Developer Perceptions on Trusting Software

Ryan ElKochta Anders Spear Michael Suehle
University of Maryland University of Maryland University of Maryland
relkocht@umd.edu aspr@umd.edu msuehle @umd.edu
Tien Vu
University of Maryland
vut@umd.edu
Abstract SSH backdoor consequently came very close to making it into

How do software developers decide to trust third-party code?
To investigate the level of awareness software developers have
regarding supply chain vulnerabilities, we conducted seven
semi-structured interviews with University of Maryland stu-
dents who had experience writing code in industry through
internships and full time positions. We performed inductive
coding on the interviews and found that popularity, usage
by personally known people, and verifiability of source were
major factors that the participants looked for to determine the
trustworthiness of dependencies. We also found that indus-
tries tend to assign dedicated groups to ensure security and
that participants care roughly the same about security when
developing personal projects versus projects for industry.

1 Introduction

Every developer that plays a role in the development and dis-
tribution of software introduces the potential of a supply chain
attack as every developer must choose to trust the software
they run on their systems and the software they pull in as
dependencies. If a developer trusts malicious or vulnerable
software, then the software they produce can itself be mali-
cious or vulnerable. Dependent software can then inherit the
malicious or vulnerable code via the supply chain of software.
As aresult, it is important for developers to know who they
are trusting, whether it is a package maintainer or another
source for software, such as the developer themselves. More-
over, programming languages tend to have their own package
environment. Python might use pip, Rust uses cargo, and C
compilers typically use libraries from the system itself. Both
the system software and the dependency software can impact
the software developed and distributed from the developer’s
system and thus are important factors in the security of the
supply chain.

There have been an increasing number of supply chain
attacks performed in the wild. For instance, XZ Utils, a com-
pression library included on most Linux systems, was back-
doored by one of its maintainers in February 2024; a remote

popular Linux distributions [2]. In another instance, following
a dispute with Canadian messaging app Kik over ownership
of an NPM package name, a developer broke the build sys-
tems of countless JavaScript applications, including those
from Meta, Netflix, PayPal, and Spotify, by simply removing
a popular package of his [4]. This incident demonstrated the
wide breadth of impact a software supply chain disruption
incurs.

Our primary research question is "how do software devel-
opers decide to trust the software they use?" To answer this
question, we conducted semi-structured interviews asking par-
ticipants about their experiences developing software profes-
sionally and for personal projects. The interviews used struc-
tured questions to target key questions about the developer’s
practices for downloading and installing software and pack-
ages and how they decide to trust the software and packages.
Making the interviews semi-structured allowed the interview-
ers to follow-up on participant statements more dynamically,
especially in regards to ideas and solutions not previously
considered. Ultimately, this approach was able to obtain a
broad sense of the user’s perceptions and trust before allow-
ing the interviewer to dig deeper into what their behaviors
and thoughts are.

2 Related Work

2.1 Types of Supply Chain Attacks

Ladisa et al. [11] develop a taxonomy to describe mechanisms
for performing a supply chain attack against an open-source
project. They describe four systems that can be leveraged:
version control systems, build systems, distribution platforms,
and open-source developers’ workstations. This taxonomy is
useful to our work, although we are not limiting ourselves
to the open-source supply chain but investigating the supply
chain of even proprietary code. Our interview study will pri-
marily focus on the build system (dependency managers and
package repositories) and developer workstation aspects.

Ohm et al. [13] name some specific issues that we aim to
investigate. They note that developers often place a lot of trust
in the authenticity of packages that they include as dependen-
cies. Even a careful developer might make mistakes; Bagmar
et al. [1] describe package impersonation attacks, where a ma-
licious actor publishes a package with a confusingly similar
name to a popular dependency. During our semi-structured
interviews we asked developers how they added dependencies
to their projects and try to understand their thought process
for why they thought those packages were safe (if they were
even considering this). Additionally, we investigated corpo-
rate policies for vetting project dependencies.

