
Data Placement and Replica Selection for Improving
Co-location in Distributed Environments

Ashwin Kumar Kayyoor Amol Deshpande Samir Khuller
{ashwin@cs.umd.edu, amol@cs.umd.edu, samir@cs.umd.edu}

University of Maryland at College Park

ABSTRACT
Increasing need for large-scale data analytics in a number of ap-
plication domains has led to a dramatic rise in the number of dis-
tributed data management systems, both parallel relational databases,
and systems that support alternative frameworks like MapReduce.
There is thus an increasing contention on scarce data center re-
sources like network bandwidth (especially cross-rack bandwidth);
the energy requirements for powering the computing equipment are
also growing dramatically. In this work, we exploit the fact that
most distributed environments need to use replication for fault tol-
erance, and we devise workload-aware replica selection and place-
ment algorithms that attempt to minimize the total resources con-
sumed in a distributed environment. More specifically, we address
the problem of minimizing average query span, i.e., the average
number of machines that are involved in processing of a query
through co-location of related data items, for a given query work-
load; as we illustrate, under reasonable assumptions, this directly
reduces the total amount of resources consumed by the query and
thus the total energy consumed during the query execution. We
model the query workload as a hypergraph over a set of data items
(which could be relation partitions, or file chunks), and formulate
and analyze the problem of replica placement by drawing connec-
tions to several well-studied graph theoretic concepts. We use these
connections to develop a series of algorithms to decide which data
items to replicate, and where to place the replicas. We evaluate our
proposed techniques by building a trace-driven simulation frame-
work and by conducting an extensive performance evaluation. Our
experiments show that careful data placement and replication can
dramatically reduce the average query spans.

1. INTRODUCTION
Massive amounts of data are being generated every day in a va-

riety of domains ranging from scientific applications to social net-
works to retail. The stores of data on which modern businesses rely
are already vast and increasing at an unprecedented pace. Orga-
nizations are capturing data at deeper levels of detail and keeping
more history than they ever have before. Managing all of the data is
thus emerging as one of the key challenges of the new decade. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

deluge of data has led to an increased use of parallel and distributed
data management systems like parallel databases or MapReduce
frameworks like Hadoop to analyze and gain insights from the data.
Complex analysis queries are run on these data management sys-
tems in order to identify interesting trends, make unusual patterns
stand out, or verify hypotheses. In parallel databases, the queries
typically consist of multiple joins, group definitions on multiple
attributes, and complex aggregations. On Hadoop, the tasks have
similar flavor with simplest of map-reduce programs being aggre-
gation tasks that form the basis of analysis queries. There have
also been many attempts to combine the scalability of Hadoop and
declarative querying abilities of relational databases [39, 31].

For fault tolerance, load balancing and availability, these systems
usually keep several copies of each data item (e.g., Hadoop file
system (HDFS) maintains at least 3 copies of each data item by
default [42]). Our goal in this work is to show how to exploit this
inherent replication in these systems to minimize the number of
machines that are involved in executing a query, called the query
span (we use th term query to denote both SQL queries and Hadoop
tasks). There are several motivating reasons for doing this:
Minimize the communication overhead: Query span directly impacts
the total communication that must be performed to execute a query.
This is clearly a concern in distributed setups (e.g., grid systems [38]
or multi-datacenter deployments); however even within a data cen-
ter, communication network is oversubscribed, and especially cross-
rack communication bandwidth can be a bottleneck [23, 10]. HDFS,
for instance, tries to place all replicas of a data item in a single rack
to minimize inter-rack data transfers [42]. Our algorithms can be
used to further guide these decisions and cluster replicas of multi-
ple data items on to a single rack to improve network performance
for queries that access multiple data items, which HDFS currently
ignores. In cloud computing, the total communication directly im-
pacts the total dollar cost of executing the query.
Minimize the total amount of resources consumed: It is well-known
that parallelism comes with significant startup and coordination
overheads, and we typically see sub-linear speedups as a result of
these overheads and data skew [32]. Although the response time of
a query usually decreases in a parallel setting, the total amount of
resources consumed typically increases with increased parallelism.
Reduce the energy footprint: Computing equipment in US costs data
center operators millions of dollars annually for energy, and also
impacts the environment. Energy costs are ever increasing and
hardware costs are decreasing – as a result soon the energy costs
to operate and cool a data center may exceed the cost of the hard-
ware itself. Minimizing the total amount of resources consumed
directly reduces the total energy consumption of the task.
To support these claims and to motivate query span as a key metric

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8

E
x

ec
u
ti

o
n

 T
im

e
(S

ec
s)

Machines

Performance Profile of Analytical Join Queries

TPC-H 1

TPC-H 2

Q-Join

(a)

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8

E
n
er

g
y
 (

Jo
u

le
s)

Machines

Energy Profile of Analytical Join Queries

TPC-H 1

TPC-H 2

Q-Join

(b)

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

E
x

ec
u
ti

o
n

 T
im

e
(S

ec
s)

Machines

Performance Profile of Aggregation Queries

TPC-H 3

TPC-H 4

Q-Sum

(c)

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8

E
n
er

g
y
 (

Jo
u

le
s)

Machines

Energy Profile of Aggregation Queries

TPC-H 3

TPC-H 4

Q-Sum

(d)
Figure 1: Results illustrating the overheads in parallel query processing

to optimize, we conducted a set of experiments analyzing the effect
of query span on the total amount of resources consumed, and the
total energy consumed, under a variety of settings. First setting is
a horizontally partitioned MySQL cluster, where we evaluate a to-
tal four TPC-H template queries. Two of the queries are complex
analytical join queries (TPC-H1, TPC-H2), whereas the other two
are simple aggregation queries on a single table. In the second set-
ting, we implemented our own distributed query processor on the
top of multiple MySQL instances running on a cluster where pred-
icate evaluations are pushed on to the individual nodes and data is
shipped to a single node for perform the final steps. On this setup
we evaluate two queries: a complex join query (Q-Join) and a sim-
ple aggregate query on a single table (Q-Sum). In Figures 1(a) and
1(b), we plot the execution times and the energy consumed as the
number of machines across which the tables are partitioned (and
hence query span) increases. As we can see, the execution times of
the TPC-H queries run on MySQL cluster actually increased with
parallelism, which may be because of nested loop join implementa-
tion in MySQL cluster (a known problem that is being fixed). Our
implementation shows that execution time remains constant, but
in all cases, energy costs increase with query span. In the second
experiment with simpler queries (Figures 1(c) and 1(d)), though
execution times decrease as the query span increases, energy con-
sumption increases in all cases. The energy consumed is computed
using the Itanium server power model calculated by using Man-
tis full-system power modelling technique [16]. We use the dstat
tool to collect various system performance counters such as CPU
utilization, network read and writes, I/O, and memory footprint,
which along with the power model is used to compute the total
energy consumed. From our experiments it is evident that, as the
number of machines involved in processing a query increases, total
resources consumed to process the query also rise.

In this paper, we address the problem of minimizing the average
query span for a query workload through judicious replica selection
(by choosing which data items to replicate and how many times),
and data placement. A recent system, CoHadoop [17], also aims at
co-locating related data items to improve performance of Hadoop;
the algorithms that we develop here can be used to further guide
the data placement decisions in their system. Our techniques work
on an abstract representation of the query workload, and are appli-
cable to both multi-site data warehouses and general purpose data
centers. We assume that a query workload trace is provided that
lists the data items that need to be accessed to answer each query.
The data items could be database relations, parts of database rela-
tions (e.g., tuples or columns), or arbitrary files. We represent such
a workload as a hypergraph, where the nodes are the data items
and each query is translated into a hyperedge over the nodes. The
goal is to store each data item (node in the graph) onto a subset of

machines/sites (also called partitions), obeying the storage capac-
ity requirements for the partitions. Note that the partitions do not
have to be machines, but could instead represent racks or even dat-
acenters. This specifies the layout completely. The cost for each
query is defined to be smallest number of partitions that contain all
the data the query needs. Our goal is to find a layout that minimizes
the average cost over all queries. Our algorithms can optimize for
load or storage constraints, or both.

Our key contributions include formulating and analyzing this
problem, drawing connections to several problems studied in the
graph algorithms literature, and developing efficient algorithms for
data placement. In addition, we examine the special case when each
query accesses at most two data items – in this case the hypergraph
is simply a graph. For this case, we are able to develop theoretical
bounds for special classes of graphs that gives an understanding of
the trade-off between energy cost and storage.

