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Abstract 
 Balloon payloads are a cost effective and reliable method for testing hardware and 
software in spacelike environments without the exorbitant relative cost of rockets. At the 
University of Maryland College Park, the Balloon Payload Program provides this opportunity to 
students, enabling them to test student experiments in challenging near space environments. The 
Super Complicated Ai Mission Payload (SCAMP) leverages this opportunity to develop a 
payload capable of flying neural networks in these environments on an extremely low-SWaP 
platform that is both exceptionally affordable and reliable. This is accomplished by utilizing 
NASA’s core Flight Software (cFS) and commercial off the shelf (COTS) component-based 
design. As a byproduct, this payload also demonstrates an approach that enables the integration 
of neural networks into NASA’s cFS using Google’s Coral Tensor Processing Units (TPUs). 
Furthermore, the payload also proves the flight worthiness of the Coral TPUs in harsh space-like 
environments. Finally, this payload provides a low barrier of entry for students interested in 
experimenting with AI, NASA cFS and software design, further enriching students’ 
understanding of flight software, embedded system design and programming. 
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1. Introduction 
 The Super Complicated Ai Mission Payload (SCAMP) originally started out as a weekend 
project to test if it was possible to put a neural network into NASA’s cFS. The project’s objective 
was to create a simple balloon payload that was cheap and easy to build. To that end, SCAMP was 
developed primarily from components found in the trash, around the University of Maryland 
College Park and eBay. While not using the most flight worthy hardware, or even the most flight 
qualified, SCAMP was able to demonstrate deep learning at the edge of space for a price tag of 
about 80 dollars. Through this cheap payload, it was also possible to lower the barrier of entry for 
others who wanted to run more complex experiments at altitude with neural networks.  
 
2. SCAMP (Super Complicated Ai Mission Payload) v1 Design 
 Keeping costs low and reducing complexity of the payload resulted in the hardware itself 
consisted of the cheapest COTS components available. Consequentially, none of these components 
were rated for the environments that they would be operating in but through the flights, they proved 
to work just fine. The initial configuration of the payload consisted of a Coral Dev Board which 
costed about 48 dollars through eBay at the time of purchase; a USB Camera unit that costed about 
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15 dollars through Amazon at the time of purchase; and finally, a phone travel power bank that 
was acquired through a career fair but can retail for about 15 dollars through Amazon. This kept 
the budget of the payload well below 100 dollars at the time of creation.  

The initial configuration is shown below in figure 1. This configuration had the Coral Dev 
Board placed on the lid of the payload to simplify the wiring and maintenance of the payload after 

flights and during debugging. This decision, while optimal for access to the board and maintenance 
of the payload, resulted in a hardware failure on SCAMP’s second flight (NS-129). The source of 
the problem was that the Coral Dev Board is two boards with the SoC (System on Chip) component 
being attached to a breakout board with all the IO (input output) peripherals. During the second 
flight, on the launch pad, the payload was tapped aggressively causing the pins securing the SoC 
to detach from the breakout board completely. This disconnection occurred on the pins associated 
with the USB port connecting the SoC to the Camera, crashing the application responsible for 
inference.  Post NS-129, the internals of the payload were rearranged to ensure that the board was 
more stable, resulting in the layout shown in Figure 2 above. While less maintainable, this 
configuration provides the board more safety thus making the payload hardware more reliable.  

Due to the COTS nature of SCAMP, the electrical interfaces were rather simple. The entire 
payload consisted primarily of 2 cables. One cable connected the Coral Dev Board with the power 
bank to provide power to the whole payload while another USB cable provided data from the 
camera to the Coral Dev Board. The entire system had an estimated runtime of about 5 hours at 
peak load when the power bank was at full charge.  

The flight software onboard SCAMP utilizes NASA’s core Flight System (cFS) as its 
primary flight software framework. NASA cFS is a TRL 9 flight software framework provided by 
NASA Goddard for free due to its open-source nature. cFS comes with a multitude of open-source 
applications built to run on top of cFS provided which helps enable rapid prototyping and testing 
of flight systems with little downtime. Furthermore, cFS provides a soft real-time system to help 
ensure timing requirements met and that tasks onboard the payload are sufficiently scheduled 
based on explicitly defined priorities. 

SCAMP’s software architecture leverages several of cFS’ components to create the 
architecture described in Figure 3. Outside from the core Flight Executive services provided by 
cFS, SCAMP utilizes three of cFS’ open-sourced applications - Stored Command, Scheduler and 

Figure 1: Initial payload hardware configuration Figure 2: Current payload hardware configuration post NS-129 failure 
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Limit Checker - to provide control over the main system. Stored Command and Limit Checker 
exist to ensure that the payload does not overheat or throttle by ensuring temperatures provided by 
the Temp Mon application (a custom SCAMP application) are within nominal operation ranges. 
Additionally, Stored Command is also utilized to run relative time sequence (RTS) commands to 
monitor payload utilization through cFS’ built-in performance monitor. Finally, the Camera 
Control Application gathers images from the payload camera and saves them to the file system in 
a critical data store while dumping the address to the image on the software bus.  

