Declarative Interactive Visualization in Mascot: Dependency Graph
Architecture

Shubham Vasantrao Karanjekar
University of Maryland, College Park. MD
shubhk@umd.edu

Abstract

Several well-known tools for declarative data
visualization, such as D3, Vega, and Mascot
(version 1.0), allow users to describe visualiza-
tions using high-level specifications or syntax,
removing the need for explicit programming at
each step. These tools excel in creating static vi-
sualizations but frequently lack straightforward
support for flexible declarative interactions, es-
pecially in d3. Oftentimes, users must man-
ually incorporate event listeners to detect ac-
tions and implement custom logic. This paper
presents an architecture inspired by Streaming
Databases and Reactive Vega [1], leveraging a
Dependency Graph. This architecture not only
captures user inputs but also dynamically gener-
ates a scene and a dependency graph (DataFlow
Graph) at runtime. These graphs react to ap-
propriate input changes, enabling efficient re-
rendering of visualizations.

1 Introduction

Mascot[2], which stands for Manipulable
Semantic Components, presents a declarative
data visualization grammar geared towards cre-
ating expressive charts. It offers high-level
abstractions for both chart structure and con-
struction procedures. However, like many
other popular declarative data visualization
frameworks, Mascot lacks essential support
for declarative interaction. Users often find
themselves needing to code interactions manu-
ally, introducing potential complexities.

This paper addresses this gap by introduc-
ing a simplistic, structural, and declarative ap-
proach based on functional reactive program-
ming principles into Mascot. Drawing inspi-
ration from Reactive Vega[1], our work aims
to extend interaction support beyond just run-
time interactions. We introduce design-time
interactions, allowing users to interact not only

with complete charts but also with individual
chart elements such as axes, legends, and data
points.

Our approach begins by dynamically gener-
ating a memory-based dependency graph, typi-
cally a Directed Acyclic Graph (DAG), though
occasionally including cycles. This graph de-
lineates various operators and variables, con-
nected by edges that describe their relation-
ships.

In striving to support interactive visualiza-
tions alongside static charts, Mascot aims to
encompass all seven user intents outlined in
Yi et al.’s interaction taxonomy[5]. Through
this comprehensive coverage, Mascot seeks to
empower users with versatile and intuitive in-
teraction capabilities, enhancing the usability
and effectiveness of declarative data visual-
izations. As we will delve into in Section 4,
Mascot has introduced support for two types
of interactions: Design Time and Runtime. De-
sign Time interactions involve users acting on
specific semantic components (such as Marks,
axes, etc.) that trigger the data flow within the
dependency graph. On the other hand, Runtime
interactions encompass actions like zooming
and brushing, which (primarily) affect the en-
tire scene.

2 Related Work

Drawing inspiration from various tools and
frameworks such as Vega, Vega-lite[4], Re-
active Vega, D3[7], Database Streaming
Dataflow graphs, Mascot builds upon existing
work in the field of data visualization grammar.
Its low-level approach allows it to serve as a
fundamental building block for higher-level
chart libraries.



Reactive Vega[l] introduces a novel sys-
tem architecture that addresses declarative vi-
sual and interaction design comprehensively.
It constructs a dataflow graph from a single
declarative specification, treating input data,
scene graph elements, and interaction events
as first-class streaming data sources. This ar-
chitecture enables the creation of expressive
interactive visualizations, capable of handling
time-varying data dynamically. While Reac-
tive Vega excels in runtime interactions, it cur-
rently lacks support for design-time interac-
tions.

SkyBlue[9] presents an incremental con-
straint solver (another name for dependency
graph) that utilizes local propagation to man-
age a set of constraints efficiently. It maintains
constraints individually, allowing for seamless
addition and removal while ensuring consis-
tency.

Bluefish extends Ul architectures to support
overlapping perceptual relations, offering a
framework for authoring graphic representa-
tions across diverse domains. Bluefish graph-
ics are instantiated as relational scenegraphs,
preserving the compositional and abstractional
affordances of traditional UI frameworks [10].
However, Bluefish currently lacks support for
interactions.

