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Abstract— Distributionally Robust Optimal Control (DROC)
is a technique that enables robust control in a stochastic setting
when the true distribution is not known. Traditional DROC
approaches require given ambiguity sets or a KL divergence
bound to represent the distributional uncertainty. These may
not be known a priori and may require hand-crafting. In this
paper, we lift this assumption by introducing a data-driven
technique for estimating the uncertainty and a bound for the
KL divergence. We call this technique D3ROC. To evaluate
the effectiveness of our approach, we consider a navigation
problem for a car-like robot with unknown noise distributions.
The results demonstrate that D3ROC provides robust and
efficient control policies that outperform the iterative Linear
Quadratic Gaussian (iLQG) control. The results also show the
effectiveness of our proposed approach in handling different
noise distributions.

I. INTRODUCTION

The objective of optimal control [1] is to determine
the optimal control inputs and state trajectories for a dy-
namical system that minimize or maximize a pre-defined
objective. Most real-world systems are faced with signif-
icant uncertainties [2] coming from various sources such
as measurement noise, inaccurate dynamics models, and
environmental disturbances. There are two popular control
techniques to address these sources of uncertainty: stochastic
control [3, 4] and robust control [5, 6]. Stochastic control
incorporates probabilistic models of uncertainty into the
control design process. The underlying distribution of the
uncertainty must be known in order for the control design
to be effective. Robust control provides robustness to a wide
range of uncertainties by considering worst-case scenarios.
Both approaches provide practical solutions for controlling
dynamical systems in the presence of uncertainty. However,
both approaches have limitations. For stochastic control,
the probability distribution of uncertainty may not always
be available or may be difficult to determine. For robust
control, considering worst-case scenarios can sometimes lead
to overly conservative control designs that are not necessary
and even sub-optimal.

The limitations of stochastic and robust control methods
have led to the development of Distributionally Robust
Optimal Control (DROC) [7, 8], a rapidly advancing area
in control theory that addresses uncertainty in both the
system model and the process noise. It merges the robustness
properties of Distributionally Robust Optimization (DRO)
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[9, 10] with the predictive capabilities of Model Predictive
Control (MPC) [11, 12]. It can provide control policies
that are robust to uncertain and changing conditions. Un-
like traditional stochastic control methods, DROC does not
assume prior knowledge of the underlying distributions of
the uncertainty. Instead, it assumes there is an ambiguity set
of probability measures P that contain the true distribution,
and this [P should be as small as possible [9].

A common way of modeling the ambiguity set is by as-
suming a reference distribution such that the true distribution
is within a given KL divergence bound of this reference
distribution [7, 13—15]. However, in practical applications,
it may not be possible to obtain these values in advance. In
this paper, we aim to address the following question: Can we
learn the reference distribution and KL divergence bound to
enhance the effectiveness of DROC?

Building on DROC [7], we present Data-Driven Distri-
butionally Robust Optimal Control (D3ROC) that learns the
reference distirbution as well as the KL divergence bound.
To achieve this, we utilize Gaussian Process (GP) regression
[16] to estimate the reference noise distribution, and we
employ k Nearest Neighbor (kNN) [17] to estimate the KL
divergence bound. Here, we consider both stationary and
state-dependent noise distributions.

The numerical results show that D3ROC achieves smaller
mean final distances between the robot and the origin, along
with lower corresponding standard deviations, compared to
iLQG. Furthermore, under D3ROC, the robot tends to avoid
regions with higher noise variance due to its risk-averse
nature. Conversely, the risk-neutral control approach, iLQG,
leads the robot to pass through regions with higher variance.
These findings demonstrate the ability of D3ROC to provide
more robust and efficient control policies compared to iLQG.

II. PROBLEM FORMULATION

Consider the following general nonlinear stochastic sys-
tem:

X v1 = f(x,0) +g (%, u)w(x;, up), (1)

where x;, € X C R” and u; € U C R™ denote the state and
control of the system at step ¢, respectively. f is the dynamics
model of the system, g is a mapping function, w € R¢
is the process noise with unknown distribution. w may be
stationary or vary with states or control inputs.