 
3. SCAMP v1 Networks & AI Enhanced Applications 
 Alongside the standard applications SCAMP consists of two AI enhanced applications that 
run quantized neural networks on the onboard tensor processing unit (TPU). On the Coral Dev 
Board, the TPU is integrated with the CPU on the SoC portion of the Coral Dev Board and 
commands through a PCIE bus that connects the two processing units. To ensure that the networks 
can run on the resource constrained TPU, the models must be quantized accordingly. Quantization 
adjusts the weights within the model by encoding them within unsigned integers rather than 
representing the weights as 64- or 32-bit floating values.  
 Pytorch was used to develop and train the networks utilized on the payload due to its low 
learning curve, ease of use, and open-source support. To make it possible to transfer the trained 
models to be deployable, a pipeline was required to encode the weights in a quantized state. Since 
the Coral TPU was designed by Google, they utilized the TensorFlow Lite representation for 
saving quantized weights for the TPU. To achieve this, Google create a tool called torch-edge-
ai1,2. This utility makes it possible to take a Pytorch model and convert it to a TensorFlow Edge 
Lite model. This model is then converted to a final TPU representation through the Coral TPU 
Compiler which takes a quantized TensorFlow Lite model and converts it into a binary blob that 
contains the instructions for the network’s inference that can then be read by the Coral TPU.  With 
this workflow, developing networks for SCAMP become nearly plug and play. 
 The first model that was developed through this pipeline was the Terrain Surveyor network. 
The model utilizes a UNet3 architecture to segment ground images to identify what the terrain 
below the payload is. The data that was used for this training this model was provided through an 
opensource project on Kaggle that aggregated images across several aerial image datasets4. The 

Figure 3: SCAMP cFS Software Architecture 
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dataset came with 7 normalized groups that the segmentation model understands: buildings, land, 
roads, vegetation, water, objects and undefined. This network was loaded into the Terrain Surveyor 
application which waits on images from the Camera Control application and then runs the 
inference step on the images. The fastest this app inferred on an image, based on the flight data, 
was around 5 milliseconds. This meant it was possible to infer on images at about 30 frames per 
second onboard the payload on the NS-128 flight.  
 The second application that is enhanced by AI is the Deep Storage Application. The idea 
behind this application is to take the image data and compress the images utilizing an autoencoder5. 
The way the autoencoder is trained is rather different than the standard training paradigm since 
dealing with quantization can affect the autoencoder’s understanding of a latent space 
unpredictably. As such the encoder is a pretrained quantized Inception v4 model6 without its final 
SoftMax layer. The decoder is then trained and deployed on the ground without any quantization. 
The training data used for building this network was the image data from NS-128 and NS-130. As 
such the first flight that utilized this model, and application will be NS-131.  
   
4. SCAMP v1 Flight Data 
 SCAMP’s maiden flight was Near Space 128 (NS-128). This flight has a very simple cFS 
application setup that consisted of the Terrain Surveyor Application, Scheduler, Camera Control 
alongside all the built in cFE applications. SCAMP’s payload hardware layout, at the time of the 
flight, was in the orientation shown in Figure 1. As far as data goes, Figure 4 shows some of the 

images and inferences conducted by the Terrain Surveyor Application during flight. In these 
images there are quite a lot of poor hallucinations visible. For example, in the two images on the 
right, the Terrain Surveyor model describes the horizon and space as a building. Throughout the 
data the vegetation group always appeared to be consistently correct, except for the top left 

Figure 4: SCAMP NS-128 Flight Data 
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example in Figure 4 that describes shadows as vegetation. The bottom left example in Figure 4 is 
one of the best inferences that was achieved by the Terrain Surveyor Application.  
 Almost all the faults for these abnormally incorrect behaviors in the model can be pinned 
on the quality of the dataset utilized for training the network. The dataset consisted of an 
aggregation of multiple different types of aerial segmentation images ranging from drone images 
to satellite images. As such the model may have over generalized to some degree and failed to 
really understand some of its predictions. Furthermore, none of the images had any shots with 
space which explains why the model would predict it being a building. Finally, the model was 
trained on about 400 images. There were not enough images in the dataset to make the model 
behave better and as a result the outcomes from NS-128 were almost predestined.  
 After NS-128, the Temp Monitor Application was added into the software stack to provide 
more data and information on the payload’s health throughout the flight. Tragically, however the 
Near Space 129 (NS-129) flight was a failure due to the hardware. The problem with this launch 
revolved around the placement of the Coral Dev Board inside of SCAMP. After this launch the 
hardware was redesigned and ended up in the configuration shown in Figure 2. While the Camera 
Control Application and Terrain Surveyor did not collect anything, the Temperature Monitor 
Application was still able to function. Figure 5 displays the temperatures of the Coral Dev Board. 