Another issue is mentioned by Chandramouli et al., [3]
who write that developers’ workstations “present a fundamen-
tal risk” to software supply chain security. Developers may
install third-party software on their workstations, which dra-
matically increases the supply chain attack surface. During
our semi-structured interviews we asked developers how they
reason about the trustworthiness of the software they installed
on their workstations and how this might have affected the
security of software they developed.

2.2 Reflections on Trusting Trust

When discussing supply chain attacks, the 1984 article “Re-
flections on Trusting Trust” by Ken Thompson [17] cannot go
unmentioned. Although it does not discuss supply chain at-
tacks specifically, it discusses the underlying assumptions that
allow attacks on the software supply chain to occur. Thomp-
son summarizes this well in the last section: “The moral [of
this article] is obvious. You can’t trust code that you did not
totally create yourself.”

He demonstrates this with a toy example in which he “at-
tacks” a C compiler by compiling a malicious version of the
compiler. The malicious compiler could then compile other
code with a Trojan horse included. Because the compiler it-
self was malicious, no inspection of the compiled program’s
source code would turn up anything malicious. In this case, all
that was needed to propogate malicious code was a malicious
compiler on a developer’s machine. Although this toy exam-
ple of an extremely potent supply chain attack was written
and published in 1984, this kind of supply chain vulnerability
would continue to exist today.

Our research thus seeks to understand the ways in which
up-and-coming developers at the University of Maryland trust
code they did not create themselves and the actions they may
or make not take to avoid becoming or creating a supply chain
attack vector.

2.3 Prevention and Mitigation Techniques

One mitigation technique for software supply chain attacks
that has gained popularity in recent years is the creation of a
Software Bill of Materials (SBOM). An SBOM is a formal,

machine-readable file that documents all components and
dependencies of software and their relationships [14]. Their
popularity likely grew due to their mention in a White House
executive order that identified them as a critical measure for
enhancing supply chain security [9].

There are also scanning tools, such as Eclipse Steady [15],
that scan software projects for dependency vulnerabilities,
package analysis techniques for "sanitizing" package man-
ager repositories [7], and potential metrics that software de-
velopers use for determining the security of packages [6]. We
hypothesized that the majority of our participants rely on a
combination of these techniques when doing software devel-
opment in industry with the consideration potential metrics
from Lopez de la Mora and Nadi [6] such as popularity and
release frequency to decide whether or not to trust a package
being the most common.

2.4 Supply Chain Interview Studies

A common approach for qualitative research in supply chain
usage are interview studies. Fourné et al. [8] interviewed 24
participants from the Reproducible-Builds.org project, identi-
fying experiences that help and hinder adoption. They identify
that communication is crucial for disseminating R-B benefits
to the community. We were aiming to understand the aware-
ness that newer software developers may have about R-B and
other tools for validating the integrity of dependencies, seeing
if developers have been exposed during school or early in
their career.

Wermke et al. [19] interviewed 27 open source maintain-
ers about security and trust considerations in their projects,
finding that the projects were highly diverse both in deployed
security measures and trust processes. They argued that the
community cannot treat Open Source Code (OSC) as a black
box, and needs to put their support back into the projects. The
authors focused on the processes relating to security within
OSC itself. Conversely, we wanted to focus on the end users
of the OSC, hoping to identify their level of support and un-
derstanding of the security related to OSC.

Larios Vargas et al. [12] identified 26 technical, human,
and economic factors that developers consider in their depen-
dency selection processes based on 16 interviews and a survey
with 115 developers. We used the factors they identified to
focus the interviews we conduct. We wondered about the
transferability of their findings toward the student developer
demographic, and if there are particular groups of considera-
tions that our studied users prefer.

