Designing Interaction Support for Mascot Data

Visualization Grammar

Charlie Lu
University of Maryland College Park
clue@umd.edu

Abstract

Interactive data visualizations act as a bridge
between raw data and meaningful insights in
a way that’s not possible with static designs.
Mascot, short for Manipulable Semantic Com-
ponents, is a data visualization grammar de-
signed to support the generation of expressive
charts and currently does not have support for
interactive visualizations. In this paper we
aim to explore the design for the framework
that will enable interaction within Mascot vi-
sualizations.

1 Introduction

Data visualization grammars exist to empower design-
ers by providing a structured framework for creating
visualizations. Declarative grammars such as Vega[l],
geplot2[9], and D3[4] allow users to express ”what”
they want to visualize without delving into the intrica-
cies of "how” to achieve it[5]. Unlike some traditional
declarative languages that primarily focus on specify-
ing the "what” (e.g., what visual elements to show and
how they relate), Mascot emerges as a high-level gram-
mar that provides abstractions for both the structure
and the procedure involved in constructing a chart[2].

This dual emphasis allows users not only to define
the visual elements and their relationships but also
to have a measure of control over the procedural as-
pects of how the chart is created. By specifying the
steps involved in the construction process, Mascot pro-
vides users with more granular control and flexibility
in shaping the final visualization. The emphasis on
both structure and procedure is a more programmatic
approach, enabling users to influence not just the ap-
pearance but also the underlying relationships of chart
objects.

Mascot aims to be able to support interactive vi-
sualizations in addition to its static charts. To this
end, we intend to be able to cover a whole range of
user intents as in coverage over Yi et al.’s interac-
tion taxonomy: select, explore, reconfigure, encode,
abstract/elaborate, filter, and connect[10]. The sub-
sequent sections will explore the pivotal role of de-
pendency graphs in Mascot’s architecture. These vi-
sual representations not only capture the relationships
within a chart but also lay the groundwork for un-
derstanding the dynamic behaviors that support user
interactions.

2 Related Work

Mascot draws on prior work in data visualization
grammars. There are several data visualization tools
that we draw from. Vega, Vega-lite, and D3 are a
few that Mascot examined. D3 is a powerful founda-
tional library of which, Mascot, Vega[l] and by exten-
sion Vega-lite[6] are built on. It offers a low-level ap-
proach which allows it to become a foundational build-
ing block of higher-level chart libraries[4].

Vega and by extension Vega-lite provide a higher-
level abstraction than D3. The method in which Vega
handles chart construction is through a JSON speci-
fication from which Vega’s JavaScript runtime parses
to generate their view models|7].

2.1 Vega Dataflow Graph

Vega employs a dataflow graph as a foundational
structure to define the relationships between visual
elements[8]. The Vega dataflow graph, created from
a declarative specification, represents the flow of data
and transformations, capturing the essence of how
data is taken, processed, and eventually mapped to
visual properties. This architecture enables a clear
separation between the specification of visual elements
and the underlying data transformations, facilitating a
more concise and expressive method for creating com-



plex visualizations. The dataflow graph in Vega serves
as a key mechanism for orchestrating the dynamic as-
pects of visualizations, providing a powerful founda-
tion for building intricate and interactive data-driven
graphics[7].

3 Overview of Mascot architecture

Mascot is a semantic-components-based visualization
grammar that offers a high-level abstraction for the
structure of a chart and the procedure to construct and
modify its structure[3]. The procedure is defined by a
series of operations e.g., repeat, divide, and densify.
In this way, it is intended to support the creation of
charts from a graphics-centric perspective.

Every visualization in Mascot are composed from
four semantic components: visual object, layout, en-
coding & scale, and constraint. These components col-
lectively define the structure and appearance of charts
generated through Mascot.js.

scene

l I l

axis legend collection grid lines
collection glyph mark
mark

Figure 1: Scene graph showing visual objects hierarchy

3.1 Visual Object

A visual object in Mascot encompasses basic graphical
elements such as marks, including geometric shapes
like circles or polygons, text elements, and images.
These serve as the foundational building blocks for cre-
ating visualizations.

e Marks are basic graphical elements in Mascot vi-
sualizations. Marks can be a geometric shape,
text element, or image.

e Collections in Mascot group visual objects, each
representing a distinct data item. For instance, a
bar chart might consist of a collection of rectangle
marks, with each rectangle symbolizing a specific
month.

e Glyphs are groups of marks within Mascot that
convey attributes of the same data item. In sce-
narios like a box-and-whiskers plot, glyphs may
include multiple marks, each representing differ-
ent attributes such as maximum, minimum, or the
75th percentile.

e Reference Objects, including axes and legends,
provide contextual information essential for in-
terpreting visualizations. They contribute to the
overall understanding of how to read and interpret
the chart.

e A scene in Mascot constitutes a self-contained
view, comprising mark/glyph collections and ref-
erence objects. Scenes encapsulate specific as-
pects of a visualization and aid in organizing vi-
sual components.

