
aM.S. Student, Department of Computer Science, 1309 Kim Engineering Building, rvishnoi439@gmail.com
bSenior Lecturer, Department of Aerospace Engineering, 3181 Glenn L. Martin Hall
cProfessor of Aerospace Engineering and Director, Space Systems Laboratory, Department of Aerospace Engineering,
3181 Glenn L. Martin Hall

1

Deep Learning at the Edge of Space
Rahul Vishnoia, Dr. Mary Bowdenb, Dr. David L. Akinc

Abstract
 Balloon payloads are a cost effective and reliable method for testing hardware and
software in spacelike environments without the exorbitant relative cost of rockets. At the
University of Maryland College Park, the Balloon Payload Program provides this opportunity to
students, enabling them to test student experiments in challenging near space environments. The
Super Complicated Ai Mission Payload (SCAMP) leverages this opportunity to develop a
payload capable of flying neural networks in these environments on an extremely low-SWaP
platform that is both exceptionally affordable and reliable. This is accomplished by utilizing
NASA’s core Flight Software (cFS) and commercial off the shelf (COTS) component-based
design. As a byproduct, this payload also demonstrates an approach that enables the integration
of neural networks into NASA’s cFS using Google’s Coral Tensor Processing Units (TPUs).
Furthermore, the payload also proves the flight worthiness of the Coral TPUs in harsh space-like
environments. Finally, this payload provides a low barrier of entry for students interested in
experimenting with AI, NASA cFS and software design, further enriching students’
understanding of flight software, embedded system design and programming.

Neural Processing Units | Deep Learning | NASA core Flight System | Artificial Intelligence |
Machine Learning | High Altitude Ballooning | Ai Acceleration | Tensor Processing Unit | Flight
Software | Embedded Software

1. Introduction
 The Super Complicated Ai Mission Payload (SCAMP) originally started out as a weekend
project to test if it was possible to put a neural network into NASA’s cFS. The project’s objective
was to create a simple balloon payload that was cheap and easy to build. To that end, SCAMP was
developed primarily from components found in the trash, around the University of Maryland
College Park and eBay. While not using the most flight worthy hardware, or even the most flight
qualified, SCAMP was able to demonstrate deep learning at the edge of space for a price tag of
about 80 dollars. Through this cheap payload, it was also possible to lower the barrier of entry for
others who wanted to run more complex experiments at altitude with neural networks.

2. SCAMP (Super Complicated Ai Mission Payload) v1 Design
 Keeping costs low and reducing complexity of the payload resulted in the hardware itself
consisted of the cheapest COTS components available. Consequentially, none of these components
were rated for the environments that they would be operating in but through the flights, they proved
to work just fine. The initial configuration of the payload consisted of a Coral Dev Board which
costed about 48 dollars through eBay at the time of purchase; a USB Camera unit that costed about

2 of 8 | Vishnoi et al.

15 dollars through Amazon at the time of purchase; and finally, a phone travel power bank that
was acquired through a career fair but can retail for about 15 dollars through Amazon. This kept
the budget of the payload well below 100 dollars at the time of creation.

The initial configuration is shown below in figure 1. This configuration had the Coral Dev
Board placed on the lid of the payload to simplify the wiring and maintenance of the payload after

flights and during debugging. This decision, while optimal for access to the board and maintenance
of the payload, resulted in a hardware failure on SCAMP’s second flight (NS-129). The source of
the problem was that the Coral Dev Board is two boards with the SoC (System on Chip) component
being attached to a breakout board with all the IO (input output) peripherals. During the second
flight, on the launch pad, the payload was tapped aggressively causing the pins securing the SoC
to detach from the breakout board completely. This disconnection occurred on the pins associated
with the USB port connecting the SoC to the Camera, crashing the application responsible for
inference. Post NS-129, the internals of the payload were rearranged to ensure that the board was
more stable, resulting in the layout shown in Figure 2 above. While less maintainable, this
configuration provides the board more safety thus making the payload hardware more reliable.

Due to the COTS nature of SCAMP, the electrical interfaces were rather simple. The entire
payload consisted primarily of 2 cables. One cable connected the Coral Dev Board with the power
bank to provide power to the whole payload while another USB cable provided data from the
camera to the Coral Dev Board. The entire system had an estimated runtime of about 5 hours at
peak load when the power bank was at full charge.