We can use similar techniques to partition large graphs across
a distributed cluster; smart replication of some of the (boundary)
nodes can result in significant savings in the communication cost to
answer queries (e.g., to answer subgraph pattern queries). More re-
cently, Curino et al. [13] also proposed a workload-aware approach
for database partitioning and replication to minimize the number
of sites involved in distributed transactions; our algorithms can be
applied to that problem as well. However, we note that replication
costs become critical in that case. We plan to look into modifying
our algorithms to take into account the replication costs in future
work. Our techniques are also applicable in partition farms such
as MAID [11], PDC [33], or Rabbit [6], that utilize a subset of a
partition array as a workhorse to store popular data so that other
partitions could be turned off or sent to lower energy modes.

Significant work has been done on the converse problem of min-
imizing query response times or latencies. Declustering refers to
the approach of leveraging parallelism in the partition subsystem
by spreading out blocks across different partitions so that multi-
block requests can be executed in parallel. In contrast, we try to
cluster data items together to minimize the number of sites required
to satisfy a complex analytical query.

Minimizing average query spans through replication and data
placement raises two concerns. First, does it adversely affect load
balancing? Focusing simply on minimizing query spans can lead to
a load imbalance across the partitions. However, we don’t believe
this to be a major concern, and we believe total resource consump-
tion should be the key optimization goal. Most analytical work-
loads are typically not latency-sensitive, and we can use temporal
scheduling (by postponing certain queries) to balance loads across
machines. We can also easily modify our algorithms to incorporate
load constraints. A second concern is the cost of replica mainte-
nance. However, most distributed systems do replication for fault
tolerance, and hence we do not add any extra overhead. Secondly,

most systems focused on large-scale analytics do batch inserts, and
the overall cost of inserts is relatively low.

We have also built a trace-driven simulation framework that en-
ables us to systematically compare different algorithms, by auto-
matically generating varying types of query workloads and by cal-
culating the total energy cost of a query trace. We conducted an
extensive experimental evaluation using our framework, and our re-
sults show that our techniques can result in high reduction in query
span compared to baseline or random data placement approaches
that can help minimize distributed overheads.

Outline: We begin with a discussion of closely related work (Sec-
tion 2). We formally define the problem that we address in the
paper and analyze it (Section 3). We present a series of algorithms
to solve the problem (Section 4), and present an extensive perfor-
mance evaluation using a trace-driven simulation framework that
we have built (Section 5).

2. RELATED WORK
Data partitioning and replication plays an increasingly important

role in large scale distributed networks such as content delivery net-
works (CDN), distributed databases and distributed systems such as
peer-to-peer networks. Recent work [46, 14, 3] has shown that ju-
dicious placement of data and replication improves the efficiency of
query processing algorithms. There has been some recent interest
on improving data colocation in large scale processing systems like
Hadoop. Recent work by Eltabakh et al. [17] on CoHadoop is very
close to our work, where they provide an extension for Hadoop
with a lightweight mechanism that allows applications to control
where data is stored. They focus on data colocation to improve the
efficiency of many operations, including indexing, grouping, aggre-
gation, columnar storage, joins, and sessionization. Our techniques
are complimentary to their work. Hadoop++ [14] is another closely
related work, where it exploits data pre-partitioning and colocation.
There is substantial amount of work on replica placement that fo-
cuses on minimization of network latency and bandwidth. Neves
et al. [29] propose a technique for replication in CDN where they
replicate data on to subset of servers to handle requests so that the
traffic cost in the network is minimized. There has been a lot of
work on dynamic/adaptive replica management [43, 34, 35, 22, 36,
45], where replicas are dynamically placed, moved or deleted based
on the read/write access frequencies of the data items again with
the goal of minimizing bandwidth and access latency. Our work
is complimentary to this line of work, in a way that we replicate
the data considering the query workload nature by modelling it as
hypergraph. Extending our approach to track changes in the query
workload and adapt the replication decisions is an interesting direc-
tion for future work that we are planning to pursue.

Graphs have been used as a tool to model various distributed stor-
age problems and to come up with replication strategies to achieve
a specific objective. Du et al. [15] study Quality-of-Service (QoS)-
aware replica placement problem in a general graph model. In
their model, vertices are the servers with various weights represent-
ing node characteristics and edges representing the communication
costs. Other work has modeled network topology as a graph and
developed replication strategies or approximations (replica place-
ment in general graphs is NP-complete) [44]. This is different
from what we are doing in this paper: we model query workload
as a hypergraph whereas these works model network topology as
graph. On the other hand, we assume a uniform network topol-
ogy in that the communication cost between any pair of nodes
is identical; we believe this better approximates the current net-
works. Curino et al. [12] model an OLTP query workload as a

graph, and also use graph partitioning techniques for placement of
the tuples. They however do not develop new partitioning algo-
rithms; our techniques can be used to design better data placement
algorithms for their setting as well.

Our work is different from several other works on data place-
ment [26, 27, 30] where the database query workload is also mod-
eled as a hypergraph and partitioning techniques are used to drive
data placement decisions. Liu et al. [27] propose a novel decluster-
ing technique based on max-cut partitioning of a weighted similar-
ity graph. Aykanat et al. [26] observe that the approach where each
query over a set of relations is represented by a clique over those
relations, does not accurately capture the cost function, and instead
propose directly using the hypergraph representation of the query
workload. Tosun et al. [40, 41] and Ferhatosmanoglu et al. [19]
propose using replication along with declustering for achieving op-
timal parallel I/O for spatial range queries. The goal with all of
that prior work is typically minimization of latencies and query re-
sponse times by spreading out the work over a large number of par-
titions or devices. Under the framework that we consider here, this
is exactly the wrong optimization goal – we would like to cluster
data required for each query on as few partitions as possible.

The problems we study are closely related to several well-studied
problems in graph theory and can be considered generalizations of
those problems. A basic special case of our main problem is the
minimum graph bisection problem (which is NP-Hard), where the
goal is to partition the input graph into two equal sized partitions,
while minimizing the number of edges that are cut [8]. There is
much work on both that problem and its generalization to hyper-
graphs and to k-way partitioning [28, 24, 25]. The work on commu-
nity detection over complex networks [20] has also proposed many
schemes for partitioning graphs to minimize the connections be-
tween partitions; however the resulting partitions there do not have
to be balanced – a critical requirement for us. Another closely re-
lated problem is that of finding dense subgraphs in a graph, where
the goal is to find a group of vertices where the number of edges
in the induced subgraph is maximized [18]. Finally, there is much
work on finding small separators in graphs. Several theoretical re-
sults on known about this problem. We discuss these connections
in more detail later when we describe our proposed algorithms.

3. PROBLEM DEFINITION; ANALYSIS
Next, we formally define the problem that we study, and draw

connections to some closely related prior work on graph algorithms.
We also analyze a special case of the problem formally, and show
an interesting theoretical result.

Problem Definition: Given a set of data items D and a set of par-
titions, our goal is to decide which data items to replicate and how
to place them on the partitions to minimize the average span of
an expected query workload; span of a query is defined to be the
minimum number of partitions that must be accessed to answer
the query. To make the problem more concrete, we assume that
we are given a set of queries over the data items, and our goal is
to minimize the average span over these queries. For simplicity,
we assume that we are given a total of N identical partitions each
with capacity C units, and further that the data items are all unit-
sized (we will relax this assumption later). Clearly, the number of
data items must be smaller than N × C (so that each data item
can be placed on at least one partition). Further, let Ne denote the
minimum number of partitions needed to place the data items (i.e.,
Ne = d|D|/Ce).

The query workload can be represented as a hypergraph, H =
(V,E), where the nodes are the data items and each (hyper)edge

d1

d3

d7

d4

d2

d5

d6

d8

e1

e2

e3

e4

e5

e6

d1
d5

d2
d6

d3
d7

d4
d8

e2

e4

d1
d5
d3

d2
d4
d6

d3
d7
d8

d4
d6
d8

e2

e4

(i)

(ii)

(iii)

Figure 2: (i) Modeling a query workload as a hypergraph – di
denotes the data items, and ei denotes the queries represented
as hyperedges; (ii) A layout w/o replication onto 4 partitions –
the span of two of the hyperedges is also shown; (iii) A layout
with replication – span for both queries reduces by 1.

e ∈ E corresponds to a query in the workload. Figure 2 shows
an illustrative example, where we have 6 queries over 8 data items,
each of which is represented as a hyperedge over the data items.
The figure also shows two layouts of the data items onto 4 partitions
of capacity 3 each, without replication and with replication.

Calculating Span: When there is no replication, calculating the
span of a query is straightforward since each data item is associated
with a single partition. However, if there is replication, the problem
becomes NP-Hard. It is essentially identical to the minimum set
cover problem [21], where we are given a collection of subsets of
a set (in our case, the partitions) and a query subset, and we are
asked to find the minimum number of subsets (partitions) required
to cover the query subset.