Even though the true distribution p of the process noise w
is unknown, we assume it is contained in an ambiguity set
P with reference distribution ¢ [13]. The ambiguity set PP is
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constructed by:

P={p:D(pllq) <d} . 2)
where D(:||-) is the KL divergence and d > 0 is the bound.
J is the cost function over a finite horizon n:

n—1

J= th(xt;ut)+lf(xn) , 3)
t=0

where /; is the stage cost, [y is the terminal cost, we consider
linear quadratic regulator:

1 1
l;(X,u) = EXTQIX‘F EuTRtu 5 (4)
1 T
lr(x) = 5X Qsx . 5)

In formulating the DROC problem, we are interested
in finding a control policy that minimizes the worst-case
expected value of the cost function J:

minmaxE,[J] . 6

wel peP ] ©)
According to [7, 13], the above min-max problem over
true distribution p can be converted to the following min-
min problem by taking the expectation over the reference
distribution g:

] ory 4
gggglelg{elog[]Eq(e )]+6}’ )

where 0 is called the risk-sensitivity parameter, and Z is a
non-empty set of positive 0 that gives finite entropic risk
measure.

To solve this DROC problem, knowledge of the reference
distribution ¢ of the noise, and the KL divergence bound d,
are required. In the next section, we show how to compute
q and d in a data-driven fashion when they are unknown.

III. THE D3ROC SOLUTION

In this section, we present D3ROC. The objective of
D3ROC is to first estimate the uncertainty distribution and a
bound for the KL divergence, and then solve the optimization
problem of Eq. 7. D3ROC distinguishes itself from tradi-
tional DROC approaches that rely on given ambiguity sets
[7, 13—15] by utilizing data-driven techniques. In Section III-
A, we address the inner minimization over control inputs u
using Differential Dynamic Programming (DDP) [7, 18, 19].
However, for DDP to be effective, we require the reference
distribution g, which we estimate using observed data. Next,
for the outer minimization over the risk-sensitivity parameter
6, we adopt the cross-entropy method as described in [7].
To apply this method successfully, we estimate the KL diver-
gence bound d. We study two scenarios for the parameters
estimation: (1) stationary noise distribution in Section III-B,
and (2) state-dependent noise distribution in Section III-C.

A. Differential Dynamic Programming

We utilize DDP to handle the inner minimization of Eq.
7, which is equivalent to minimizing %log[Eq(ew)], defined
as Rg(J), also known as the entropic risk measure [7, 20].
We assume g in Eq. 1 as an identity mapping for simplicity.
The process noise w is estimated as a Gaussian with zero
mean and covariance matrix W. We linearly approximate
the system dynamics and quadratically approximate the cost
function in terms of state and control deviations 6x; =

x; — X" and 6u, = u, —u””, where X/ and u*" are the
nominal trajectories.
The linearized model:
0X; 11 = A 0x; +B/Su, +w; | ®)
the stage cost approximation:
- 1
l;(0%;,6u;) = q; +q¢T 0%, +1¢ Su, + ESX;QI(SXI
©))
1
+ §5u,TR,5ut ,
and the terminal cost approximation:
- 1
Lr(6x,) :qn+q25xn+§5XIQn5xn . (10)

Then apply the principle of optimality, the Bellman equa-
tion for solving the optimal value function is:

‘/,(6x,):rgliln{f,(3x,,6u,)+R9 (Vig1(8xi11))} (1D

where Ry is the entropic risk measure.

Suppose the value function is of quadratic form expressed
as:

V;(6x) = %SXTStSX-i-S,TSX—I—St ) (12)

Then,

Vir1(6%i41)

1
= §8XJ+1SZ+15XI+1 +SJ+16X,+1 +S,+]

1
== E(A,5Xt —I—B,5llt —|—W,)Tst+1(A,3X, +Bt5u, + Wt)+

SIT+1 (At5X, =+ B,(sllt +Wt) +St+1 .
(13)

Let z, = A, 0x; +B;6u; +w;, where A, and B; are Jacobian
matrices of the system model. The true distribution of
the noise w is unknown. But we model it as a Gaussian
distribution with zero mean and covariance W, then z, ~

9987

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 29,2024 at 00:40:17 UTC from IEEE Xplore. Restrictions apply.



N (A; 8%, +B,;6u,,W,). Put Eq. 13 into Eq. 11, we have:
Vt(5Xt)

1 1
= rgln{q, +th6Xt —|—l‘tT5u, + E(SX;—QISXZ + Eau;—Rt8ul
uy

1 1
+ 910g{Ewr {exp <0 (2(A[6X; +B[6u; +W[)TS;+]

(A[(SX[ +B[8ut +W[) +S;r+1 (A[(SX[ +B[6ut +W[)

o))}

1 1
= rgln{q, +th6Xt —|—l‘tT5ll, + ESX;‘Q;SXZ + E§“JR;5U[+
uy

1
E(At5xt + B,5u,)TS,+1 (Al6xt + B[(Sut)
+ (At5X, +B18ut)TS[+1

1 1
+ elog{Ezt {exp (6 (ZZ,TS,HZt —|—stT+lz,) )} }
+st+1} )

where ¢q;,q;,1;,Q;,R, are the Taylor expansion coefficients
of the cost function around the nominal trajectory.