The flight software onboard SCAMP utilizes NASA’s core Flight System (cFS) as its
primary flight software framework. NASA cFS is a TRL 9 flight software framework provided by
NASA Goddard for free due to its open-source nature. cFS comes with a multitude of open-source
applications built to run on top of cFS provided which helps enable rapid prototyping and testing
of flight systems with little downtime. Furthermore, cFS provides a soft real-time system to help
ensure timing requirements met and that tasks onboard the payload are sufficiently scheduled
based on explicitly defined priorities.

SCAMP’s software architecture leverages several of cFS’ components to create the
architecture described in Figure 3. Outside from the core Flight Executive services provided by
cFS, SCAMP utilizes three of cFS’ open-sourced applications - Stored Command, Scheduler and

Figure 1: Initial payload hardware configuration Figure 2: Current payload hardware configuration post NS-129 failure

Vishnoi et al. SBA | March 20, 2025 | vol. XXX | no. XX | 3

Limit Checker - to provide control over the main system. Stored Command and Limit Checker
exist to ensure that the payload does not overheat or throttle by ensuring temperatures provided by
the Temp Mon application (a custom SCAMP application) are within nominal operation ranges.
Additionally, Stored Command is also utilized to run relative time sequence (RTS) commands to
monitor payload utilization through cFS’ built-in performance monitor. Finally, the Camera
Control Application gathers images from the payload camera and saves them to the file system in
a critical data store while dumping the address to the image on the software bus.

3. SCAMP v1 Networks & AI Enhanced Applications
 Alongside the standard applications SCAMP consists of two AI enhanced applications that
run quantized neural networks on the onboard tensor processing unit (TPU). On the Coral Dev
Board, the TPU is integrated with the CPU on the SoC portion of the Coral Dev Board and
commands through a PCIE bus that connects the two processing units. To ensure that the networks
can run on the resource constrained TPU, the models must be quantized accordingly. Quantization
adjusts the weights within the model by encoding them within unsigned integers rather than
representing the weights as 64- or 32-bit floating values.
 Pytorch was used to develop and train the networks utilized on the payload due to its low
learning curve, ease of use, and open-source support. To make it possible to transfer the trained
models to be deployable, a pipeline was required to encode the weights in a quantized state. Since
the Coral TPU was designed by Google, they utilized the TensorFlow Lite representation for
saving quantized weights for the TPU. To achieve this, Google create a tool called torch-edge-
ai1,2. This utility makes it possible to take a Pytorch model and convert it to a TensorFlow Edge
Lite model. This model is then converted to a final TPU representation through the Coral TPU
Compiler which takes a quantized TensorFlow Lite model and converts it into a binary blob that
contains the instructions for the network’s inference that can then be read by the Coral TPU. With
this workflow, developing networks for SCAMP become nearly plug and play.
 The first model that was developed through this pipeline was the Terrain Surveyor network.
The model utilizes a UNet3 architecture to segment ground images to identify what the terrain
below the payload is. The data that was used for this training this model was provided through an
opensource project on Kaggle that aggregated images across several aerial image datasets4. The

Figure 3: SCAMP cFS Software Architecture

4 of 8 | Vishnoi et al.

dataset came with 7 normalized groups that the segmentation model understands: buildings, land,
roads, vegetation, water, objects and undefined. This network was loaded into the Terrain Surveyor
application which waits on images from the Camera Control application and then runs the
inference step on the images. The fastest this app inferred on an image, based on the flight data,
was around 5 milliseconds. This meant it was possible to infer on images at about 30 frames per
second onboard the payload on the NS-128 flight.
 The second application that is enhanced by AI is the Deep Storage Application. The idea
behind this application is to take the image data and compress the images utilizing an autoencoder5.
The way the autoencoder is trained is rather different than the standard training paradigm since
dealing with quantization can affect the autoencoder’s understanding of a latent space
unpredictably. As such the encoder is a pretrained quantized Inception v4 model6 without its final
SoftMax layer. The decoder is then trained and deployed on the ground without any quantization.
The training data used for building this network was the image data from NS-128 and NS-130. As
such the first flight that utilized this model, and application will be NS-131.