As an example, for query e2 in Figure 2, the span in the first lay-
out is 3. However, in the second layout, we have to choose which
of the two copies of d4 to use for the query. Using the first copy (on
second partition) leads to the lowest span of 2. Overall, the average
query span for the first layout is 13

6
, but use of replication in the

second layout reduces this to 8
6

.
We use a standard greedy algorithm for choosing replicas to use

for a query and for calculating the span. For each of the partitions,
we compute the size of its intersection with the query subset. We
choose the partition with the highest intersection size, remove all
items from the query subset that are contained in the partition, and
iterate until there are no items left in the query subset. This simple
greedy algorithm provides the best known approximation to the set
cover problem (log |Q|, where |Q| is the query size).

Hypergraph Partitioning: Without replication, the problem we
defined above is essentially the k-way (balanced) hypergraph par-
titioning problem that has been very well-studied in the literature.
However, the optimization goal of minimizing the average span is
unique to this setting; prior work has typically studied how to min-
imize the number of cut hyperedges instead. Several packages are
available for partitioning very large hypergraphs efficiently [1, 2].
The proposed algorithms are typically heuristics or combinations
of heuristics, and most often the source code is not available. We
use one such package (hMETIS) as the basis of our algorithms.

Finding Dense Subgraphs of a specified size: Given a set of nodes
S in a graph, the density of the subgraph induced by S is defined
to be the ratio of the number of edges in the induced subgraph and
|S|. The dense subgraph problem is to find the densest subgraph of

a given size. To understand the connection to the dense subgraph
problem, consider a scenario where we have exactly one “extra”
partition for replicating the data items (i.e., Ne = N − 1). Further,
assume that each query refers to exactly two data items, i.e., the
hypergraph H is just a graph. One approach would then be to first
partition the data items into N − 1 partitions without replication,
and then try to use this extra partition optimally. To do this, we can
construct a residual graph, which contains all edges that were cut
in this partitioning. The span of each of the queries correspond-
ing to these edges is exactly 2. Now, we find the subgraph of size
C such that the number of induced edges (among the nodes of the
subgraph) is maximized, and we place these data items on the extra
partition. The span of the queries corresponding to these edges are
all reduced from 2 to 1, and hence this is an optimal way to utilize
the extra partition. We can generalize this intuition to hypergraphs
and this forms the basis of one of our algorithms.

Unfortunately, the problem of finding the most dense subgraph
of a specified size is NP-Hard (with no good worst case approxi-
mation guarantees), so we have to resort to heuristics. One such
heuristic that we adapt in our work is as follows: recursively re-
move the lowest degree node from the residual graph (and all its
incident edges) till the size of the residual graph is exactly C. This
heuristic has been analysed by Asahiro et al. [7] who find that this
simple greedy algorithm can solve this problem with approxima-
tion ratio of approximately 2(|V |

C
− 1) (when C ≤ |V |/3).

Sublinear Separators in Graphs: Consider the special case where
H is a graph, and further assume that there are only 2 partitions
(i.e., N = 2). Further, lets say that the graph has a small sepa-
rator, i.e., a set of nodes whose deletion results in two connected
components of size at most n/2. In that case, we can replicate the
separator nodes (assuming there is enough redundancy) and thus
guarantee that each query has span exactly 1. The key here is the
existence of small separators of bounded sizes. Such separators are
known to exist for many classes of graphs, e.g., for any family of
graphs that excludes a minor [4].

A separator theorem is usually of the form that, any n-vertex
graph can be partitioned into two sets A, B, such that |A ∩ B| =
c
√
n for some constant c, |A−B| < 2n/3, |B −A| < 2n/3, and

there are no edges from a node in A−B to a node in B −A. This
directly suggests an algorithm that recursively applies the separator
theorem to find a partitioning of the graph into as many pieces as
required, replicating the separator nodes to minimize the average
span. Such an algorithm is unlikely to be feasible in practice, but
may be used to obtain theoretical bounds or approximation algo-
rithms. For example, we prove that:

THEOREM 1. Let G be a graph with n nodes that excludes
a minor of constant size. Further, let Ne denote the number of
partitions minimally required to hold the nodes of G (i.e., Ne =
dn/Ce). Then, asymptotically,N1.73

e partitions are enough to par-
tition the nodes ofG with replication so that each edge is contained
completely in at least one partition.

Proof: The proof relies on the following theorem by Alon et al. [4]:

THEOREM 2. Let G be a graph with n nodes that excludes a
fixed minor with h nodes. Then we can always find a separation
(A,B) such that |A ∩B| ≤ h

3
2 n

1
2 , |A−B|, |B −A| ≤ 2

3
n.

Consider a recursive partitioning of G using this theorem. We
first find a separation of G into A and B. Since A and B are sub-
graphs of G, they also exclude the same minor. Hence we can
further partition A and B into two (overlapping) partitions each.
Now, both |A| and |B| are ≤ 2

3
n+ h

3
2 n

1
2 . For large n, the second

term is dominated by εn, for any ε > 0. We choose some such
ε = 1/300. Then, we can write: |A|, |B| ≤ (2

3
+ ε)n = 0.67n for

large enough n.
Now we continue recursively for l steps getting us 2l subgraphs

of the original graph G, such that each of the subgraphs fits in one
partition. Note that, by construction, every edge is contained in
at least one of these subgraphs; thus 2l partitions are sufficient for
data placement as required. Since the partition capacities areO(n),
we can use the above formula to compute l. We need: 0.67ln <
C = n/Ne. Solving for l, we get: l > log2(N

1.73
e). Hence, the

number of partitions needed to partition G with replication so that
each edge is contained in at least one partition is less than N1.73

e .
Although the bound looks strong, note that the above class of

graphs can have at most O(n) edges (i.e., these types of graphs are
typically sparse). Proving similar bounds for dense graphs would
be much harder and is an interesting future direction.

For general graphs, in Appendix A, we show that:

THEOREM 3. If the optimal solution uses βNe partitions to
place the data items so that each edge is contained in at least one
partition, then either we can get an approximation with factor 2

2−α
for 0 ≤ α ≤ 1 using Ne partitions, or a placement using CNeβ

2α
partitions with span 1 for each edge.

4. DATA PLACEMENT ALGORITHMS
In this section, we present several algorithms for data placement

with replication, with the goal to minimize the average query span.
Instead of starting from scratch, we chose to base our algorithms on
existing hypergraph partitioning packages. As we discussed in the
previous sections, the problem of balanced and unbalanced hyper-
graph partitioning has received a tremendous amount of attention
in various communities, especially the VLSI community. Several
very good packages are freely available for solving large partition-
ing problems [1, 24, 2, 9]. We use a hypergraph partitioning al-
gorithm (called HPA) as a blackbox in our algorithms, and focus
on replicating data items appropriately to reduce the average query
span. An HPA algorithm typically tries to find a balanced partition-
ing (i.e., all partitions are of approximately equal size) that mini-
mizes some optimization goal. Usually, allowing for unbalanced
partitions results in better partitioning. In the algorithm descrip-
tions below, we assume that the HPA algorithm can return an ex-
actly balanced partition, where all partitions are of equal size, if
needed.

Following the discussion in the previous section, we develop four
classes of algorithms:
• Iterative HPA (IHPA): Here we repeatedly use HPA until all

the extra space is utilized.

• Dense Subgraph-based (DS): Here we use a dense subgraph
finding algorithm to utilize the redundancy.

• Pre-replication (PR): Here we attempt to identify a set of nodes
to replicate a priori, modify the input graph by replicating those
nodes, and then run HPA to get a final placement.

• Local Move-based (LM): Starting with a partition returned by
HPA, we improve it by replicating a small group of data items
at a time.

As expected the space of different variants of the above algorithms
is very large. We experimented with many such variants in our
work. We begin with a brief listing of some of the key subroutines
that we use in the pseudocodes. We then describe a representative
set of algorithms that we use in our performance evaluation.

4.1 Preliminaries; Subroutines
The inputs to the data placement algorithm are: (1) the hyper-

graph, H(V,E), with vertex set V and (hyper)edge set E that
captures the query workload, and (2) the number of partitions, N
and (3) the capacity of each partition C. We use Ne to denote the
minimum number of partitions needed to partition the hypergraph
(Ne ≤ N).