3 Dependency Graph architecture in
Mascot

3.1 Mascot Grammar

Mascot [2] offers a comprehensive framework
for chart creation by providing high-level ab-
stractions for both chart structure and construc-
tion procedures. In terms of structure, it em-
ploys semantic components like marks, glyphs,
collections, layouts, and encodings to define
the foundational elements of a chart. The con-
struction process involves a series of opera-
tions such as repeat, divide, and densify, which
manipulate these semantic components to gen-
erate the desired visualization. Central to Mas-
cot’s approach is its focus on graphical objects
as primary entities, allowing users to manipu-
late their properties, transformations, layouts,
and constraints with ease. Its procedural syn-

tax facilitates the application of operations in a
step-by-step manner, enabling users to inspect
visualization components at any stage of devel-
opment. Additionally, Mascot offers flexibility
in rendering, decoupling visualization logic
from rendering mechanisms, allowing users
to choose between SVG or WebGL renderers
based on their preferences or requirements.

3.2 Dependency Graph Building Blocks

In this advanced iteration of Mascot, the de-
pendency graph takes on a crucial role in cap-
turing the intricate relationships between var-
ious elements, allowing for dynamic updates
and maintaining the consistency of visualiza-
tions. As described by Lu et al.[8], they out-
line a dependency graph grammar consisting
of nodes that represent both variables and oper-
ators. These operator nodes serve as essential
intermediaries within the dependency graph,
governing the behavior of visual elements by
handling changes. Acting as the core logic
for processing a set of inputs and generating a
variable output, they serve as bridges between
specific property nodes, ensuring that changes
flow smoothly throughout the graph, thus re-
flecting the overall structure and behavior of
the visualization. Meanwhile, variable nodes
act as the primary sources of data and trigger
points for data changes, initiating the propaga-
tion of flow within the dependency graph.

Variable Node 3

A 4

Variable Node 1 Operator Node »|Output Variable Node

Variable Node 2

Figure 1: A Sample Dependency Graph

Figure 1 illustrates a basic dependency
graph structure comprising three input vari-
ables, with each variable type represented by a
different color. At the center lies an operator
node, which takes in all the inputs and gener-



ates an output based on them. It’s important
to note that an operator can handle anywhere
from one to multiple inputs, which can be of
varying types.

3.2.1 Operators and Variables

We’ll now delve into the various types of op-
erators and variables present in the graph, dis-
cussing their significance and roles within the
system.

Each node within the graph is assigned a
unique identifier. A Variable node encom-
passes details regarding its incoming and out-
going edges, along with specifying the type of
edge it represents (directed or undirected). Var-
ious types of variable nodes exist, each serving
distinct purposes. For instance, a ScaleVar ex-
tends from its parent and additionally stores
information regarding the encoding scale of
a visual element. Similarly, a PropertyVar in-
cludes details about the type of property it rep-
resents and the corresponding Mascot’s basic
element, such as mark, glyph, group, or axis.
Additionally, a DatascopeVar holds all the nec-
essary source data required for rendering the
graph, and CondEncodingVar, holding the en-
codings based on events such as click and/or
brush. The system allows for the creation of
additional variable node types based on spe-
cific needs and requirements.

An operator node comprises information
about all input and output variable nodes,
along with a run method that dynamically trig-
gers execution at runtime, facilitating scene
formation or responding to event changes.
Similar to variables, there are various types
of operators available. For example, Range-
Builder and DomainBuilder, as suggested by
name, aid in constructing the domain and range
for a visualization, triggered by changes in the
datascope information. These operators are
designed to intuitively support streaming data
changes. Furthermore, operators like Property
Encoders, Evaluators, and AxisEncoders are
utilized to encode various aspects such as prop-
erties (X, y, fillColor), bounds, range, domain
of marks on the screen, and axis information,
respectively.