The expectation on the right hand side of Eq. 14 can be
calculated using characteristic function of Gaussian distribu-
tion. Then we can minimize over du and get the optimal
control policy:

(14)

6“[ = k[ +K18X[ s

ko=-H'g (15)
K =-H'G, ,
where
M, =W, '—6S,,,
Ht:RH'B,T(I—f— GSt+1M;])St+1Bt ) (16)
G, =B (I+ 9St+1M;l)St+1At ;
g =1 +BtT (I+ GSH—IM;l)SH—l .
The backward recursions are:
S =Q+Al (I+ 6St+11\/rl)st+1At
+K/H/K; +K/G; + G/K, ,
st =q + A7 (I+60S1M; sy
+K/Hk +K]g + Gk, , (17)

1
St =q; +S[+1 — % log(det(l — BW,S,_H))
0 _ 1
+ EStTHMt Y1+ Ek;‘rHtkt +klg ,

for t = n goes backward to 0, with initial conditions s, =
qnsSn = qun = Qn~

After addressing the inner minimization using DDP, the
outer minimization is solved using the cross-entropy method,
following the approach described in [7]. However, for both
DDP and cross-entropy method to be effective, it is required

to estimate the noise reference distribution and the KL
divergence bound.

We will focus on the next sections to address these
requirements. Firstly, we examine the case of a stationary
noise distribution in section III-B. Then, we investigate the
case of a state-dependent noise distribution in section III-C.

B. Stationary Noise Distribution

1) Estimating Reference Distribution: We employ Maxi-
mum likelihood estimation (MLE) for estimating the param-
eters of a probability distribution based on observed data.
Once we have estimated the parameters of g, we can use
them to construct the ambiguity set for the DROC problem.

2) Estimating KL Divergence Bound: We utilize k Nearest
Neighbor (kNN) [17] to estimate the KL divergence bound.
This method is based on the assumption that the KL di-
vergence between two distributions can be estimated from
their samples. Euclidean distance is used to measure the
distance between samples. According to [17], the estimated
KL divergence D(p||q) between distributions p and ¢ can be
written as:

— (18)

A r N Vi M

D(pllq) N;m 5 Tlogy,
where r is the dimension of the data, N is the number of
samples drawn i.i.d from distribution p, M is the number of
samples drawn i.i.d from distribution g. p; is the distance
between i-th element drawn from p and its k-th nearest
neighbor in samples drawn from p except itself, v; is the
distance between i-th element drawn from p and its k-th
nearest neighbor in samples drawn from gq.

Once the reference distribution ¢ is estimated as a Gaus-
sian, M samples can be drawn from g. The KL divergence
bound can then be estimated using KNN estimation with these
samples and N true noise samples.

C. State-Dependent Noise Distribution

1) Estimating Reference Distribution: In cases where the
true distribution p of the noise is non-stationary and varies
with the system’s state, we can learn the reference distribu-
tion g of the noise from observed data, as shown in Algorithm
1. For each training state X; (j =1, 2,---, m), N true noise
samples {w&l), Wg-z), - WEN)} are available. We assume
that the noise of each dimension does not impact other
dimensions for simplicity. Consequently, we can separate
each dimension of the state and its corresponding noise.
Then, we employ MLE to estimate the variance of the
noise for each dimension. For instance, when considering
the x coordinate of the state, we can obtain a set of tuples
{(&1, v1), (%2, v2), -+, (Xm, vm)}, where v denotes the
variance for the x coordinate.

We train a Gaussian Process (GP) estimator [16] for each
dimension of the state to learn the reference distribution.
We use the set {(igl), vgl)), (ig>, vg)), e (iﬁ,;), v,(,?)},

where % denotes the ith dimension of the jth training
0

J
state and v ; denotes the corresponding variance of the
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noise. We use zero mean and squared-exponential kernel
function for GP. The kernel function (-, -) is defined as
k(a,d') = c?exp (— <“;;/>2 ) , where 6 is the signal variance,
[ is the length scale. The hyperparameters signal variance and
length scale are learned by maximizing the log-likelihood of
the training data.

