two step classifier where we call a
file malware if either of the systems called it
malware would have correctly predicted over 90%
of the malware in our data set without predicting
the benign files any worse that our classifier did
by itself. This epitomizes the possible usefulness
of our classifier in a system with multiple
classification schemes.

We also clustered the malware scores created
by our classifier for every test pcap in Figure 2,
and while they do not show quite as much
distinction as we might have hoped, there is a
pretty clear line of separation for most of the
pcaps near 0. More sophisticated variations of our
techniques may be able to improve on this
separation.

Conclusions and Future Work

While we know from past work that the
protocols of internet traffic can be differentiated
by similar networks to ours, we believe that our
results show that convolutional neural networks
can make even more nuanced predictions and
identify the differences between things such as
malicious and benign files at a respectable rate.
This is especially convincing in the reasonable

CNN Classifier Result Distribution

6000

B

4000

2000

@
S
g W Malicious
E @ISCX Benign
= N Created Beni
S -2000 " g = &
e ®
v
-4000 L 4
v
®
-6000
Malicious ISCX Benign Created Benign
Average 79.284863 -690.7705348 -2495.582166
SD 636.273883 991.8504629 1757.009488

-8000

Figure 2: CNN Distribution and Statistics

accuracy in Table 1 for the Created Benign and
Malicious datasets. Furthermore, our classifier
outperforms Snort on our realistic dataset as
measured by an F1 score, which implies that it
may be more practical as an NIDS, although it is
not unilaterally better since it predicts more false
negatives.

The most exciting part about this classifier is
that it only really addresses one part of the packets
that are run through it: the payloads. This is
analogous to Deep Packet Inspection, which is
only one part of similar classifiers, so other parts
of the packets like the IP addresses and metadata
could be leveraged yet to make our classifier even
more robust.

Other future work that could be done would be
to devise an integrated IDS with a voting scheme
between Snort and our CNN. This would allow us
integrate the pros and cons of both systems, which
might greatly decrease the false positives and
false negatives of our results. Furthermore, our
classifier currently only supports TCP with IPv4
and further work might include UDP and IPv6,

and our classifier might be extendable to work on
encrypted protocols since it can automatically
build its own features and the similar classifier
constructed by Lotfollahi et al. was able to
classify on encrypted payloads [10].

Acknowledgments

We thank Professor Levin from University of
Maryland CS department for his invaluable
mentorship and guidance on this research. Also,
the dataset kindly provided to us from Mila
Parkour in Vizsec and the researchers at UNB
helped us greatly in evaluating our accuracy rate
of our classifier. Lastly, thanks to all GradSec
classmates who gave us feedback and advice on
the way!

References

[11Y. Ye et al., “Intelligent file scoring system
for malware detection from the gray list,” in
Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery
and data mining. 2009, ACM: Paris, France. p.
1385-1394.

[2] A. Shabtai, D. Potashnik, Y. Fledel, R.
Moskovitch, and Y. Elovici, “Monitoring,
analysis, and filtering system for purifying
network traffic of known and unknown malicious

content.” Security and Communication Networks,
4(8), pp.947-965, 2010.

[3] Z. Wang, “The Applications of Deep Learning
on Traffic Identification.”
https://www.blackhat.com/docs/us-
15/materials/us-15-Wang-The-Applications-Of-
Deep-Learning-On-Traffic-Identification-wp.pdf
[Accessed 12 Dec. 2017], 2017.

[4] S. Sen, O. Spatscheck, D. Wang, “Accurate,
scalable in-network identification of p2p traffic
using application signatures” in Proceedings of
the 13th international conference on World Wide
Web. ACM, 2004: 512-521.

[5] D. Zuev and A.W. Moore, “Traffic
classification using a statistical approach” in
Passive and Active Network Measurement.
Springer Berlin Heidelberg, 2005: 321-324.

[6] N. Idika and A.P. Mathur, “A Survey of
Malware Detection Techniques.” 2007.

[7] D. Arp, M. Spreitzenbarth, M. Hibner, H.
Gascon and K. Rieck, "Drebin: Effective and
Explainable Detection of Android Malware in
Your Pocket"”, Proceedings 2014 Network and
Distributed System Security Symposium, 2014.

[8] V. Paxson, "Bro: a system for detecting
network i

[9] F. Stfasék and S. Garcia, “Detecting malware
even when it is encrypted.” Brucon 2017.ntruders
in real-time", Computer Networks, vol. 31, no.
23-24, pp. 2435-2463, 19909.

[10] M. Lotfollahi, R. Hossein Zade, M. Jafari
Siavoshani and M. Saberian, "Deep Packet: A
Novel Approach For Encrypted Traffic
Classification Using Deep Learning”, ARXIV,
vol. 1709, no. 02656, 2017.

[11] S. Bagui, X. Fang, E. Kalaimannan, S. C.
Bagui, J. Sheehan, Comparison of machine-
learning algorithms for classification of vpn
network traffic flow using time-related features,
Journal of Cyber Security Technology (2017) 1-
19.