4 Declarative Interaction in Mascot

As mentioned earlier, Mascot dynamically con-
structs a dependency graph during runtime
based on the specified parameters for visualiza-
tion creation. Currently, Mascot supports two
types of interactions: design-time interactions
and runtime interactions.

4.1 Design-Time Interactions

These interactions involve user actions on the
fundamental building blocks of a visualization.
For example, if a user wants to change the
starting position of a graph, they can simply
grab any axis and move it on the screen. Simi-
larly, altering the encoding of data points, such
as changing the fill color of circles in a scat-
ter plot, constitutes a design-time interaction.
Consider the scenario where a user wishes
to adjust the starting position of the graph.
Mascot’s built-in event listeners automatically
capture this action and trigger the appropriate
node in the dependency graph—in this case,
the RangeStartVar of the RangeBuilder. This
triggers a cascading effect, initiating a propa-
gation flow throughout the dependency graph
until all dependencies are resolved. Referring
to the figure 2, a change in the RangeStart-
Var triggers the RangeBuilder operator, which
executes its business logic based on the input
change and outputs a RangeVar. Subsequently,
the change in the RangeVar triggers the corre-
sponding Encoder operator based on the input
channels, and this cycle continues. In this ex-
ample, the dependency graph forms a simple
Directed Acyclic Graph (DAG), allowing for
straightforward topological sorting to capture
the order and relationship of the trigger flow.

4.2 Run-Time Interactions

These interactions operate on the same logic
as design-time interactions but encompass dif-
ferent paths and occur during runtime.

Runtime interactions in Mascot are man-
aged through the "activate" API within the
scene class, utilizing a set of predefined JSON-
based properties. These properties, comprising
target, criteria, effect, and event fields, drive
the interaction behavior.



FieldVar
GDP per capita
DomainBuilder

DataScopeVar
circle

DomainVar
x-scale

PropertyVar
x-scale, includeZero

Trigger Point RangeStartVar Encoder ChannelVar

x-scale, circle x circle, x

RangeVar

RangeBuilder x-scale

RangeExtentVar
x-scale, circle

Figure 2: Design Time Interaction Flow in Dependency
Graph of Mascot

To begin, a specific target, such as a mark, is
identified to undergo visual changes triggered
by user interactions. Parameters like criteria
and effect are then specified. The criteria pa-
rameter dictates how the visual elements, re-
spond to user actions, and a logical expression
is constructed during runtime based on JSON
specification. The effect parameter determines
how the appearance of elements changes based
on the evaluated criteria.

These declarations dynamically contribute
to constructing a portion of the dependency
graph at runtime. Some nodes may reuse exist-
ing structures, while others generate new ones
using PredicateVar variable nodes and Predi-
cateEncoder operators. The PredicateVar en-
compasses various types, such as IntervalPred-
icate, ListPredicate, and PointPredicate, tai-
lored to specific use cases. For instance, a
PointPredicate might suffice for a simple click
event in a scatter plot, whereas an Interval-
Predicate would be more suitable for defining
a selected region in a brush event. The Con-
ditionalEncoding class encapsulates the logic
pertaining to the target element, predicates,
and effects in Mascot.

The event property specifies a standard
HTML event and is handled by the respective
Mascot renderer functions, ensuring a straight-
forward and scalable approach to managing
runtime interactions.

Consider a scenario where we have a scat-
ter plot visualization 5(a), and upon clicking
any circle mark, all corresponding circles with

the same color encoding should become "ac-
tive," while others fade out 5(b). The color
attribute is encoded by the "Continent" field of
the dataset.