Wermke et al. [18] interviewed 25 software developers, ar-
chitects, and engineers about the role/prevalence of OSC, com-
pany attitudes towards the security of OSC, and stakeholder
considerations regarding OSC. They found that although OSC
adoption is widespread, users have ambivalent attitudes to-
wards security. Many users mentioned only planning to ad-
dress incidents if/when they happen, while still wishing for

large scale audits of said OSC dependencies. Their study
focused heavily on the frameworks that companies use to ad-
dress the problem, we focused our research on the individual
developer. Students likely have experience with much smaller-
scale projects with less rigorous pipelines, so we expected
to gain insight into whether they still consider supply chain
vulnerabilities in their development process.

3 Methods

3.1 Participant Selection

We posted a 1-2 minute eligibility survey (hosted using
Qualtrics) on the UMD Discord channel, UMD CMSC Dis-
cord channel, UMD CS graduate student Slack channel, and
UMD Reddit page.

This survey captured basic information for determining
software development experience level such as coursework
level, major, and experience writing software as well as three
knowledge check questions from Davinlova et al. [5] to check
if the respondents actually have programming experience.
See Appendix A for the eligibility survey. For a respondent
to be eligible, they must have experience writing software
in industry, experience in writing personal software projects,
and they must correctly answer the three experience check
questions. We selected seven of the eligible participants to
participate in the interview, prioritizing more experienced
respondents.

3.2 Semi-structured Interview

We conducted 20 to 30-minute semi-structured interviews
with each of the seven participants who were compensated
$25 for their time. The interviews followed an outline allow-
ing for additional follow-up questions as needed. The outline
is in Appendix B. The information divulged in the interview
was collected via audio recording and transcribed with the aid
of OpenAl Whisper. The transcripts were then imported into
NVivo for analysis and the audio recordings deleted.

We began our semi-structured interviews with a discussion
of the participant’s professional development experience. We
asked what languages were used and what third-party pack-
ages (if any) were imported into each project. Next, we had
the participant discuss their thought process in choosing spe-
cific packages, in addition to corporate procedures for pulling
in new dependencies. During this time, we were careful not to
explicitly mention security to avoid cluing the participant to
our research question' . We next were more explicit in asking
the participant whether they took any steps to ensure depen-
dency trustworthiness, and what those were.

We followed this with a similar discussion of what third-
party software participants had installed on their development

I As we will discuss, this was not entirely successful.

machine(s) and where they obtained this software, with the
goal of ascertaining whether their workstation was trustwor-
thy. In addition, we discussed all of the above for personal
projects, with the aim of learning whether participants’ prac-
tices differed in a professional or personal environment.

Finally, we asked participants general, broad questions
about their views on what makes a third-party piece of code
trustworthy and the effects of having malicious or vulnerable
software on their workstations.

3.3 Ethical Considerations

Our study was approved by the UMD Institutional Review
Board as exempt, and as anticipated, we did not encounter
any major ethical issues. To minimize potential for ethical
issues, we took several steps:

* Our eligibility survey did not ask participants for any
personal information aside from email for the purposes
of contacting them for an interview.

* Our interviews began with a reminder to participants
not to disclose anything sensitive about their company if
possible.

* Our interviews began with a statement informing partici-
pants that they can later redact information they felt was
too revealing.

* Our transcripts of the audio recordings redacts any and
all names, whether they were of companies or people.

* Our audio recordings were deleted after transcription,
such that there is no link between the participant (whose
name was not recorded) and their company (whose name
was redacted).

These steps were taken for several reasons. The first is
that reducing the amount of information we retain about the
participant and their company minimizes potential for any
ethical issues right off the bat. The second is that our ques-
tions may cause the participant to accidentally share sensitive,
NDA -restricted information. Redacting names, especially of
companies, helps to generalize the information gathered and
prevents the participant from being at risk of legal action from
their employer.

3.4 Coding and Analysis

Our data analysis involved qualitative coding. We assigned
the interviews to each other such that each interview would be
individually coded by two researchers. After every interview
was coded twice, we met and consolidated the codes into
final, high level themes that we analyze in 4 Results and
Discussion. We chose to limit ourselves to qualitative, rather
than quantitative, analysis because we had a small sample

size and our sample was not very representative of software
developers in industry.

