
Denoising Videos with Convolutional Autoencoders
A Comparison of Autoencoder Architectures

Tara Larrue
University of Maryland, College Park

tlarrue@cs.umd.edu

Yunchuan Li
University of Maryland, College Park

yli93@terpmail.umd.edu

Xiaoxu Meng
University of Maryland, College Park

xiaoxumeng1993@gmail.com

Chang-Mu Han
University of Maryland, College Park

cmhan74@terpmail.umd.edu

ACM Reference Format:
Tara Larrue, Yunchuan Li, Xiaoxu Meng, and Chang-Mu Han. 2018. Denois-
ing Videos with Convolutional Autoencoders: A Comparison of Autoen-
coder Architectures. In Proceedings of ACMConference (Conference’17).ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, graphics researchers have harnessed the power
of deep learning to solve a multitude of rendering and modeling
problems. One important open problem is how to use machine
learning to cut down on computation costs in photo-realistic 3-D
rendering. In order to produce realistic images, film and design
industries typically use ray tracing algorithms that simulate light
rays interacting with model surfaces. The most common flavor of
ray tracing uses Monte Carlo approaches to uniformly sample ray
directions within a scene. The biggest disadvantage of this approach
is the poor performance due to the large amount of light ray samples
that is required to produce a clear image. If an insufficient amount
of samples per image pixel is used, the resulting image will appear
noisy due to the lack of light in low-sampled areas.

One way machine learning can improve ray tracing efficiency is
to use reinforcement learning to progressively learn where light
comes from in order to guide the light ray sampling strategy [2].
This method results in faster convergence to a noise-less image.
Another approach is to use a neural network architecture called a
convolutional autoencoder to denoise images rendered with a low
sample count per pixel [1]. The latter post-processing approach is
the focus of this paper.

A convolutional autoencoder is composed of two main stages:
an encoder stage and a decoder stage. The encoder stage learns
a smaller latent representation of the input data through a series
of convolutional and down-sampling layers. The decoder stage
expands the latent representation back to the original image. Such
an architecture can be used to solve any image reconstruction task,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Basic convolutional autoencoder architecture.

including the restoration of a full resolution image from a noisy
image (see Figure 1).

While basic convolutional autoencoders have been shown to
be effective at denoising images frame-by-frame, they are insuffi-
cient in reducing the temporal issues that occur when denoising
image sequences. To minimize the temporal "flickering" that can
occur when noise from one frame is different from the noise in the
next frame, the autoencoder network must include a "memory" of
previous images in a sequence so that sequential frames learn a sim-
ilar latent representation. In a related neural network architecture,
called a recurrent convolutional autoencoder, that memory is called
a hidden state, and it is reused to compute future outputs. Still, the
hidden state is anchored to the image plane. This means that if
objects move beyond the convolutional receptive field within the
image sequence, the network cannot effectively extract the feature
evolution over time. In a 2017 SIGGRAPH presentation, researchers
suggested that the addition of spatial warping of the hidden state
could solve this problem [8]. Warping the hidden state based on
the optical flow of the rendered scene from frame to frame will
effectively allow the hidden state to "follow" moving features in the
image sequence (see Figure 2.) The goal of this project is to compare
how these three main autoencoder architectures: the basic convo-
lutional autoencoder, the recurrent convolutional autoencoder, and
the warped recurrent convolutional autoencoder perform in the
application of denoising rendered videos.

In order to gather enough training data for this course project,
we will use previously rendered videos found on YouTube and add
artificial Gaussian noise to them. Although Gaussian noise does
not mimic noise resulting from low sample-per-pixel Monte Carlo
rendering, the task of removing Gaussian noise without blurring

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Tara Larrue, Yunchuan Li, Xiaoxu Meng, and Chang-Mu Han

Figure 2: The hidden state in a recurrent convolutional au-
toencoder can be warped so that the convolutional receptive
field will follow a triangle in an image sequence. [8]

is similar to the task of removing rendering noise. This pilot study
should be able to demonstrate the effectiveness of each autoencoder
to remove noise from rendered videos, even using this simplified
training data set.

2 ARCHITECTURES
2.1 Baseline
The baseline convolutional autoencoder architecture used was
based on an image-to-image translation architecture called "pix2pix"
[4]. The goal of this learning algorithm is to simply translate one
representation of an image into a different representation of the
same image, given enough training data demonstrating the same
translation. Authors of the algorithm were able to achieve this
broad goal using a specialized network called a conditional genera-
tive adversarial network (cGAN). cGAN has two main pieces, the
generator, which is similar to the basic autoencoder and has the
job of translating an input into an output, and the discriminator,
which has the job of classifying those generator outputs as real
(ground truth) or fake (generated). The generator tries to "trick"
the discriminator, while the discriminator tries to classify the gen-
erator’s outputs correctly. The purpose of this architecture is not
only to learn autoencoder parameters, but also to learn an appro-
priate loss function for the specific translation task. This further
offloads some work to the machine, as the developer does not have
to hand-engineer a loss function.