What is critical here is that the temperature range remained within the ranges specified by Google 
for maintaining the health of the Coral Dev Board (-40° C to 85° C).  
 After changing the hardware, SCAMP was ready to fly on NS-130. Between NS-129 and 
NS-130 there were no software changes aside from code cleanup and documentation that was left 
out due to tight deadlines. Unlike NS-129 however, NS-130 was a success. The most interesting 
piece of data received from this flight was understanding if model inference time was affected by 

Figure 5: SCAMP Payload Temp during NS-129 



6 of 8 |  Vishnoi et al. 
 

temperature during the flight. This hypothesis was proven false by Figure 6. Asides from this 

finding, NS-130 did not fly a new model for Terrain Surveyor and as such the same hallucinations 
present in NS-128 were also prevalent in NS-130.  
 Post NS-130 it was clear that data describing each threads runtime and status was required 
and the idea to stress test the TPU with multiple networks was brought up. As such between NS-
130 and NS-131 Stored Command, Limit Checker and Deep Storage were added into the flight 
software.  
 
5. Conclusions & Future Work 
 The next step with the project is to keep pushing these TPUs to their limits. NS-131 and 
NS-132 shall provide a good understanding of how far these TPUs can be pushed.  
 Outside of SCAMP v1, SCAMP v2 consists of three Coral USB TPUs that can split the 
load between six neural networks and applications. The software architecture in Figure 7 depicts 
the planned applications that are to be part of this payload. The whole intent behind this is to try 
and create a more realistic software stack that can expected on a real NASA mission to see how 
useful AI enhanced applications are and how performant they can be. Going through the 
applications themselves, Deep Storage and Terrain Surveyor are carried over from SCAMP v1 and 
not disturbed at all given their flight heritage. Deep Navigation or Deep Nav is an application that 
utilizes the Sensor Control Application to collect environmental data from a sub-payload that is 
then used to estimate the position of the payload relative to the launch site. The raw sensor data 

Figure 6: SCAMP NS-130 Temp vs Inference time plot 
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provided from the Sensor Control package at a rate of 1Hz consists of raw magnetometer readings, 
accelerometer readings, gyroscope readings, pressure, temperature, and a calculated altitude given 
the pressure and temperature data. Unlike the other networks in Terrain Surveyor and Deep 
Storage, Deep Nav utilizes Long Short-Term Memory (LSTM) blocks7 within its model.  
 Deep Defense also utilizes LSTMs but instead of finding the position of the payload, it 
monitors the health of all the apps onboard and ensures that none of the apps are corrupted. To test 
this idea, SCAMP v2 has 5 Exp Apps that are barebone applications that will randomly appear as 
corrupted and will try and send bad data to all the Simulation Apps onboard such as Sim Thruster 
Control. The Bus Monitor application is a lot like the Deep Storage Application except rather than 
compressing data, it utilizes auto encoder to study the structure of data through its reconstruction 
loss. Finally, the Secure Inference Application is an application that performs inference on 
encrypted data and output its findings with the same encryption pattern. This payload is fully 
developed and programmed, if there is an opportunity to fly it before graduation that would be 
cool but otherwise it makes for an interest ground test bed environment.  
 Overall, The Super Complicated Ai Mission Payload proved that cutting-edge technology 
like neural networks can be integrated into spaceflight systems on a tight budget. Despite using 
salvaged and third hand parts, SCAMP successfully ran several deep learning networks in near-
space conditions, showcasing both the potential of NASA’s cFS for AI integration and the power 
of low-cost, grassroots engineering. SCAMP not only met its goal as a proof-of-concept but also 
opened the door for future accessible, affordable, and innovative high-altitude AI research for other 
students.  

Figure 7: SCAMP v2 Software Architecture 
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SWaP 

Super Complicated Ai Mission Payload 
Size Weight and Power 

cFS Core Flight System 
AI Artificial Intelligence 
COTS Commercial of the Shelf 
SoC System on Chip 
USB Universal Serial Bus 
NASA National Aeronautical Space Association 
TRL Technology Readiness Level 
TPU Tensor Processing Unit 
CPU Computational Processing Unit 
NS-x Near Space x (flight number) 
LSTM Long Short Term Memory 
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