Our algorithms use a hypergraph partitioning algorithm (HPA)
as a blackbox. HPA takes as input the hypergraph to be partitioned,
the number of partitions, and an unbalance factor (UBfactor). The
unbalance factor is set so that HPA has the maximum freedom, but
the number of nodes placed in any partition does not exceed C.
For instance, if |V | = Ne×C and if HPA is asked to partition into
Ne partitions, then the unbalance factor is set to be the minimum.
However, if HPA is called with N ′ > Ne partitions, then we ap-
propriately set the unbalance factor to the maximum possible. The
formula we use in our experiments to set unbalance factor is:

UBfactor = 100∗
partitionCapacity ∗ noPartitions− totalItems

totalItems ∗ noPartitions

We modify the output of HPA slightly to ensure that the partition
capacity constraints are not violated. This is done as follows: if
there is a partition that has higher than maximum number of nodes,
we move a small group of nodes to another partition with fewer
than maximum number of nodes. We use one of our algorithms
developed below (LMBR) for this purpose.

In the pseudocodes shown, apart from HPA, we also assume ex-
istence of the following subroutines:
• getSpanningPartitions(G, e): Let the current placement (dur-

ing the course of the algorithm) be G = {G1, · · · , GN} where
G1, · · · , Gn denote the subgraphs of G assigned to the different
partitions and may not be disjoint (i.e., same node may be con-
tained in two or more partitions because of replication). Given
a hyperedge e, this procedure finds a minimal subset of the par-
titions MDe ⊆ G, such that every node in e is contained in at
least one partition in MDe. We use the greedy Set Cover algo-
rithm for this purpose. We start with the partitionGi that has the
maximum overlap with e, and include it in MDe. We then re-
move all the nodes in e that are contained in Gi (i.e., “covered”
by Gi) and repeat till all nodes are covered.

• getQuerySpan(G, e): Given a current placement {G1, · · · , GN}
and a hyperedge e, this procedure finds the span of the hyper-
edge e. We use the same algorithm as above, but return |MDe|
instead of MDe.

• getAccessedItems(G, e, g ∈ G): Given a current placement
G = {G1, · · · , GN}, a hyperedge e and a partition g ∈ G,
this returns the set of items that the query corresponding to e
would access from partition g, as computed by the greedy Set
Cover algorithm. This may be empty even if e ∩ g 6= φ.

• pruneHypergraphBySpan(G,H,minSpan): Given a current
placement G and a value of minSpan, this routine removes all
hyperedges fromH with span less than or equal to minSpan.

• getKDensestNodes(H,K): Given a hypergraph H, this proce-
dure returns a dense subgraph containing at nodes having total
weight of atmost K. We use a greedy algorithm for this pur-
pose: we find the lowest degree node and remove that node and
all edges incident on it; if the graph still has nodes having total
weight more thanK, we repeat the process by finding the lowest
degree node in the new graph.

• pruneHypergraphToSize(H,K): Given a current placement
G and a value of K, this routine uses the same algorithm as

for getKDensestNodes to find a (dense) hypergraph over nodes
having total weight of K.

• totalWeight(V , Wv): Given a set of vertices V and weight vec-
tor of vertices Wv, v ∈ V , this routine returns the total weight
of vertices.

We note that, because of the modularized way our framework is
designed, we can easily use different, more efficient algorithms for
solving these subproblems.

4.2 Iterative HPA (IHPA)
Here, we start by using HPA to get a partitioning of the data items

into exactlyNe partitions (recall thatNe is the minimum number of
partitions needed to store the data items). We then prune the orig-
inal hypergraphH(V,E) to get a residual hypergraphH

′
(V

′
, E

′
)

as follows: we remove all hyperedges that are completely contained
in a single partition (i.e., hyperedges with span 1), and we then re-
move all the data items that are not contained in any hyperedge.
If the number of nodes in the H′ is less than (N − Ne)C (i.e., if
the data items fit in the remaining empty partitions), we apply HPA
to obtain a balanced partitioning of H′ and place the partitions on
the remaining partitions. This process is repeated if there are still
empty partitions.

If the number of nodes inH′ is larger than the remaining capac-
ity, we prune the graph further by removing the hyperedges with
the lowest span one at a time (these hyperedges are likely to see
the least improvement by replication) and the data items that now
have 0 degree, until the number of nodes inH′ becomes sufficiently
low; then we apply HPA to obtain a balanced partitioning of H′
and place the partitions on the remaining partitions. If there are
still empty partitions, we repeat the process by reconstructing a
new residual graph. Algorithm 1 depicts the pseudocode for this
technique.

Algorithm 1 Iterative HPA (IHPA)
Require: H(V,E), N,C
1: Run HPA to get an initial partitioning into Ne partitions: G =
{G1, G2, . . . , GNe};

2: edgeCost = avgDataItemsPerQuery(H);
3: while edgeCost 6= 0 and |G| 6= N do
4: H′

(V ′, E′) = pruneHypergraphBySpan(G,H, edgeCost);

5: Ncur =
totalWeight(V

′
,Wv′)

C
;

6: if |G|+Ncur ≤ N and |H′ | 6= 0 then
7: G = G ∪ HPA(H′

, Ncur);
8: else if |G|+Ncur > N then
9: G = G ∪ HPA(H′

, N − |G|);
10: else
11: decrement edgeCost by 1;
12: end if
13: end while
14: return final partitions G1, G2, · · · , GN

4.3 Dense Subgraph-based (DS)
This algorithm directly follows from the discussion in the pre-

vious section. As above, we use HPA to get an initial partitioning.
We then fill the remainingN−Ne partitions one at a time, by iden-
tifying a dense subgraph of the residual hypergraph. This is done
by removing the lowest degree nodes from H′ until the number of
nodes in it reaches C (the partition capacity). These data items are
then placed on one of the remaining partitions, and the procedure
is repeated until all partitions are utilized. Pseudocode is shown in
Algorithm 2.

Algorithm 2 Dense Subgraph-based (DS)
Require: H(V,E), N,C
1: Run HPA to get an initial partitioning into Ne partitions: G =
{G1, G2, . . . , GNe};

2: H′
= H;

3: while |G| 6= N do
4: H′

= pruneHypergraphBySpan(G,H, 1);
5: if |H′| = 0 then
6: break;
7: end if
8: denseNodes = getKDensestNodes(H′

, C);
9: Add a partition containing denseNodes to G;

10: end while
11: return final partitions G1, G2, · · · , GN

4.4 Pre-Replication-based Algorithm (PRA)
This algorithm is based on the idea of identifying small separa-

tors and replicating them. However, we do not directly adapt the
recursive algorithm described in Section 3 for two reasons. First,
since we have a fixed space budget for replication, we must some-
how distribute this budget to the various stages and it is unclear
how to do that effectively. More importantly, the basic algorithm
of bisecting a graph and then recursing is not considered a good
approach for achieving good partitioning [37, 25].

We instead propose the following algorithm. We start with a
partitioning returned by HPA, and identify “important” nodes such
that by replicating these nodes, the average query span would be
reduced the most. Then, we create a new hypergraph by replicating
these nodes (until we have enough nodes to fill all the partitions),
and run HPA once again to attain a final partitioning. However,
neither of these steps is straightforward.

Identifying Important Nodes: The goal is to decide which nodes
will offer the most benefit if replicated. We start with a partitioning
obtained using HPA, and then analyze the partitions to decide this.
We describe the intuition first. Consider a node a that belongs to
some partition Gi. Now count the number of those hyperedges
that contain a but do not contain any other node in Gi; we denote
this number by scorea. If this number is high, then the node is a
good candidate for replication since replicating the node is likely to
reduce the query spans for several queries. We use the partitioning
returned by HPA to rank all the nodes in the decreasing order by
this count, and then process the nodes one at a time.

Replicating Important Nodes: Let d be the node with the high-
est value of scored among all nodes. We now have to decide how
many copies of d to create, and more importantly, which copies
to assign to which hyperedge. Figure 3(ii) illustrates the problems
with an arbitrary assignment. Here we replicate the node d to get
one more copy d′, and then we assign these two copies to the hyper-
edges e1, e2, e3, e4 as shown (i.e., we modify some of the hyper-
edges to remove d and add d′ instead). However, the assignment
shown is not a good one for a somewhat subtle reason. Since e1
and e3 (which are assigned the original d) do not share any other
nodes, it is likely that they will span different sets of partitions,
and one of them is likely to still pay a penalty for node d. On the
other hand, the assignment shown in Figure 3(iii) is better because
here the copies are assigned in a way that would reduce the average
query span.