[12] J. Saxe, K. Berlin, “eXpose: A Character-
Level Convolutional Neural Network with
Embeddings For Detecting Malicious URLSs, File
Paths and Registry Keys", ARXIV, vol. 1702, no.
08568, 2017.

[13] https://keras.io/
[14] https://www.tensorflow.org/

[15] T. Mikolov, K. Chen, G. Corrado, J. Dean,
“Efficient Estimation of Word Representations in
Vector Space,” ARXIV, vol. 1301, no. 3781,
2013.

[16] https://www.snort.org

[17]
http://contagiodump.blogspot.com/2013/04/collec
tion-of-pcap-files-from-malware.html

[18] http://www.unb.ca/cic/datasets/ids.html

Appendix: Malware Predictions by File Name

Malicious Pcap Name DrI prediction (Snort prediction

8202 _thd_6D2C12085F00LEDAERSCIASIESIFD4DL

AlienspyRAT_7SESDD3SAEFES5E461C4B33CDOCS5ETE

AlienspyRAT_DB46ADCFAES62ETCATSC171IFBERGDFE2-WinXP

AlinaSpark_BE63T1BE8CI0DEEECB7459311373CECDED

BIN_B202_6d2c12085f0018dacb3clab3ebifdddl

BIN_5002_D4EDE5S4BCDA42576FDDFEO3I61608CAA_2013-01-30

BIN_Alurewo_2502edca2B4bdEbfTE82a65123a22f0a6

BIN_Andromeda_B5F308ASEDOADAZDT2D138E038AECCTD_2013-04

BIN_Bitcoinminer_12E717293715939C5196E604551A97DF-2013-05-12

BIN_ChePro_2ASESD3C536DA346849750A4BECES1ZA-1

BIN_Cidox_Muclear-EK_malware-traff-amalysis-blog_2014-08-06

BIMN_CitadelPacked_2012-05

BIN_CitadelUnpacked_2012-05

BIN_Cutwail-Pushdo({l)_582DE032477E039EB1024D84CTIESECL

BIN_Cutwail-Pushdo(2)_582DE032477E039EB1024D84CTIEIECL

BIN_DMSChanger_2011-12

BIN_DN3Watch_protux_4F8A44EF66384CCFABTIT7CEDTADB4ABEE_2012-11

BIN_DarknessDDo5_vEg_F03BcEDcc020607F38Ffb3A36Caci48_2011-01

BIN_Enfal_Lurid_0fblb0E833f723682346041d72ed112f3_2013-01

BIN_GameThief_ECBAOFEB36FIEFS7SEESGD1654C8164C_2013-03

BIN_Gh0st-gif_f2d4076dff760eb52edae555c2dcd525

BIN_Gh0st_variant-v2010_B1D09374006E20FATISB2ETOBFS66C60_2012-08

BIN_Googledocs_macadocs_2012-12

BIN_Gypthoy_3EE49121300384FFICE2EBSALIFDEFZEE

BIN_Hupigon_8F30057AB244EDEES12CDOSFS66EACDT

BIN_IRCbot_c6716a417f82ccedf0f860b735ac0187_2013-04

BIM_IXESHE_OFESDSBOD23T7ESFCDCOFIE5A548254F2-2013-05

BIN_Imaut_823e9bablE8ad8cb30cldadcetT066d

BIN_Kelihos_aka_MNap_0Ofeazadadc31728e54b006ab5aTetafa

BIN_Kuluoz-Asprox_5SFE42AD20CS0AD1AABS1F20B3I21BFE4BE

BIN_LURK_AF4EED4BE44E1D0420CCFICO0TI2F4E4_20120-10

BIN_Lader-diGameoverZeus_12cfelcaal2?31102d79a366d3aa79ed

BIN_LetsGo_yahoosk_b21ba443726385c11802a8ad731771c0_2011-07-19

BIN_Likseput_EO019E37F19040055AB5662563F06BE05_2012-10

BIN_LoadMoney_MailRu_dl_42B801b46068b31b82dac65885a58d%e_2013-04

BIN_MatsnuMBRwiping_1B2D2A4B97CTC2727D571BBFI376F54F

BIN_Mediana_0AE47E3261EADAZDBCE471B2EDFFEOOT_2012-10

BIN_NJRat-BackdoorlV_&fdE68es3037040c54215566852230ab_CNtiananmensquare

BIN_Mettravler_1f26e5f3b44c28b37bocd13283838366

BIN_Mitedrem_508af8c499102ad2ebcla8ifdboefech

BIN_Mocpos_3def6f8d1lb709e61bE3e5a697d64e129

BIN_PUP_Selfinstall_S5f26ded41c7520929ea4f4f7eblabelat

BIN_Plugk_2ff2d518313475a612f055dd863cBasa

BIN_Ponyleader-Zeus_B10333BE747143F3B4622E3ES2TTFFCE

BIN_Powerloader_4437A231DASBD0EEAZZTDDECAB31DAL12_2013-05