3.2 Parametric Layout

Mascot employs parametric layouts to determine the
positions of visual objects within a collection. Layout
types such as grid, stack, packing, and treemap offer
flexibility, allowing adjustments to layout parameters.

3.3 Encoding & Scale

Visual encoding specifies the mapping between a visual
channel and a data field. For instance, the height of
rectangles in a bar chart may encode sales values. The
scale component determines how data values map to
the properties of a visual channel.

3.4 Constraint

Constraints define spatial requirements for visual ob-
jects, influencing their relative arrangements. Exam-
ples include aligning objects to the left or maintaining
specified distances between elements.

3.5 Scene Graph

The underlying mechanism behind how Mascot builds
its charts is by employing a scene graph as a fundamen-
tal data structure to represent the hierarchical com-
position of visual elements in a data visualization. It
organizes visual components, such as marks, glyphs,
collections, and axes, into a tree-like structure that
reflects their relationships and nesting within the vi-
sualization.

4 Dependency Graph

While the scene graph provides a hierarchical struc-
ture for organizing components, it does not explicitly
capture the dynamic relationships and dependencies
needed to have support for interactive visualizations.
As such, we recognize the importance of maintaining a
clear representation of dependencies and interactions
among these elements. We turn our attention to the
design of the dependency dataflow graph. This graph
extends beyond the static arrangement of visual ele-
ments and focuses on modeling the dynamic interac-



tions and data dependencies that drive the construc-
tion and updates of a visualization.

In the Mascot data visualization system, the depen-
dency graph serves as a pivotal mechanism for cap-
turing the intricate relationships between various el-
ements, allowing for dynamic updates and maintain-
ing the coherence of visualizations. This graph con-
sists of nodes representing scene element properties,
layout builders, scale builders, and width and height
encoders. Edges between these nodes signify depen-
dencies, outlining the flow of influence from one prop-
erty to another as updated values propagate through
a scene.

4.1 Node Types

Within the Mascot dependency graph, nodes are
broadly classified into two main categories

4.1.1 Scene Element Properties

These nodes reflect properties of elements in the scene.
For instance, nodes representing mark properties at-
tributes like height, width, and x/y position. These
properties are fundamental to defining the visual ap-
pearance and positioning of graphical elements within
a chart.

4.1.2 Operators

Operator nodes function as crucial intermediaries
within the dependency graph of a chart. These nodes
process changes, serving as pivotal components that
facilitate the arrangement and behavior of visual ele-
ments. In essence, they act as intermediaries between
specific scene element property nodes, ensuring that
changes propagate seamlessly through the dependency
graph, reflecting the overall structure and behavior of
the visualization. These nodes can be divided into two
categories:

Builders: Builder Nodes encompass a diverse cate-
gory constituting nodes that receive input and produce
output. These nodes encapsulate various functionali-
ties, ranging from algorithms responsible for determin-
ing the spatial arrangement of visual elements to en-
coders and scales. For instance, a figure (Figure X)
illustrates how a builder node orchestrates the layout
of visual elements within a chart, providing a tangi-
ble example of its role in the broader context of the
dependency graph.

Constraints: These nodes are not connected by di-
rected edges. Instead, these nodes are reserved for any
signals that might propagate to all connected nodes.
They act as conduits for signals that synchronize spe-
cific attributes among connected nodes. For instance,
an equality node passes along a change to all connected
nodes, ensuring their values remain equal.

4.2 Edge Types

Edges between nodes indicate the flow of influence
within a scene. When a property or parameter un-
dergoes a change, it initiates a cascading effect on its
downstream dependents. For instance, modifying the
scale of a color encoding can lead to updates in the
color representation of marks, influencing the visual
appearance of the entire chart. In the Mascot depen-
dency graph that we are developing, we define two
different types of edges.

Directed Edges for Signal Propagation: These
edges signify the directional influence of changes
within the dependency graph. When a property or
parameter undergoes modification—such as adjusting
the scale of an x/y axis or altering a layout—the di-
rected edges ensure a cascading effect. Downstream
nodes, dependent on the changed property, dynami-
cally update to maintain coherence within the visual-
ization.