We formalize this intuition in the following algorithm. For node
d, let Ed = {ed1 , ed2 , · · · , edk} denote the set of hyperedges that
contain d. For hyperedge edi , let Gdi denote the set of partitions
that edi spans. We then identify a set of partitions, S, such that each
of Gdi contains at least one partition from this set (i.e., S ∩ Gdi 6=

Algorithm 3 Pre-replication-based Algorithm (PRA)
Require: H(V,E), N,C
1: Run HPA to get an initial partitioning into Ne partitions: G =
{G1, G2, . . . , GNe};

2: for v ∈ V do
3: let v be contained in partition Gv ;
4: compute scorev = |{e ∈ E | e ∩Gv = {v}}|;
5: end for
6: Hr = H;
7: for v ∈ V in decreasing order by scorev do
8: Ev = {e ∈ E | v ∈ e};
9: Gv = {getSpanningPartitions(G, e) | e ∈ Ev};

10: S = getHittingSet(Gv);
11: for g ∈ S do
12: copyg = makeNewCopy(v);
13: for e ∈ Ev s.t. g ∈getSpanningPartitions(G, e) do
14: e = e− {v}+ {copyg};
15: end for
16: end for
17: end for
18: G = HPA(Hr, N);
19: return final partitions G1, · · · , GN

d

e1 e2

e3

e4

d

e1 e2

e3

e4

d'

d

e1 e2

e3

e4

d'

(i) (ii) (iii)

Figure 3: When replicating a node, distribution of the copies to
the hyperedges must be done carefully. Distribute the replica
copies such that it results in entanglement of the incident hy-
peredges.

φ). Such a set is called a “hitting set”. We then replicate d to make
a total of |S| copies. Finally, we assign the copies to the hyperedges
according to the hitting set, i.e., we uniquely associate the copies
of d with the members of S, and for a hyperedge edi , we assign it
a copy such that the associated element from S is contained in Gdi
(if there are multiple such elements, we choose one arbitrarily).

The problem of finding the smallest hitting set is NP-Hard. We
use a simple greedy heuristic. We find the partition that is common
to the maximum number of sets Gdi , include it in the hitting set,
remove all sets that contain it, and repeat. Algorithm 3 depicts the
pseudocode for this technique.

4.5 Local Move Based Replication (LMBR)
Finally, we consider algorithms based on local greedy decisions

about what to replicate, starting with a partitioning returned by
HPA. For simplicity and efficiency, we chose to employ moves in-
volving two partitions. More specifically, at each step, we copy a
small group of data items from one partition to another. The de-
cisions are made greedily by finding the move that results in the
highest decrease in the average query span (“benefit”) per data item
copied (“cost”). For this purpose, at all times, we maintain a prior-
ity queue containing the best moves from partitioni to partitionj ,
for all i 6= j. For two partitions partitioni, partitionj , the best
group of data items to be copied from partitioni to partitionj
is calculated as follows. Let Eij = {eij1 , · · · , eijl} denote the
hyperedges that contain data items from both the partitions. We
construct a hypergraph Hi→j on the data items of partitioni as
follows: for every edge eijk , we add a hyperedge to Hi→j on the
data items common to eijk and partitioni. Figure 4 illustrates this

d1
d2
d3
d4
d5
d6

d7
d8
d9

d10

disk1 disk2

d1

d3
d4

d6

e'1

d5

e'2 e'3

e'6

e'4

e'5

H1➔2

Hyperedges spanning
both disk1 and disk2:
 e1 = {d1, d3, d7, d8, ..}
 e2 = {d1, d4, d5, d9, ..}
 e3 = {d5, d8, ..}
 e4 = {d4, d6, d7, d8, ..}
 e5 = {d3, d4, d6, d9, ..}
 e6 = {d6, d9, d10, ..}

Figure 4: Constructing H1→2: e.g., corresponding to hyper-
edge e1 that spans both partitions, we have a hyperedge e′1 over
d1 and d3.

process with an example.
Now, if we were to copy a group of data itemsX from partitioni

to partitionj , the resulting decrease in total span (across all edges)
is exactly the number of hyperedges in Hi→j that are completely
contained in X . Thus, the problem of finding the best move from
partitioni to partitionj is similar to the problem of finding a
dense subgraph, with the main difference being that, we want to
minimize the cost/benefit ratio and not maximize the benefit alone.
Hence, we modify the algorithm for finding dense subgraph as fol-
lows. We first compute the cost/benefit ratio for the entire group
of nodes in Hi→j . The cost is set to∞ if the number of nodes to
be copied is more than the empty space in partitionj . We then
remove the lowest degree node from Hi→j (and any incident hy-
peredges), and again compute the cost/benefit ratio. We pick the
group of items that results in the lowest cost/benefit ratio.

After finding the best moves for every pair of partitions, we
choose the overall best move, and copy the data items accordingly.
We then recompute the best moves for those pairs which were af-
fected by this move (i.e., the pairs containing the destination parti-
tion), and recurse until all the partitions are full.

Improved LMBR: Although the above looks like a reasonable al-
gorithm, it did not perform very well in our first set of experiments.
As described above, the algorithm has a serious flaw. Going back
to the example in Figure 4, say we chose to copy data item d6 from
partition1 to partition2. In the next step, the same move would
still rank the highest. This is because the construction of hyper-
graph H1→2 is oblivious to the fact that d6 is also now present in
partition2. Further, it is also possible that, because of replication,
neither of the partitions is actually accessed at all when executing
the queries corresponding to e4, e5 or e6.

To handle these two issues, during the execution of the algo-
rithm, we maintain the exact list of partitions that would be acti-
vated for each query; this is calculated using the Set Cover algo-
rithm described in Section 3. Now when we consider whether to
copy a group of items from partitioni to partitionj , we make
sure that the benefit reflects the actual query span reduction given
this mapping of queries to partitions. Pseudocodes for this algo-
rithm is give in Algorithm 4 and 5.

4.6 3-Way Replication Algorithms
As we have already discussed, many large-scale data manage-

ment systems provide default 3-way replication. Here we briefly
discuss how the algorithms described above can be modified to han-
dle 3-way replication.

PRA-Based 3-Way Replication: We identify PRA the most suit-
able algorithm to do this effectively, and modify PRA as follows.

Algorithm 4 Improved LMBR
Require: H(V,E), N,C
1: Run HPA to get initial partitions G = {G1, G2, . . . , GN} into N

partitions;
2: Compute the set cover MDe for each query e;
3: Initialize PQ (priority queue) to empty;
4: for g = G1 to GN do
5: for g′ = G1 to GN , g 6= g′ do
6: PQ.insert(g → g′, maxGain(G, g, g′));
7: end for
8: end for
9: while all partitions are not full do

10: (gsrc → gdest) = PQ.bestMove();
11: copy appropriate items from gsrc to gdest;
12: for g = G1 to GN , g 6= gdest do
13: PQ.update(g → gdest, maxGain(G, g, gdest));
14: PQ.update(gdest → g, maxGain(G, gdest, g));
15: end for
16: end while
17: return final partitions G1, · · · , GN ;

Algorithm 5 Improved LMBR maxGain Method
Require: G = {G1, · · · , GN},H(V,E), Gsrc ∈ G, Gdest ∈ G
1: Esrc = {e ∈ E | getAccessedItems(G, e, Gsrc) 6= φ};
2: Edest = {e ∈ E | getAccessedItems(G, e, Gdest) 6= φ};
3: E = Esrc ∩ Edest;
4: if |E| 6= 0 then
5: V ′ = ∪e∈E getAccessedItems(G, e, Gsrc);
6: E′ = {getAccessedItems(G, e, Gsrc)|e ∈ E};
7: create hypergraphH′(V ′, E′);
8: Cdest = C − |Gdest|;
9: if Cdest 6= 0 then

10: H′ = pruneHypergraphToSize(H′, Cdest);
11: while |H′| > 0 do
12: compute gain = |E′|/|V ′|
13: remove lowest degree node from H′ and incident edges;
14: end while
15: end if
16: end if
17: return the best value of gain found in the process and the correspond-

ing V ′;

Because we are interested in replicating all the nodes 3-way, we
eliminate the step of finding important nodes from PRA and we
replicate each node 3-way by using our “hitting set“ technique to
decide which copy must be shared with what hyperedges. PRA ba-
sically aims to separate the incident hyperedges in the hypergraph
by distributing the copies of node d smartly to incident hyperedges.

Simple Distribution Algorithm: In this algorithm, for each node
d in the hypergraph we find the set of incident hyperedges Ed. We
assign 3 copies of d among |Ed| edges randomly, by assigning ev-
ery |Ed|

3
hyperedges single copy of d. Only difference between this

algorithm and PRA based 3-way replication algorithm is that PRA
based algorithm makes best effort to distribute the copies of node d
among incident hyperedges Ed.

IHPA-Based Algorithm: In IHPA for 3-way replication we run
HPA to get partitioning without replication. We remove all the hy-
peredges with span 1 from the input graph, and run HPA again on
the residual graph to get additional partitions. We repeat this pro-
cess one more time to replicate each node exactly 3 times.