When given a new state x, we use the trained GPs to
predict the variances of the noise for each dimension, denoted
as {V1, D2, ..., ¥}, where r is the number of dimensions.
These predicted variances are then combined into a diagonal
covariance matrix, which represents the reference distribution
q for the given state.

Algorithm 1 Estimation of reference distribution for state-
dependent noise

Input: State x of the system

Output: State-dependent reference distribution ¢(x)

Require: Training data {{(X;, wj)};f’zl}N
1: # Training stage

2: fori=1to r do

3: for j=1tomdo

4 Vo MLE((w, w®, W) b s
the ith dimension of the jth noise

5: end for o o o

6 Getaset {7 v\"), & W) &)}

7: Train a GP to predict variance ¥; for ith dimension

8: end for

9: # Prediction stage

10: for i=1to r do

1: 9+ GP(x®)

12: end for

13: Set W(x) = diag([Vy, ¥a, ...
14: return ¢(x) ~ .4 (0, W(x))

)

2) Estimating KL Divergence Bound: If the true dis-
tribution of the noise is non-stationary and varies with
the system’s state, we need to estimate the joint reference
distribution for each horizon, resulting in a varying KL
divergence bound d for different horizons. The goal is to find
a global maximum d that can bound the ambiguity sets for
all horizons. To achieve this, we first combine n + 1 noise
samples from the training data as a joint vector W(j., ),
where n is the horizon steps. Subsequently we obtain the joint
reference distribution g(y.,; 1) using MLE. Next, we draw M
samples from this joint reference distribution, each sample
being a joint vector of dimension ¢ X (n+ 1), where ¢ is
the dimension of one noise sample. Then we employ kNN
estimation with N true samples of joint noise vectors to get a
KL divergence bound for one entire horizon. We then recede
the horizon, and the joint noise vector becomes W(,.,,2),
allowing us to obtain another d. We repeat this process for
each horizon until we have m —n KL divergence bounds,
where m is the number of noise samples in the observed data.
Finally, we take the maximum of these bounds to obtain the
estimated global maximum bound of the KL divergence, as
outlined in Algorithm 2.

Algorithm 2 Estimation of global maximum KL divergence
bound

Require: Training data {{(X;, w;)}"_, WV, receding horizon
steps n, number of samples M drawn from joint reference

distribution

1: Set diax =0

2: for j=1tom—ndo

3: Combine n noise samples as a joint vector: W(;.;,) =
[Wj, ceey Wj+,,]T

4: Estimate joint reference distribution: ¢;.;,,) =
MLE(W(j:j+n))

5: Draw M samples of joint vector: {W(;. .} ~
4(j:j+n)

6: Obtain kNN estimation of bound with N true joint
noise vectors: dj =kNN({w(;. it ", {W(j.jm 1Y)
if d; > dypac then
Ainax = dj
: end if
10: end for
11: return d,

IV. EXPERIMENTS

To validate D3ROC, we consider a navigation problem
with a standard car-like robot [21], which is a widely used
model due to its simplicity and effectiveness. The state of the
robot is represented by a vector x = [x, y, 6, v], where x and
y are the coordinates of the robot, 0 is the yaw angle which
represents the angle between the orientation of the car and
the x-axis, and v is the velocity. The control inputs for the
robot are the acceleration a and steering angle 6. Our goal is
to design a control policy that brings the robot to the origin
as close as possible while accounting for the unknown noise.
The length of the car-like robot is 0.3 m. We discretize the
system with df = 0.1 s and use horizon step n = 10.

We begin by generating training data through uniform
discretization of the state space that the robot can traverse.
This process results in a set of states {X;, X, -+, X}
For each state X;, we apply a known control signal, which
allows us to obtain the true next state. By subtracting the
noiseless next state generated by the dynamical model, we
obtain the corresponding true state-dependent noise w;. We
repeat this process N times, resulting in the training data

{(x], wj);"ZI}N with m = 1000 and N = 1000.
A. True Noise Distribution Construction

Suppose the true distribution p is a mixture of Gaussians
with £ finite components:

h
p(x) = Zﬂiﬂf(oaw(x)) )

h

Zﬂi:l,

i

19)

where each component is a multivariate normal distribution
with zero mean and covariance matrix dependent on state x:

Wi(x) =diag([;07, 0}, 05, i07)], i=1,2, -, h. (20)
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In the experiments, we consider three different cases of the
true noise distribution p(x) as Gaussian mixtures: (a) two-
component, (b) three-component, and (c¢) four-component.
The formulas of these true distributions are given in the
appendix.!.