4 Results and Discussion

4.1 Participant Demographics

We received a total of 33 responses in our eligibility survey.
14 (42%) respondents were undergraduate students, 18 (55%)
were graduate students, and 1 (3%) was not enrolled as a stu-
dent. We chose to prioritize interviewing the graduate students
because they were likely to have the most experience devel-
oping software both professionally and personally. Outside of
the graduate students, we also invited a few undergraduate stu-
dents with some professional experience. In total, we invited
13 participants to be interviewed and were able to interview
7. See Table | for more details.

Table 1: Demographics of selected participants.

ID | Program Professional Experience

P1 | Graduate Full-time

P2 | Graduate Full-time, Part-time, Internship
P3 | Undergraduate | Internship

P4 | Graduate Full-time

P5 | Undergraduate | Internship

P6 | Graduate
P7 | Graduate

Full-time, Part-time, Internship
Full-time, Internship

4.2 Selection of third-party dependencies

All participants mentioned popularity as a significant factor
in which packages they trusted. In particular, participants
evaluated popularity based on mentions on Stack Overflow,
Reddit, Hacker News, and GitHub. Two mentioned the down-
load count on their package manager as well. A couple of
participants mentioned looking at which dependencies similar
open-source projects used, and pulling those in themselves.
An interesting to note is that mentions on these websites do
not necessarily correlate with popularity; a concern here is
that if a malicious actor published fake posts on these web-
sites recommending a malicious dependency, many of the
participants would not have caught this. Additionally, a sup-
ply chain attack could absolutely still be mounted against a
popular dependency.

Interestingly, multiple participants mentioned that they had
to pull older, potentially unmaintained versions of packages
due to dependency and/or toolchain conflicts. In particular,
P7 said that they usually used a few-months-old versions of
Python packages “because that seems to be very compatible
with the deep learning models we are using right now.” This
was surprising to us; we expect that some companies are not
diligent about keeping dependencies up-to-date, but not in-
tentionally keeping old versions of dependencies. We suspect

that a solution to this would be for packages to more rigidly
adhere to SemVer [16], and keep older minor versions main-
tained with security patches. It is also possible that developers
pin old versions for non-security-critical packages; the issue
is that a vulnerability in one package may be exploited to take
over another, potentially security-critical, piece of installed
software.

Another factor some participants mentioned was the source
of the package. One participant mentioned trusting packages
affiliated with large institutions (such as research code); an-
other mentioned checking the name of the package to verify
that it matches expectation. Finally, two participants men-
tioned source code availability being a factor that makes a
software package more trustworthy.

Particularly in a professional context, many participants
trusted others to decide on which packages to use. Some
mentioned being told by people they know about relevant
packages, and a few mentioned working within the constraints
of corporate policy. (We will elaborate on our findings about
corporate policies in section 4.3).

We also asked participants about how they obtained the soft-
ware packages. The majority used an official or semi-official
package manager of the language they were developing in;
in a professional context this was often NPM, pip, or Conan.
Only two participants mentioned having an internal artifac-
tory with known-good packages. Most participants installed
software themselves, and the vast majority of those who did
mentioned having little oversight in how they did so.

Finally, most participants indicated that at least on occasion,
they took no steps to ensure third-party dependencies were
secure.

The fact that the vast majority of participants often did not
consciously think about what repository the package came
from, or what organization(s) are responsible for maintaining
it, is fairly alarming. Educating developers on security is
not likely to be sufficient, since developers’ primary aim is
to solve the problem at hand, rather than to do so securely.
Technical solutions, such as SBOMs [14], offer one possible
path forward.