4.7 Discussion
We presented four heuristics for data placement with replication.

There are clearly many other variations of these algorithms, some
of which may work better for some inputs, that can be implemented

quickly and efficiently using our framework and the core operations
that it supports (e.g., finding dense subgraphs). In practice, taking
the best of the solutions produced by running several of these algo-
rithms would guarantee good data placements.

Finally, while describing the algorithms, we assumed a homo-
geneous setup where all partitions are identical and all data items
have equal size. We have also extended the algorithms to the case
of heterogeneous data items. The hMETIS package that we use
and also other hypergraph partitioning packages, allow the nodes
to have weights. For heterogeneous case the dense subgraph algo-
rithm is modified to account for the weights, by removing the node
with the lowest value of degree till we have nodes having total spec-
ified weight (for both DS and LMBR). Similarly, PRA is modified
by allowing the replication in the original hypergraph such that to-
tal weight of replicated nodes is no greater than the sum of all extra
available partition capacities. We omit the full details due to lack
of space.

5. EXPERIMENTAL EVALUATION
We are building a trace-driven simulator to experiment with dif-

ferent data placement and scheduling policies. The simulator in-
stantiates a number of partitions as needed by the experimental
setup, uses a data placement algorithm for distributing the data
among the partitions, and replays a query trace against it to measure
the query span profiles.

We conducted an extensive experimental study to evaluate our
algorithms, using several real and synthetic datasets. Specifically,
we used the following three datasets:
• Random: Instead of generating a query workload completely

randomly, we use a different approach to better understand the
structure of the problem. We first generate a random data item
graph of a specified density (edges to nodes ratio). We then
randomly generate queries such that the data items in the query
form a connected subgraph in the data item graph. For low den-
sity data item graphs, this induces significant structure in the
query workload that good data placement algorithms can exploit
for better performance. Figure 5(a) shows an example data ob-
ject graph where the numbers indicate the data item sizes (in
MB). Figure 5(b) shows several queries that may be generated
using this data item graph – each of the queries forms a con-
nected subgraph in the data item graph.

• Snowflake: This is a special case of the above where the data
item graph is a tree. This workload attempts to mimic a stan-
dard SQL query workload. An example data item graph corre-
sponding to the Snowflake dataset is shown in Figure 5(c). Here
the large squares indicate the first-level relations, and the small
squares indicate the second-level relations. We treat each col-
umn of each relation as a separate data item. An SQL query
over such a schema that does not contain a Cartesian product
corresponds to a connected subgraph in this graph.

• ISPD98 Benchmark Data Sets: In addition to the above synthetic
datasets, we tested our algorithms on standard ISPD98 bench-
marks [5]. ISPD98 circuit benchmark suite contains 18 circuits
ranging from 12,752 to about 210,000 nodes. Hypergraph den-
sity (hyperedges to nodes ratio) in all the ISPD98 circuit bench-
marks is close to 1, i.e., these graphs are quite sparse. We show
results for the first 10 circuit datasets, that contain 12,752 to
69,429 nodes.

We compare the performance of six algorithms: (1) Random, where
the data is replicated and distributed randomly, (2) HPA, the base-
line hypergraph partitioning algorithm, (3-6) the four algorithms

10

78

37

19

7

1144

19

31

46
98

57

46

31

169
6

98

10

169

78

(a)

q1

q2

q3

q4

(b) (c)

Figure 5: (a) An example data item graph; (b) Queries q1, q2, q3, q4 are generated by choosing connected subgraphs of the data item
graph; (c) The data item graph corresponding to a Snowflake schema.

hMETIS (HPA) Parameter Values
Parameters value
noPartitions Varies
UBfactor 1 for almost balanced partitioning, else

varies
Nruns 50
CType 2
RType 1
V Cycle 1
Reconst 1
dbglvl 0

Table 1: HPA Parameter Values

that we propose, IHPA, PRA, DS, and LMBR (Section 4). We use
the hMETIS hypergraph partitioning algorithm [24, 1] as our HPA
algorithm. For reproducibility, we list the values of the remain-
ing hMETIS parameters in Table 1. The experiments were run on
a Intel Core2 Duo CPU 2.10GHz, 4GB RAM, Windows PC run-
ning Windows 7. All plotted numbers (except the numbers for the
ISPD98 benchmark) are averages over 10 random runs.

The key parameters of the dataset that we vary are: (1) |D|, the
number of data items, (2-3) minQuerySize and maxQuerySize, the
bounds on the query sizes that are generated, (4) NQ, the number of
queries, (5) C, the partition capacity, (6) numPartitions (NPar), the
number of partitions, and (7) density of the data item graph (defined
to be the ratio of the number of edges to the number of nodes). The
default values were: |D| = 1000, minQuerySize = 3, maxQuerySize
= 11, NQ = 4000, C = 50, NPar = 40, and density = 20.

In several of the plots, we also show the average number of data
items per query, denoted ADI.

5.1 Random Dataset
We begin with showing the results for the Random dataset with

homogeneous data items.

Increasing Number of Partitions (ND): First, we run experiments
with increasing the number of partitions. With the default parame-
ters, a minimum of 20 partitions are needed to store the data items.
We increase the number of partitions from 20 to 45, and compute
the average query spans, and average execution times, for the six
algorithms over 10 runs. Figures 6(a), and 6(b) show the results of
the experiment. HPA does not do replication, and hence the corre-
sponding plot is a straight line. The performance of the rest of the
algorithms, including Random, improves as we allow for replica-
tion. Among those, LMBR performs the best, with IHPA a close
second. We saw this behavior consistently across almost all of our
experiments (including the other datasets). LMBR’s performance

does come with a significantly higher execution times as shown
in Figure 6(b). This is because LMBR tends to do a lot of small
moves, whereas the other algorithms tend to have a small num-
ber of steps (e.g., DS runs the densest subgraph algorithm a fixed
number of times, whereas PRA only has three phases). Since data
placement is a one-time offline operation, the high execution time
of LMBR may be inconsequential compared to the reduction in
query span it guarantees.

Increasing Query Size (ADI): Second, we vary the number of
data items per query from 2 to 10 (by setting minQuerySize = max-
QuerySize), choosing the default values for the other parameters.
As expected (Figure 6(c)), the average span increase rapidly as the
query size increases. The relative performance of the different al-
gorithms is largely unchanged, with LMBR and IHPA performing
the best.

Increasing Number of Queries (NQ): Next, we vary the number
of queries from 1,000 to 11,000, thus increasing the density of the
hypergraph (Figure 6(d)). The average query span increases rapidly
in the beginning and much more slowly beyond 5,000 queries. Once
again the LMBR algorithm finds the best solution by a significant
margin compared to the other algorithms.

Increasing Data Item Graph Density: Finally, we vary the data
item graph density while from 2 (very sparse) to 20 (dense). The
number of partitions was set to 40. As we can see in Figure 6(e),
for low density graphs, the average span of the queries is quite
low, and it increases rapidly as the density increases. Note that
the average query size did not change, so the performance gap is
entirely because of the structure of the query hypergraph for low
density data item graphs. Further, we note that the curves flatten
out as the density increases, and don’t change significantly beyond
10, indicating that the query workload essentially looks random to
the algorithms beyond that point.

Overall, our experimental study indicates that LMBR, despite its
high running time, should be the data placement algorithm used for
minimizing query span/multi-site overheads and energy consump-
tion in such scenarios (where we do not have any constraints on the
number of replicas that must or can be created).

5.1.1 3-Way Replication
Figures 6(f), 6(g) and 6(h) show a set of experimental results

comparing the 3-way replication algorithms that we have discussed
in Section 4.6.