To achieve this interaction, we utilize the
Mascot scene’s "activate" API. Here’s how we
specify the interaction 3:

scn.activate(circle, {
criteria: { attribute: 'Continent', type: 'point' }
effect: {
fillColor: { false: "#eee" },

opacity: { false: 0.3 }

1
I

event: "click"

Figure 3: Example Specification for the Mascot’s Acti-
vate API

In this setup, clicking on a circle mark trig-
gers the defined criteria, which evaluates the
"Continent" attribute of the dataset to deter-
mine relevant circles. The effect parameter
specifies that circles whose continent attribute
does not match the clicked circle’s continent
value should have their fillColor set to #eee,
effectively fading them out. Conversely, cir-
cles with the same continent attribute as the
clicked circle remain active, maintaining their
appearance. To expand further, the colors of
the circles are determined by both data binding
"Continent" and conditional encodings. Ad-
ditionally, the dataflow path is determined by
the captured event, and a suitable Conditiona-
|Encoding Variable is selected at runtime, con-
taining all the information regarding predicates
and rules.

This interaction enhances user engagement
by visually highlighting circles of interest
while de-emphasizing others, contributing to
a clearer understanding of the dataset’s dis-
tribution and patterns within the scatter plot
visualization. Figure 4 illustrates these depen-
dencies in the form of a dependency graph.
All computations related to color encoding are
managed by the Encoder operator.

5 Conclusions

The ultimate objective was to furnish a declar-
ative and functional reactive method for in-
corporating interactions into both static chart



Run against the predicates stored in CE Var

ChannelVar
el o “To subsequent propagation—»

Figure 4: Dependency Graph flow post Click Event in
Scatter Plot

Ayt <
e u° °
£ “a

| b “2e o
: i
’ ?

(b) Screen after click inter-
action

(a) Scene with regular
scatter plot

Figure 5: Mascot Run Time Interactions Effects

design and runtime usage, and the Dependency
Graph model of Mascot emerged as the solu-
tion. This approach not only enhances user
accessibility but also ensures optimal perfor-
mance. As part of future endeavors, there’s
potential to extend Mascot’s capabilities to en-
compass streaming data and animation func-
tionalities, thereby enhancing its versatility
and applicability in various visualization sce-
narios.

6 Acknowledgements

I am deeply grateful to Dr. Professor Leo
Zhicheng Liu for his invaluable guidance and
mentorship throughout this work.

References

[1] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell,
and Jeffrey Heer. Reactive Vega: A Streaming
Dataflow Architecture for Declarative Interactive Vi-
sualization. IEEE Transactions on Visualization &
Computer Graphics (Proc. IEEE Info-Vis), 2016.

[2] Mascot.js - manipulable semantic components in data
visualization. https://mascot-vis.github.
io/, 2021.

[3] Jeffrey Heer and Michael Bostock. Narrative lan-
guage design for interactive visualization. IEEE
Transactions on Visualization and Computer Graph-
ics, 16(6):1149-1156, November 2010.

[4] Arvind Satyanarayan, Dominik Moritz, Kanit Wong-
suphasawat, and Jeffrey Heer. Vega-lite: A grammar
of interactive graphics. IEEE Transactions on Visu-
alization and Computer Graphics, 23(1):341-350,
2017.

[5] Ji Soo Yi, Youn ah Kang, John Stasko, and J.A.
Jacko. Toward a deeper understanding of the role of
interaction in information visualization. IEEE Trans-
actions on Visualization and Computer Graphics,
13(6):1224-1231, 2007.

[6] Arvind Satyanarayan, Kanit Wongsuphasawat, and
Jeffrey Heer. Declarative interaction design for data
visualization. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and
Technology, UIST 14, pages 669-678, New York,
NY, USA, 2014. Association for Computing Machin-

ery.

[7] Michael Bostock, Vadim Ogievetsky, and Jeffrey
Heer. D3 data-driven documents. IEEE Transac-
tions on Visualization and Computer Graphics,
17(12):2301-2309, 2011.

[8] Charlie Lu, Designing Interaction Support for Mas-
cot Data Visualization Grammar

[9] Michael Sannella, SkyBlue: A Multi-Way Local
Propagation Constraint Solver for User Interface
Construction

[10] Josh Pollock, Catherine Mei, Grace Huang, Daniel
Jackson, Arvind Satyanarayan, Bluefish: A Rela-
tional Framework for Graphic Representations


https://mascot-vis.github.io/
https://mascot-vis.github.io/