4.3 Removing the Developer From the Loop

When discussing how dependencies are included in the soft-
ware projects our participants were developing, many noted
some interesting facets of corporate software development
practices. These facets could be summarized cleanly as pro-
cesses designed to remove the developer from having to make
security considerations during software development.

One such process is a dedicated review team. Many partici-
pants, such as P1, noted that "there is a specific team which
is set up, which will review the software, check, are there any
vulnerabilities or something." An interesting aspect of this
response is the "or something" appended to their statement.
This demonstrates a lack of clarity into the processes of this

team which could be a successful sign of removing the de-
veloper from the loop. The developer no longer has to think
about security. Instead all of those thoughts and concerns can
be handled by another party. As a result, the developer can
focus on the job at hand: developing, not security.

Another such process is an artifact repository. These artifact
repositories can do a lot of heavy lifting in terms of making
sure developers and build systems are pulling known safe and
secure copies of dependencies. P4 stated that "[they] typically
would end up adding whatever third party dependency... to
some sort of like a software supply chain monitoring like
system that they had." These systems can run vulnerability
scanners and automate the process of verifying the safety of
these dependencies. Then, the dependency would end up in
a "secondary repository" that would cache the package for
other developers in the company. This also has the added
benefit of caching the work of a review team or review system
such that a large body of vetted software can be pulled by any
developer at any time without engaging the review team and
having to wait for approval.

One last process is the pre-installation or provision of vet-
ted software relevant to the developer’s work. This includes
the pre-installation or provision of software such as IDEs,
browsers, and word editors. By supplying the developer with
most or all of the software they will need to accomplish their
tasks, the company avoids having the developer seek out soft-
ware themselves, software which either is itself not secure or
which comes from an insecure source. To this end, P4 noted
that their corporate MacBook had an app store that "only [has]
like 20 apps that the company approves” containing software
such as a "modified vs code" or "microsoft word".

These processes serve a common goal: alleviate security
considerations from the developer. Instead of making the de-
veloper examine software for security vulnerabilities, a team
dedicated to that task accomplishes the examination for them.
Instead of making the developer check to make sure they are
pulling dependencies from the correct source (and that the
source has not been tampered with), an artifact repository
caches known safe copies of the dependency. Instead of mak-
ing the developer install software they need from unknown
sources, either provide a source or pre-install the software for
them.

One interesting contrast between companies was found
in this respect: the focus of the company. P7 noted that their
employer was not technology-focused and lacked a body of ex-
pertise that a technology-focused company might have about
supply chain attack vectors. As a result, P7 did not have to
submit dependencies to a review team or reap the benefits
of an artifact repository. P7 did, however, have to discuss
changes in dependencies in weekly group meetings which
moreso addressed the purpose and necessity of adding or
upgrading dependencies as opposed to a security review.

This contrast highlights a gap where software supply chain
security processes and software solutions require more tech-

nical expertise than is available in many non-technology-
focused companies. As a result, we find a need for low-
overhead software supply chain security processes and so-
lutions that enable these companies to secure their software
supply chain.

4.4 Professional vs. Personal Development

Participants have roughly the same attitude towards security
both when developing personal projects and when develop-
ing for industry. We saw two schools of thought for security
behavior in work environments. Some participants exercised
increased caution when performing actions such as installing
potentially untrustworthy software, mentioning that they did
not want to introduce possible security vulnerabilities. But
many other participants felt the opposite; they expressed com-
fort taking risky actions, relying on corporate security policy
such as CVE scanners, dependency graphs, and anti-malware
to handle the possible consequences.

Users often forwent recommended behaviors such as veri-
fying trust in the publisher, verifying hashes, using up-to-date
software, and checking for known exploits despite mentioning
later in the interview that these were indicative of software be-
ing trustworthy. In personal environments, most participants
expressed similarly lax security habits. Users focused on the
end result, with security at the back of their mind. "If it works,
you are good to go (P1)". It is concerning how participants
justified a lack of security-conciousness in the workplace by
claiming others at the company handle it, but turn around
and exhibit the same security weaknesses, this time without
any potential security support system. Some participants were
aware that they failed to follow best-practices, but as P2 said
"are you really going to be like expected to check [the hash]
every single time?"