Increasing Number of Queries (NQ): Increasing the number of
queries, thus increasing the density of the graph, we observe that
PRA based 3-way replication algorithm performs the best. This

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 20 25 30 35 40 45

A
v
g
 Q

u
er

y
 S

p
an

Number of Partitions

|D|=1000, ADI=7, NQ=4000, C=50

HPA
Random

IHPA
PRA

DS
LMBR

(a)

 0

 100

 200

 300

 400

 500

 600

 20 25 30 35 40 45

E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

Number of Partitions

|D|=1000, ADI=7, NQ=4000, C=50

HPA
Random

IHPA
PRA

DS
LMBR

(b)

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9 10

A
v
g
 Q

u
er

y
 S

p
an

Query Size

ND=1000, NQ=4000, C=50

HPA
Random

IHPA
PRA

DS
LMBR

Max Query Span

(c)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2000 4000 6000 8000 10000 12000

A
v
g
 Q

u
er

y
 S

p
an

No of Queries

ND=1000, ADI=7, NQ=4000, C=50, maxSpan=7

HPA
Random

IHPA
PRA

DS
LMBR

(d)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12 14 16 18 20

A
v

g
 S

p
an

 P
er

 Q
u

er
y

Density

|D|=1000, ADI=7, C=50, NPar=40

HPA
Random

IHPA
PRA

DS
LMBR

(e)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2000 4000 6000 8000 10000 12000

A
v

g
 Q

u
er

y
 S

p
an

No of Queries

ND=1000, ADI=7, NQ=4000, C=50, maxSpan=7,
 RF=3, NPar=60

HPA
Random

SDA
PRA3Way

(f)

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10

A
v

g
 Q

u
er

y
 S

p
an

Query Size

ND=1000, NQ=4000, C=50, RF=3, NPar=60

HPA
Random

SDA
PRA3Way

(g)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12 14 16 18

A
v
g
 S

p
an

 P
er

 Q
u
er

y

Density

|D|=1000, ADI=7, C=50, NPar=60, RF=3

HPA
Random

SDA
PRA3Way

(h)

Figure 6: (a)−(e) Results of the experiments on the Random dataset with homogeneous data items illustrate the benefits of intelligent
data placement with replication; the LMBR algorithm produces the best data placement in almost all scenarios. Note that, for clarity,
the y-axes for several of the graphs do not start at 0. (f)− (h) 3-way replication results with replication factor of each node RF = 3.

is in comparison with HPA (no replication), Random 3-way repli-
cation and simple distribution algorithm (SDA). As the number of
hyperedges increases in the graph average number of hyperedges
incident per node also increases. This effects the SDA algorithm,
because SDA tries to distribute the 3 copies of the node randomly to
the number of hyperedges incident on it. So as average number of
incident hyperedges per node increases, it is more likely for SDA
to make bad decisions about distribution of replicas among inci-
dent hyperedges, hence SDA’s average span increases with number
of queries. On the other hand, PRA employs hitting set technique
to do a more smarter replica distribution among the incident hy-
peredges. Increase in number of queries doesn’t seem to effect the
query span for PRA, which indicates the effectiveness of PRA ap-
proach. Hence, PRA based technique performs consistently better
than SDA in this experiment.

Increasing Query Size (ADI): Query span for all the algorithms
increases with an increase in average data items per query. As we
saw that density of the hypergraph affects PRA and SDA, where in-
crease in density doesn’t affect PRA. In this experiment increase in
hyperedge size doesn’t affect the density of the hypergraph. Hence
query span increases for SDA and PRA. PRA again performs con-
sistently better than other algorithms.

Increasing Data Item Graph Density: PRA again performs the
best compared to Random and SDA when density of the graph is
varied. Analysis is similar to what we have discussed before in
Section 5.1.

We do not compare with LMBR for this scenario due to its high
running time, and because it cannot guarantee the replication con-
straint of 3-way replication.

5.2 Snowflake Dataset
Figures 7(a) and 7(b) show a set of experimental results for the

Snowflake dataset. Each of the plotted numbers corresponds to an
average over 10 random query workloads. The data item graph
itself was generated with the following parameters: the number of

levels in the graph was 3, the degree of each relation (the maximum
number of tables it may join with) is set to 5, and the number of
attributes per table is set to 15. The total number of data items was
2000, requiring a minimum of 20 partitions to store them. Note
that we assume homogeneous data items in this case. We plot the
average query spans, and the average execution times as the number
of partitions increases from 20 to 45.

We also conducted a similar set of experiments with heteroge-
neous data item sizes, where we generated TPC-H style queries
with data item sizes adhering to the TPC-H benchmark. We chose
the scale factor of 25, which means the highest data item size is
28GB and smallest data item size is 25KB. This results in a high
skew among the table column sizes. Data item size is calculated as
Size(columnDatatype) ∗ noRows. The partition capacity was
fixed at 100GB, and we once again plot the average query spans and
the average execution times as the number of partitions increases
from 20 to 45. The results are shown in Figures 8(a) and 8(b).

Our results here corroborate the results on the Random dataset.
We once again see that LMBR performs the best, finding signif-
icantly better data layouts than the other algorithms. The perfor-
mance differences are quite drastic with homogeneous data item
sizes – with 45 partitions, LMBR is able to achieve an average
query span of just 1.5, whereas the baseline HPA results in an av-
erage span of 3.5. However, we observe that with heterogeneous
data item sizes, the advantages of using smart data placement algo-
rithms are lower. With an extreme skew among the data item sizes,
the replication and data placement choices are very limited.

5.3 ISPD98 Benchmark Dataset
Finally, Figure 9 shows the comparative results for first ten of hy-

pergraphs from the ISPD98 Benchmark Suite, commonly used in
the hypergraph partitioning literature. The number of hyperedges
in the datasets range from 14111 to 75196 and number of nodes
range from 12752 to 69429. Here we set the partition capacity so
that exactly 20 partitions are sufficient to store the data items, and
we plot the results with number of partitions set to 35. The hy-

 1

 2

 3

 4

 5

 20 25 30 35 40 45

A
v

g
 Q

u
er

y
 S

p
an

Number of Disks

|D|=2000, ADI=15, NQ=4000, C=100,
 Levels=3, Degree=5, Attrs=15

HPA
Random

IHPA
PRA

LMBR
DS

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 20 25 30 35 40 45

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

o
n
d
s)

Number of Disks

|D|=2000, ADI=15, NQ=4000, C=100,
 Levels=3, Degree=5, Attrs=15

HPA
Random

IHPA
PRA

LMBR
DS

(b)

Figure 7: Results of the Experiments on the Snowflake Dataset

 2

 2.5

 3

 3.5

 4

 4.5

 5

 20 25 30 35 40 45

A
v
g
 Q

u
er

y
 S

p
an

Number of Partitions

|D|=1000, ADI=7, NQ=4000, DC=100GB,
 scaleFactor=25

HPA
Random

IHPA
PRA

LMBR
DS

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 25 30 35 40 45

E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

Number of Partitions

|D|=1000, ADI=7, NQ=4000, DC=100GB,
 scaleFactor=25

HPA
Random

IHPA
PRA

LMBR
DS

(b)

Figure 8: Results of the Experiments on a TPC-H style Bench-
mark with unequal data item sizes. The relation sizes were cal-
culated assuming a scale factor of 25.

pergraphs in this dataset tend to have fairly low densities, resulting
in low query spans. In fact, LMBR is able to achieve an average
query span of close to the minimum possible (i.e., 1) with 35 parti-
tions. Most of the other algorithms perform about 20 to 40% worse
compared to LMBR.

These additional experiments further corroborate our claim that
intelligent data placement with replication can significantly reduce
the coordination overheads in data centers, and further that our
LMBR algorithm outperforms rest of the algorithms significantly.

6. CONCLUSIONS
In this paper, we solve the combined problem of data placement

and replication, given a query workload, to minimize the total re-
source consumption and by proxy, the total energy consumption, in
very large distributed or multi-site read-only data stores. Directly
optimizing for either of these metrics is likely infeasible in most
practical scenarios because of the large number of factors involved.
We instead identify query span, the number of machines involved
in executing a query, as having a direct and significant impact on
the total resource consumption, and focus on minimizing the av-
erage query span for a given query workload. We formulated and
analyzed the problems of data placement and replica selection for
this metric, and drew connections to several well-studied graph the-
oretic concepts. We used these connections to develop a series of
algorithms to solve this problem, and our extensive experimental
evaluation over several datasets demonstrated that our algorithms
can result in drastic reductions in average query spans. We are
planning to extend our work in several different directions. As we
discussed earlier, we believe that temporal scheduling algorithms
can be used to correct the load imbalance that may result from opti-
mizing for query span alone; although analysis tasks are usually not

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ibm
01

ibm
02

ibm
03

ibm
04

ibm
05

ibm
06

ibm
07

ibm
08

ibm
09

ibm
10

A
v
g
 Q

u
er

y
 S

p
an

ISPD98 Benchmark

numPartitions=35

ADI
HPA

Random
IHPA
PRA

DS
LMBR

Figure 9: Results of the experiments on the first 10 hy-
pergraphs, ibm01, . . . , ibm10, from the ISPD98 Benchmark
Dataset

latency sensitive, there are still often deadlines that need to be sat-
isfied. We plan to study how to incorporate such deadlines into our
framework. We are also planning to study how to efficiently track
changes in the query workload nature online, and how to adapt the
replication decisions online.

7. ADDITIONAL AUTHORS

8. REFERENCES
[1] hMETIS: A hypergraph partitioning package,

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview.
[2] MLPart,

http://vlsicad.ucsd.edu/gsrc/bookshelf/slots/partitioning/mlpart/.
[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and

A. Rasin. HadoopDB: an architectural hybrid of mapreduce and
dbms technologies for analytical workloads. PVLDB, August 2009.