Taking the two-component Gaussian mixtures p<h) for
illustration, the heatmap of variances of each component of
p® for the x and y coordinates are shown in Fig. 1. As we
can see, the variances in x, y coordinates are larger in the
region 2.0 <x <3.0 m and 2.0 <y < 3.0 m. The variances
do not change in 6 and v coordinates in the experiments.
However, we note that the proposed approach is capable
of handling cases where the variances may change in all
dimensions of the states.

B. Reference Distribution Estimation

Considering the three different cases of state-dependent
noise described above, we trained a Gaussian process (GP)
for each dimension of the state to model the reference dis-
tribution ¢, as described in Section III-C.1. The GP training
results of predicting the variances of p(®) are shown in Fig. 2
for instance. The black dots represent the variances estimated
using MLE for the x and y coordinates. The line represents
the mean, and the shaded area represents the 95% confidence
interval. As shown in Fig. 2, the estimated variances in the
x and y coordinates are larger in the region 2.0 <x <3.0 m
and 2.0 <y < 3.0 m, which captures the distribution of the
true noise p<b>. In this specific example, the variances do
not change in the 6 and v coordinates. The GP-estimated
variances in the 6 and v coordinates are (b)cg =13¢7*
and (%) sz = 2.2¢73, respectively. Combining the variances
of each dimension into a diagonal covariance matrix allows
us to obtain the state-dependent reference distribution ¢, and
the results verify our proposed approach.

C. KL Divergence Bound Estimation

In the example of state-dependent noise, we estimated
the KL divergence bound d using the kNN method. For
each horizon, we drew M = 100 samples from the estimated
joint reference distribution and used k = 10 for the kNN
estimation. As a result, we obtained KL divergence bound
estimates for three different true noise distributions: d(@ =
5.65 for p@, d®) =7.28 for p®, and d'©) = 6.22 for p'©).

D. Comparison with iLQG

We compared the performance of D3ROC with the risk-
neutral control approach iLQG [22]. The robot’s initial state
was x =5.0 m, y=5.0 m with a yaw angle of —0.75%
and velocity of zero. The objective was to navigate to the
origin under unknown noise. Both control approaches were
executed as a MPC for 22 iterations. To ensure accuracy,
we performed 15 runs for each true noise distribution, and
the resulting paths of the robot under noise p®) are plotted
in Fig. 3. Both control approaches enable the robot to
approach the origin. However, D3ROC outperforms iLQG
with smaller distances to the origin and more compact paths

"https://github.com/ruiiu/DROC_Variance_Formula

as the robot gets closer. The plot also reveals D3ROC’s risk-
averse behavior, leading the robot to navigate around the
region 2.0 <x < 3.0 m and 2.0 <y < 3.0 m to avoid areas
with higher noise variance. In contrast, iLQG results in more
divergent paths, passing through the region 2.0 <x < 3.0 m
and 2.0 <y <3.0 m.

Additionally, we present the mean distance between the
final position of the robot and the origin for multiple runs
under different true noise distributions p in Table I. It is
evident that the mean final distances and their corresponding
standard deviations are smaller under D3ROC compared to
iLQG. This finding further supports the effectiveness of our
proposed data-driven approach, D3ROC, and demonstrates
its ability to successfully handle various true noise distribu-
tions.

\ \ @ 07 rS \
| Distance | iLQG[m] | D3ROC[m] [ iLQG[m] [ D3ROC[m] | iLQG[m] | D3ROC[m] |

Mean 0.37 0.25 0.36 0.17 0.33 0.28
Std 0.14 0.08 0.11 0.09 0.15 0.10

TABLE I: The mean distance between the final position of the robot and the
origin, along with its standard deviation, for multiple runs under iLQG and
D3ROC. The experiments were conducted using three different true noise
distributions.

V. CONCLUSIONS

In conclusion, this paper presents D3ROC, a data-driven
approach that overcomes the limitation of traditional DROC
methods requiring known ambiguity sets for noise distribu-
tion. We evaluate our approach through a navigation problem
for a car-like robot with unknown noise distributions. The
numerical results demonstrate that D3ROC achieves smaller
mean final distances between the robot and the origin, along
with lower corresponding standard deviations, compared to
iLQG. Additionally, the risk-averse behavior of D3ROC
enables the robot to tend to avoid regions with higher
noise variance, whereas iLQG leads to paths passing through
such regions. Furthermore, our approach proves effective in
handling various noise distributions. Overall, D3ROC offers
a promising solution to real-world DROC problems where
noise distribution and KL divergence bound are unknown,
making the DROC framework more practical and applicable.
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