In order to minimize the amount of parameters our networks had
learn, and therefore minimize training time, we decided to only use
the generator portion of pix2pix with a simple L1 loss function. The
pix2pix generator architecture is detailed in Figure 3 and was used
as a starting point to each subsequent architecture designed for this
project. This baseline architecture learns 355,905 parameters.

2.2 3-layer Recurrent Blocks
In a recent paper, NVIDIA researchers added recurrent connec-
tions to a denoising autoencoder network to improve the temporal
stability of denoised image sequences [1].

We implemented a similar structure. In our architecture, each
encoding block was a "recurrent convolutional block" consisting of
3 convolutional layers. The first layer processes the input features

from the previous encoding block. The result is then concatenated to
the previous hidden state, which undergoes the second convolution
in the block and becomes new hidden state. The output of the
third down-sampling convolutional layer goes undergoes batch
normalization and becomes the final output of the encoding block.
All convolutional layers are followed by one activation function
(ReLU). The structure is shown in Figure 4a. This architecture has
3,609,024 parameters.

2.3 3-layer Recurrent Blocks with Spatial
Transformer

A presentation on open problems in real-time rendering from SIG-
GRAPH 2017 discussed the addition of warping the hidden state
in order to improve denoising recurrent architectures [8]. The pro-
posed addition used pre-computed dense motion vectors between
frames in image sequences to translate the hidden state between
iterations in a recurrent block. Although we were not able to imple-
ment this type of warping during the duration of this project, as a
first approximation to this warping, we added a spatial transformer
into the recurrent block architecture after the concatenation with
the hidden state. The architecture is shown in Figure 4b. Spatial
transformers allow the spatial manipulation of feature maps in or-
der for the network to learn features regardless of spatial variations
[5]. It works by learning an appropriate affine transformation ma-
trix to transform the hidden state. By adding a spatial transformer
into our network after the hidden state has been updated with fea-
tures of the new input frame, this will effectively warp the updated
hidden state to align spatially with the new frame. This architecture
had 6,656,466 parameters.

3 TRAINING AND TESTING DATA
4 different video segments were downloaded from YouTube and
used to train and test each of the autoencoders. Each video is a
previously rendered 3-D model presented as a fly-through anima-
tion. 3 of the 4 the videos were used in training, and 1 video was
completely withheld as a separate test set. In addition, 20 percent
of each training video was withheld as additional, smaller test sets.
The training videos are named Community [6], Church [7], and
Bungalow [9]. A total of 2598 frames between the 3 videos were
used to train each autoencoder. The biggest test video is named
Kitchen [9], which consists of 1437 frames. Among the smaller test
videos, Community consists of 298 frames, Church consists of 187
frames, and Bungalow consists of 206 frames. Each autoencoder
was trained for 400 epochs.

To pre-process the training data, the YouTube videos were down-
loaded in HD definition (720p) and frames were extracted at 24
frames per second. Frames were then resized to 256x256 pixel im-
ages. Noisy images were produced synthetically by adding random
Gaussian noise with a sigma of 30 to each frame.

Training was performed with python Tensorflow implementa-
tions on a GeForce GTX 1080 GPU.

4 RESULTS
Statistical analysis including the mean square error (MSE), peak
signal-to-noise ratio (PSNR), structural similarity (SSIM), sharpness
loss, and temporal L1 loss from each of the architectures and test sets

Denoising Videos with Convolutional Autoencoders Conference’17, July 2017, Washington, DC, USA

(a)

(b)

Figure 3: The baseline architecture is a convolutional autoencoder based on "pix2pix," implemented in Tensorflow [3]. (a)
the baseline architecture has 8 convolutional encoding layers and 8 deconvolutional decoding layers with skip connections,
(b) every encoding and decoding block includes a convolution/deconvolution operation that downsamples/upsamples, batch
normalization, and a ReLU activation function.

can be seen in Figure 5. These image quality assessments evaluate
the temporal and spatial performance of the 5 cases, including the
convolutional autoencoder (Baseline), 3-layer recurrent (Rec), 3-
layer recurrent with spatial transformer (WarpRec), bilateral filter
(BiF), and Noised frames (NF). BiF means denoising without using
a learning algorithm. NF indicates the comparison between noisy
input images and ground truth images.

The result of sharpness appears in Figure 5c. The images pro-
cessed by WarpRec are blurrier than the others. The result is in
line with our subjective visual quality assessment. Furthermore,
the deterioration of blurriness in the images might explain the poor
performance of WarpRec in MSE and PSNR because MSE and PSNR
measures the intensity difference between images, shown in Figure
5a and Figure 5b. The averaging between pixels due to blurriness
increases the intensity difference between each pair of the output
images and the target images.