Equality Edges for Shared Properties: In ad-
dition to directed edges, equality edges establish undi-
rected connections among nodes to facilitate property
sharing. In scenarios where visual elements, like bars
in a multibar chart, share common attributes (e.g.,
left alignment), equality edges ensure that a change
in one component propagates equally to others. This
bidirectional linkage promotes consistency in proper-
ties across related visual elements.

(a) (b)

454 '45

Figure 2: (a) A slope chart and (b) the corresponding
section of the dependency graph

4.3 Dependency Graph Example

In order to better understand how these node and
edges work together to form a dependency graph, we’ll
illustrate an application of the dependency graph in
Mascot. We'll examine a common visualization type,
the slope chart. A slope chart typically displays the
change in values between two points. Let’s consider
the simple slope chart in Figure 2.



4.3.1 Slope Chart

In the corresponding dependency graph for this slope
chart in Figure 2(a), various nodes represent key el-
ements such as position, size, and color. Each slope
is considered a mark and consists of two vertices that
lie on either axis. This dependency graph captures
the relationships between these elements, enabling dy-
namic updates when underlying data changes. Figure
2 zooms in on the section of the graph that reflects
the positioning of the axes and marks. For example,
a change in the y field for either axis eventually prop-
agates to the y-values of the corresponding vertices
by triggering a cascading update through the depen-
dency graph. In addition, the example illustrates how
undirected edges, specifically in the form of an equal-
ity constraint, play a crucial role. As the vertices lie
on the axis, an update to the x position of one axis
similarly updates the x positions of the corresponding
vertices.

Exploring specific examples and their correspond-
ing dependency graphs provides valuable insights into
the broader principles of how visualizations are con-
structed within the Mascot framework. By delving
into various chart types, our team gains a nuanced
understanding of the dependencies that govern their
dynamic behavior. These examples serve as practical
guides, illustrating how changes in data fields propa-
gate through the dependency graph, influencing the
visual elements’ attributes. As we examine diverse
chart structures, from scatter plots to bar charts, we
established a foundational knowledge base for creating
robust and adaptable dependency graphs. This proac-
tive exploration of examples equips our team with the
foresight needed to implement effective and efficient
dependency graphs, laying the groundwork for the con-
tinued development of the Mascot visualization frame-
work.

5 Conclusion and Future Work

Creating a robust grammar depends on creating a solid
foundation on which to build upon. Mascot is not aim-
ing to define a few common interactions for most plots
but to be able to allow the users to define interactions
themselves. With a robust dependency graph under-
standing and definition we can allow that to happen.

6 Acknowledgments
I’d like to thank Professor Zhicheng Liu and Shubham
Karanjekar for their assistance.

References

[1] Vega: A visualization grammar.
http://trifacta.github.io/vega, April 2014.

[2] Mascot.js - manipulable semantic components in
data visualization. https://mascot-vis.github.io/,
2021.

[3] Mascot.js - manipulable semantic com-
ponents in data visualization: Overview
of component model. https://mascot-
vis.github.io/tutorials/vom/ , 2021.

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey
Heer. D3 data-driven documents. [EEFE Trans-
actions on Visualization and Computer Graphics,
17(12):2301-2309, 2011.

[5] Jeffrey Heer and Michael Bostock. Declara-
tive language design for interactive visualization.
IEEE Transactions on Visualization and Com-

puter Graphics, 16(6):1149-1156, nov 2010.

[6] Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. Vega-lite: A
grammar of interactive graphics. IEEE Transac-
tions on Visualization and Computer Graphics,
23(1):341-350, 2017.

[7] Arvind Satyanarayan, Ryan Russell, Jane Hoff-
swell, and Jeffrey Heer. Reactive Vega: A Stream-
ing Dataflow Architecture for Declarative Interac-
tive Visualization. IEEFE Transactions on Visual-
ization & Computer Graphics (Proc. IEEE Info-
Vis), 2016.

[8] Arvind Satyanarayan, Kanit Wongsuphasawat,
and Jeffrey Heer. Declarative interaction design
for data visualization. In Proceedings of the 27th
Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’14, page 669678,
New York, NY, USA, 2014. Association for Com-
puting Machinery.

[9] Hadley Wickham. ggplot2: Elegant Graphics for
Data Analysis. Springer, 2009.

[10] Ji Soo Yi, Youn ah Kang, John Stasko, and J.A.
Jacko. Toward a deeper understanding of the
role of interaction in information visualization.

IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1224-1231, 2007.