4. SCAMP v1 Flight Data
 SCAMP’s maiden flight was Near Space 128 (NS-128). This flight has a very simple cFS
application setup that consisted of the Terrain Surveyor Application, Scheduler, Camera Control
alongside all the built in cFE applications. SCAMP’s payload hardware layout, at the time of the
flight, was in the orientation shown in Figure 1. As far as data goes, Figure 4 shows some of the

images and inferences conducted by the Terrain Surveyor Application during flight. In these
images there are quite a lot of poor hallucinations visible. For example, in the two images on the
right, the Terrain Surveyor model describes the horizon and space as a building. Throughout the
data the vegetation group always appeared to be consistently correct, except for the top left

Figure 4: SCAMP NS-128 Flight Data

Vishnoi et al. SBA | March 20, 2025 | vol. XXX | no. XX | 5

example in Figure 4 that describes shadows as vegetation. The bottom left example in Figure 4 is
one of the best inferences that was achieved by the Terrain Surveyor Application.
 Almost all the faults for these abnormally incorrect behaviors in the model can be pinned
on the quality of the dataset utilized for training the network. The dataset consisted of an
aggregation of multiple different types of aerial segmentation images ranging from drone images
to satellite images. As such the model may have over generalized to some degree and failed to
really understand some of its predictions. Furthermore, none of the images had any shots with
space which explains why the model would predict it being a building. Finally, the model was
trained on about 400 images. There were not enough images in the dataset to make the model
behave better and as a result the outcomes from NS-128 were almost predestined.
 After NS-128, the Temp Monitor Application was added into the software stack to provide
more data and information on the payload’s health throughout the flight. Tragically, however the
Near Space 129 (NS-129) flight was a failure due to the hardware. The problem with this launch
revolved around the placement of the Coral Dev Board inside of SCAMP. After this launch the
hardware was redesigned and ended up in the configuration shown in Figure 2. While the Camera
Control Application and Terrain Surveyor did not collect anything, the Temperature Monitor
Application was still able to function. Figure 5 displays the temperatures of the Coral Dev Board.

What is critical here is that the temperature range remained within the ranges specified by Google
for maintaining the health of the Coral Dev Board (-40° C to 85° C).
 After changing the hardware, SCAMP was ready to fly on NS-130. Between NS-129 and
NS-130 there were no software changes aside from code cleanup and documentation that was left
out due to tight deadlines. Unlike NS-129 however, NS-130 was a success. The most interesting
piece of data received from this flight was understanding if model inference time was affected by

Figure 5: SCAMP Payload Temp during NS-129

6 of 8 | Vishnoi et al.

temperature during the flight. This hypothesis was proven false by Figure 6. Asides from this

finding, NS-130 did not fly a new model for Terrain Surveyor and as such the same hallucinations
present in NS-128 were also prevalent in NS-130.
 Post NS-130 it was clear that data describing each threads runtime and status was required
and the idea to stress test the TPU with multiple networks was brought up. As such between NS-
130 and NS-131 Stored Command, Limit Checker and Deep Storage were added into the flight
software.

5. Conclusions & Future Work
 The next step with the project is to keep pushing these TPUs to their limits. NS-131 and
NS-132 shall provide a good understanding of how far these TPUs can be pushed.
 Outside of SCAMP v1, SCAMP v2 consists of three Coral USB TPUs that can split the
load between six neural networks and applications. The software architecture in Figure 7 depicts
the planned applications that are to be part of this payload. The whole intent behind this is to try
and create a more realistic software stack that can expected on a real NASA mission to see how
useful AI enhanced applications are and how performant they can be. Going through the
applications themselves, Deep Storage and Terrain Surveyor are carried over from SCAMP v1 and
not disturbed at all given their flight heritage. Deep Navigation or Deep Nav is an application that
utilizes the Sensor Control Application to collect environmental data from a sub-payload that is
then used to estimate the position of the payload relative to the launch site. The raw sensor data