BIN_Prosti-Screenblaze_00001ffede2c3218dbSeecfd16b%7a5f

BIN_Reedum_0cadf333848cf01348336a8ceff22daf_2013-03

BIN_RssFeeder_68EESFDA3IT1E4AC4EDADTFCE2ZCO4BACT-2012-06

BIN_Sality_03fa78bd6cT 1d76250e63ab0bSad505f

BIN_Sanny-Daws_33300BE55421867732E05355A2D56670_2012-10

BIN_Scudy_S5c085d004270abbcba?1151e60a9844d1

BIN_SpyEye_2010-02

BIN_5tabunig_F31B797331B36A4E7TAADFDL7IATASAZ_2012-12

BIN_Taidoor_40D7501120638688ACTDS497CCE15462_2012-10

BIN_Taleret.E_5328cfcb4tefliecf7bald21a7adcl2c

BIN_Tapacux_&0AF7SFBOBD2COF33375035609C931CB_winwver_2011-08-23

BIN_Thot_23AABSC1C462F3FDFDDDSE1E1ES63230_2012-12

BIN_Thot_2E1814CCCFOCIBB2CCIZEOADGT1COB5]_2012-12

BIN_Thot_5375FB5EEG76E0FFBEEY 2029DBSABBDS_2012-12

BIN_Thot_AO0SS2D1BC1A4E57141CFASGF7SC04857_2012-12

BIN_Tinba_2012-06

BIN_TrojanPage_86893886C7CBCTI10FT67SFAEFDEDAZD

BIN_Twerket_a27721f3b9566601030daabs8c092c14

BIN_UStealD_2b796f11f1528c7IFEf69180cF74b35d

BIN_Vobfus_634AAB45F5BOBS19B6DEABET0BO94906_2012-12

BIN_Wauchos_fbot_0dE8d7aB074ee36ab26d086T024%0a3ab

BIN_Win.Trojan.Waski_document_234787_pdf.exe_ee29%b606ea?165a88a06c3347c03150

BIN_Wordpress_Mutopy_Symmi_20A6EBF61243B7600DE5FE587236B6AD3-DeepEndR

BIN_Waordpress_Mutopy_Symmi_20AGEBFE124387600D65FE97236B6AD3-ShortRun

BIN_Xpaj_2012-05

BIN_ZeroAccess_31653563E51FSFES446505BEABGELADSD_2012-10

BIN_ZeroAccess_Sirefef_23A35124ABEADGICDE0DB2BEB46ICEBCTA_2013-05

BIN_ZeusGameower_2012-02

BIN_Zeus_bl1551c676a54e9127cdleTea2B3b32cc-2012-04

BIN_Zeus_outbound_1-25050_2014-10-08-phishing-malware-analysis-from-malwr.com

BIN_dirtjumper_2011-10

BIN_fd0ff4352247bbcc2bdes3 7921001499 _Hyteod

BIN_njRAT-Backdoor

BIN_torpigminiloader_011C1CAG030EEDS1CEFC20CD3AAECFAD

BIN_torpigminiloader_C3366B6006ACCIFEDFE7SEAALLATIGRD

BitcoinMiner_FE865C1953024105A2FFDFSFASEBF3ID1D7S

Citadel_3De046E1218FE525805ESDEFDCE05361-2013-04

Darkcomet_DC23ABBASSSTT14B0AECFATESABETERE

EE_Blackholevl 2012-03

EE_Blackholevwl_2012-08

10

EE_Blackholew2_2012-09

EE_CDMN-gate_malw-traf-analysis-blog_2014-05-04-5weet-Orange-EK-traffic

EK_Malware_traffic_analysis_blog_2014-05%-1%-FlashPack-EK-traffic (1)

EE_SmokektlS0{Malwaredontneedcoffes)_2012-0%

EE_Styx+BIN_Simda_Proxyer_Malware_traffic_analysis_blog_2014-03-15-5tyx-EK-traffic

EK_popads_109.236.80.170_2013-08-13

InvestigationExtraction-R5A_Sality

Kelihes_C34DC5CIBBYBIR658C2TSB7337C64B33

Mswab_Yayih_FD1BEODE4SOEZE3E0424B3E35FCIT3IAE_2012-03

Netwire_79%e6ealde833b2443fe033cf0cl eBobe-network

05¥_DocksterTrojan

PassAlert_B4A1368515CeC30ACEFE3A4BCI6BEDEZ-2013-05-13

Pony_BSE7CD42B45FEETOADAFSGEBCASAEZDOD

RTF_Mongall_Dropper_Cve-2012-0158_C6F01ASADTODATASS4D48B0BFTCTEDGS_2013-01

Tijcont_845B0345D5FEOEQAAALGZI4DC214B4E0

TinyZBot_96e372dea573714d34e3594550059b1d7

Teopu_26475c32a33f60ab202 cdcBed3102b383

Toopu_57a20c2%1acd7a75e0274d52a2aab36b

Toopu_f3f087cf7 788a9de3557f782ef288243

Xinmic_8761F25AF1AE2DEFACDOAESFAET484A5

cryptolocker_3CBB128EE211A7CDO0729C159815CB1C

purplehaze

11