Temporal loss is an important metric for this study, as it quanti-
fies the temporal incoherence of the sequence. This is the flickering
between frames that recurrent architectures have been shown to

reduce. Figure 5e shows that there was some temporal loss reduc-
tion for all the cases, while the cases using the learning algorithm
outperforms the others. However, the result is inconsistent with our
expectation, in which WarpRec is the best case. One explanation
for this might be that the blurry edges and the coloring change of
locality of images in WarpRec cause significantly negative effects
on the output images.

SSIM measures how similar two images are [10]. Figure 5d indi-
cates that Rec provides the most promising result over the others.
It is clear that the learning algorithm cases perform better than
non-learning methods in both SSIM and Temporal L1 Loss. Unex-
pectedly, WarpRec is the worst case in MSE, PSNR, and sharpness
loss.

5 DISCUSSION
One explanation for the poor results from our warped recurrent
architecture is the lack of training time compared to the number
of parameters this network had to learn. We trained each network
with the same amount of training data and the same amount of

Conference’17, July 2017, Washington, DC, USA Tara Larrue, Yunchuan Li, Xiaoxu Meng, and Chang-Mu Han

(a) Internal structure of a recurrent block. The output from the
previous encoding layer becomes the input of the next encoding
layer. The hidden state defined in themiddle of the block is used
in the same block at the subsequent time step.

(b) Internal structure of a recurrent block with spatial transformer net-
work.

Figure 4: Recurrent block architectures.

(a)

(b)

(c)

Figure 5: Statistical results of testing each test set with NF,
BiF, Baseline, Rec, and WarpRec. (a) mean squared error of
all frames, (b) peak signal-to-noise ratio of all frames, (c)
sharpness loss of all frames.

Denoising Videos with Convolutional Autoencoders Conference’17, July 2017, Washington, DC, USA

(d)

(e)

Figure 5: (d) is structural similarity of all frames, (e) is tem-
poral loss of all frames.

epochs. However, in order to make an apples-to-apples comparison
between network architectures, architecture complexity needs to
be considered when determining training parameters. On the more
promising side, we did see artifacts present in results from our
recurrent architecture correct by the warping.

One additionwewould like tomakewould be to add the temporal
L1 loss function to the network loss function. For each architecture,
the loss function was simply the L1 distance frame-by-frame. This
does not sufficiently account for temporal stability of the entire
image sequence. This addition would likely make a significant
difference in our results.

Lastly, we would like to add functionality to incorporate pre-
computed dense optical flow maps into the warping architecture.
The spatial transformer network can be modified to accommodate
this type of spatial warping.

REFERENCES
[1] Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco

Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive
Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising
Autoencoder. ACM Trans. Graph. 36, 4, Article 98 (July 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073601

[2] Ken Dahm and Alexander Keller. 2017. Learning Light Transport the Reinforced
Way. CoRR abs/1701.07403 (2017). arXiv:1701.07403 http://arxiv.org/abs/1701.
07403

[3] Christopher Hesse. [n. d.]. Image-to-Image Translation in Tensorflow. ([n. d.]).
[4] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2016. Image-to-

Image Translation with Conditional Adversarial Networks. CoRR abs/1611.07004
(2016). arXiv:1611.07004 http://arxiv.org/abs/1611.07004

[5] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
2015. Spatial Transformer Networks. CoRR abs/1506.02025 (2015).
arXiv:1506.02025 http://arxiv.org/abs/1506.02025

[6] João Marques. [n. d.]. Project fly-through LUMION 3D. ([n. d.]).
[7] Render3DQuickly. [n. d.]. 3D architectural animated fly through of Eagle creek

church | 3d rendering video | 3 d walk through. ([n. d.]).
[8] Marco Salvi. 2017. The Future of Real-Time Rendering. In Open Problems in

Real-Time Rendering course. SIGGRAPH, Los Angeles.
[9] TheRedCottageVideos. [n. d.]. 3d Virtual Tour of the Independence Bungalow.

([n. d.]).
[10] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image

quality assessment: from error visibility to structural similarity. IEEE Trans.
Image Processing 13, 4 (2004), 600–612. http://dblp.uni-trier.de/db/journals/tip/
tip13.html#WangBSS04

https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3072959.3073601
http://arxiv.org/abs/1701.07403
http://arxiv.org/abs/1701.07403
http://arxiv.org/abs/1701.07403
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1506.02025
http://dblp.uni-trier.de/db/journals/tip/tip13.html#WangBSS04
http://dblp.uni-trier.de/db/journals/tip/tip13.html#WangBSS04

	1 Introduction
	2 Architectures
	2.1 Baseline
	2.2 3-layer Recurrent Blocks
	2.3 3-layer Recurrent Blocks with Spatial Transformer

	3 Training and Testing Data
	4 Results
	5 Discussion
	References