Figure 6: SCAMP NS-130 Temp vs Inference time plot

Vishnoi et al. SBA | March 20, 2025 | vol. XXX | no. XX | 7

provided from the Sensor Control package at a rate of 1Hz consists of raw magnetometer readings,
accelerometer readings, gyroscope readings, pressure, temperature, and a calculated altitude given
the pressure and temperature data. Unlike the other networks in Terrain Surveyor and Deep
Storage, Deep Nav utilizes Long Short-Term Memory (LSTM) blocks7 within its model.
 Deep Defense also utilizes LSTMs but instead of finding the position of the payload, it
monitors the health of all the apps onboard and ensures that none of the apps are corrupted. To test
this idea, SCAMP v2 has 5 Exp Apps that are barebone applications that will randomly appear as
corrupted and will try and send bad data to all the Simulation Apps onboard such as Sim Thruster
Control. The Bus Monitor application is a lot like the Deep Storage Application except rather than
compressing data, it utilizes auto encoder to study the structure of data through its reconstruction
loss. Finally, the Secure Inference Application is an application that performs inference on
encrypted data and output its findings with the same encryption pattern. This payload is fully
developed and programmed, if there is an opportunity to fly it before graduation that would be
cool but otherwise it makes for an interest ground test bed environment.
 Overall, The Super Complicated Ai Mission Payload proved that cutting-edge technology
like neural networks can be integrated into spaceflight systems on a tight budget. Despite using
salvaged and third hand parts, SCAMP successfully ran several deep learning networks in near-
space conditions, showcasing both the potential of NASA’s cFS for AI integration and the power
of low-cost, grassroots engineering. SCAMP not only met its goal as a proof-of-concept but also
opened the door for future accessible, affordable, and innovative high-altitude AI research for other
students.

Figure 7: SCAMP v2 Software Architecture

8 of 8 | Vishnoi et al.

Acknowledgments:
 The author would like to acknowledge Charles Hanner, Melissa Buys, Daniil Gribok, and
Meredith Embrey for their support with the initial development of the hardware designs and
mentorship with the initial payload creation. The author would also like to acknowledge Romeo
Perlstein, JJ Kuznetsov and Akemi Takeuchi for their support and mentorship with construction
and assembly of the payload hardware. Finally, the author would like to acknowledge Zoe Roy,
Cody Deyarmin, Sara Garcia-Beech, Eric Pollack, Eshwar Singh, Beth Geist, Alan Cudmore,
Dan Berry, and Adrian Rodriquez from NASA Goddard for their mentorship, guidance and
support with cFS.

Acronyms:

SCAMP
SWaP

Super Complicated Ai Mission Payload
Size Weight and Power

cFS Core Flight System
AI Artificial Intelligence
COTS Commercial of the Shelf
SoC System on Chip
USB Universal Serial Bus
NASA National Aeronautical Space Association
TRL Technology Readiness Level
TPU Tensor Processing Unit
CPU Computational Processing Unit
NS-x Near Space x (flight number)
LSTM Long Short Term Memory

Vishnoi et al. SBA | March 20, 2025 | vol. XXX | no. XX | 9

References:
1 Brick, Cormac, et al. “Ai Edge Torch: High Performance Inference of Pytorch Models on

Mobile Devices.” Google Developers Blog, 14 May 2024, developers.googleblog.com/en/ai-
edge-torch-high-performance-inference-of-pytorch-models-on-mobile-devices/.

2 “Convert PyTorch models to LiteRT” Google, Google, 2024,
ai.google.dev/edge/litert/models/convert_pytorch.

3 Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for
biomedical image segmentation." Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18. Springer international publishing, 2015.

4 Rios, Alexander Daniel, “Aerial Image Segmentation” Github,
https://github.com/aletbm/Aerial_Image_Segmentation/blob/8b980e13b27517c566c3635a9f
2a571d2315b4ba/aerial-image-segmentagtion.ipynb

5 Bank, Dor, Noam Koenigstein, and Raja Giryes. "Autoencoders." Machine learning for data
science handbook: data mining and knowledge discovery handbook (2023): 353-374.

6 Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual
connections on learning." Proceedings of the AAAI conference on artificial intelligence. Vol.
31. No. 1. 2017.

7 Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation
9.8 (1997): 1735-1780.