[4] N. Alon, P. D. Seymour, and R. Thomas. A separator theorem for
graphs with an excluded minor and its applications. In STOC, 1990.

[5] C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc. of Intl.
Symposium on Physical Design, 1998.

[6] H. Amur, J. Cipar, V. Gupta, G. Ganger, M. Kozuch, and K. Schwan.
Robust and flexible power-proportional storage. In SoCC, 2010.

[7] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily
finding a dense subgraph. In SWAT, 1996.

[8] R. B. Boppana. Eigenvalues and graph bisection: An average-case
analysis. In FOCS, 1987.

[9] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Design and
implementation of move-based heuristics for VLSI hypergraph
partitioning. J. Exp. Algorithmics, 5:5, 2000.

[10] M. M. M. K. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer clusters with
orchestra. In SIGCOMM, pages 98–109, 2011.

[11] D. Colarelli and D. Grunwald. Massive arrays of idle disks for
storage archives. In Supercomputing, 2002.

[12] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich. Relational cloud: a
database service for the cloud. In CIDR, pages 235–240, 2011.

[13] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a
workload-driven approach to database replication and partitioning.
PVLDB, 3(1):48–57, 2010.

[14] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: making a yellow elephant run like a cheetah
(without it even noticing). PVLDB, 3:515–529, September 2010.

[15] Z. Du, J. Hu, Y. Chen, Z. Cheng, and X. Wang. Optimized qos-aware
replica placement heuristics and applications in astronomy data grid.
Journal of Systems and Software, 84(7):1224 – 1232, 2011.

[16] D. Economou, S. Rivoire, and C. Kozyrakis. Full-system power
analysis and modeling for server environments. In In Workshop on
Modeling Benchmarking and Simulation (MOBS), 2006.

[17] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson. Cohadoop: Flexible data placement and its
exploitation in hadoop. PVLDB, 4(9):575–585, 2011.

[18] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem.
Algorithmica, 1999.

[19] H. Ferhatosmanoglu, A. S. Tosun, and A. Ramachandran. Replicated
declustering of spatial data. In PODS, 2004.

[20] S. Fortunato. Community detection in graphs. Physics Reports,
486(3-5):75 – 174, 2010.

[21] M. Garey and D. Johnson. “Computers and Intractability: A Guide
to the Theory of NP-Completeness”. 1979.

[22] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher.
Adaptive replication in peer-to-peer systems. In ICDCS, 2004.

[23] L.-Y. Ho, J.-J. Wu, and P. Liu. Optimal algorithms for cross-rack
communication optimization in mapreduce framework. In IEEE
International Conference on Cloud Computing, 2011.

[24] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel
hypergraph partitioning: Application in VLSI domain. In IEEE VLSI,
pages 69–529, 1999.

[25] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning.
In Proc. of DAC, pages 343–348, 1998.

[26] M. Koyutürk and C. Aykanat. Iterative-improvement-based
declustering heuristics for multi-disk databases. Information Systems,
2005.

[27] D.-R. Liu and S. Shekhar. Partitioning similarity graphs: A
framework for declustering problems. Information Systems, 1996.

[28] H. Meyerhenke, B. Monien, and T. Sauerwald. A new
diffusion-based multilevel algorithm for computing graph partitions.
J. Parallel Distrib. Comput., 69(9), 2009.

[29] T. A. Neves, L. M. de A. Drummond, L. S. Ochi, C. Albuquerque,
and E. Uchoa. Solving replica placement and request distribution in
content distribution networks. Electronic Notes in Discrete
Mathematics, 36:89–96, 2010.

[30] K. Y. Oktay, A. Turk, and C. Aykanat. Selective replicated
declustering for arbitrary queries. In Euro-Par, 2009.

[31] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD,
2008.

[32] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD, 2009.

[33] E. Pinheiro and R. Bianchini. Energy conservation techniques for
disk array-based servers. In Supercomputing, 2004.

[34] K. Ranganathan and I. Foster. Identifying dynamic replication
strategies for a high-performance data grid. In GRID, 2001.

[35] K. Ranganathan, A. Iamnitchi, and I. Foster. Improving data
availability through dynamic model-driven replication in large
peer-to-peer communities. In CCGRID, 2002.

[36] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Adaptive
popularity-driven replica placement inÂăhierarchical data grids. The
Journal of Supercomputing, 51:374–392, 2010.

[37] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM
J. Sci. Comput., 18(5):1436–1445, 1997.

[38] D. Thain and M. Livny. Building reliable clients and servers. In
I. Foster and C. Kesselman, editors, The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[39] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing solution
over a map-reduce framework. PVLDB, 2:1626–1629, August 2009.

[40] A. A. Tosun and H. Ferhatosmanoglu. Optimal parallel I/O using
replication. In ICPP, 1997.

[41] A. S. Tosun. Replicated declustering for arbitrary queries. In ACM
symposium on Applied computing, 2004.

[42] T. White. Hadoop: The Definitive Guide. O’Reilly Media, 1st
edition, June 2009.

[43] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication
algorithm. ACM TODS, 22:255–314, 1997.

[44] O. Wolfson and A. Milo. The multicast policy and its relationship to
replicated data placement. ACM TODS, 16:181–205, March 1991.

[45] L. Zhang, H. Tian, and S. Steglich. A new replica placement
algorithm for improving the performance in cdns. Int. J. Distrib. Sen.
Netw., 5:35–35, January 2009.

[46] M. T. zsu and P. Valduriez. Principles of Distributed Database
Systems. Springer, 3rd edition, 2011.

APPENDIX
A. ANALYSIS FOR GENERAL GRAPHS

Given a graph G = (V,E) (special case when the hypergraph
H has size two edges) – our objective is to store the data items in a
collection of partitions, each of capacity C. For each edge the cost
is either 1 or 2. This gives rise to a trivial 2-approximation since
|E| is a lower bound on the optimal solution and 2|E| is a trivial
upper bound on the solution that picks an arbitrary layout. Note
that replication is allowed, and we may store more than one copy
of each data item.

Assume that there is an optimal solution that creates at least one
copy of each data item – uses Ne(= n

C
) partitions (for simplicity

we assume that n is a multiple of C). We now prove the bound for
the following method. We order the nodes in decreasing order by
degree.

For each node vi, assume that Ei is the set of edges adjacent to
vi that go to nodes vj with j > i. We use Ni partitions to store vi
where in the first partition we store vi together with its first C − 1
neighbors, the second partition with vi together with its next C− 1

neighbors etc. We thus use Ni = d |Ei|
C−1
e partitions for each node

vi.
The total number of partitions used is

∑n
i=1Ni =

∑n
i=1d

|Ei|
C−1
e.

Now consider an optimal solution with cost OPT that stores the
nodes of G using N ′ partitions. Note that with N ′ partitions, each
holding C nodes, the maximum number of local edges (edges for
which the optimal solution incurs a cost of 1) within each partition
is at most C(C−1)

2
. We thus get |E∗| ≤ N ′ C(C−1)

2
where E∗ is

the set of local edges in an optimal solution. Note that OPT =
|E∗|+ 2(|E| − |E∗|) = 2|E| − |E∗| where OPT is the cost of an
optimal solution.

We first note that if |E∗| ≤ α|E| then we get a better lower
bound on OPT, namely thatOPT ≥ (2−α)|E|. Thus our solution,
which has cost at most 2|E| ≤ 2

2−αOPT . This gives us a good
approximation when α is significantly smaller than 1.

If |E∗| > α|E| then we get α|E| < |E∗| ≤ N ′ C(C−1)
2

.
Dividing by α(C − 1) we get |E|

C−1
< |E∗| ≤ N ′ C

2α
. Since

|E| =
∑
i |Ei| we get

∑
i
|Ei|
C−1

< |E∗| ≤ N ′ C
2α

.
Recall that the total number of partitions we used is

∑n
i=1Ni =∑n

i=1d
|Ei|
C−1
e. Ignoring the fact that we really need to take the ceil-

ing, we can re-write this as
∑n
i=1

|Ei|
C−1

< N ′ C
2α

. If N ′ = β n
C

for
some constant β, then we get nβ

2α
as the bound on the number of

partitions
We thus conclude:

THEOREM 4. If the optimal solution uses βNe partitions, where
Ne =

|G|
C

then either we can get an approximation with factor 2
2−α

for 0 ≤ α ≤ 1 using Ne partitions, or a placement in which each
edge is contained in a single partition using CNeβ

2α
partitions.