One notable exception to this was P6. In 2017, 30 of their
virtual and physical machines were compromised by Wan-
naCry. In the wake of the attack P6 said they were much more
careful about security, taking measures such as verifying digi-
tal signatures, checking files for rootkits, and not placing trust
in just one antivirus solution. But even P6 admits that day-
to-day they do not always perform the full suite of checks,
reserving that energy for "something very important, like an
operating system image (P6)".

Dedicated development computers more common in in-
dustry. All participants, except P7 who was a special case in
which their company was unable to provide them with a dedi-
cated work computer, mentioned that their company provided
them with a dedicated work computer. Two participants, P2
and P4, further specified that all of their development was
actually done on a remote server via SSH connection on their
work computer.

The software permitted on the work participants’ work
computers varied. Roughly half of the participants were al-
lowed to install anything on their work computers with their

company keeping track of what was installed. For example,
P1 said, "you can install anything you want. If it is suspicious,
they will flag it and then you have to remove it.” The other
half of the participants indicated that there was a white list of
software that was allowed on their computers. For example,
P4 said, “you have a corporate managed mac that that can only
have like 20 apps that the company approves." This shows
mitigation versus prevention for supply chain attacks. Record-
ing software that gets downloaded is a mitigation technique
while only allowing a specific list of software is a prevention
technique.

Two participants, P3 and P6, indicated using dedicated
computers for their personal projects. The rest of the partici-
pants used their personal, daily-use computers. Software that
participants mentioned having on their personal, daily-use
computers included software development software such as
code editors and runtime environments, entertainment soft-
ware such as videogames and music streaming applications,
browsers, and messaging services such as Discord. Partici-
pants largely indicated that they go to the official websites for
installing software both when installing software for personal
use and for work (when it is permitted).

5 Challenges and Limitations

5.1 Communication

One major challenge that all of the interviewers ran into were
participants that realized the intent of the interview ques-
tions during the interview. This, alongside the desirability
bias, resulted in responses that answered what the participant
suspected the interviewers wanted as opposed to what the
interviewers were directly asking. This was an especially no-
table issue with P2 who began answering different questions
than the ones we asked. Desirability bias was also apparent
with another participant who repeatedly asked if they were
giving responses we wanted. This was difficult to handle, as
any response ("yes" or "no") could affect what the partici-
pant thought we wanted to hear and change their responses
accordingly.

Another, less common challenge was generally communi-
cating ideas. In an attempt to avoid leading questions, our
questions tried to be vague and general to allow the partici-
pant to come up ideas on their own. This proved difficult with
P7, who misinterpreted what "package" and "dependency"”
meant and required clarification that might have influenced
their responses.

5.2 Validity

The external validity of this study is limited by the population
examined. The small sample size of seven software devel-
opers combined with each participant’s limited professional
background means that our results may not generalize to the

broader developer population. However, the benefit of our
work comes from understanding ideas behind individual ex-
periences, hence the use of qualitative methods as opposed to
quantitative ones.

The construct validity of our work is limited by our ex-
perience as researchers and coders. The results and analysis
of our interviews could likely be improved with a re-coding.
Future work should focus on more generalizable and concep-
tual codes, focusing in on what participants think in a way
that can apply to multiple documents. Future work should
also perform more preliminary peer coding to create a higher
quality codebook.

6 Future Work

From this pilot study, in addition to conducting more inter-
views to increase the sample size, we came up with some
additional research questions that could be investigated in
future work. These questions expand on our research to inves-
tigate if the perceptions we learned from our participants are
actually indicative of trustworthy software.

* "Is software popularity is correlated with security?"
* "How do people determine if a website is “official”?"

* "How do developer perceptions on trustworthiness of
software compare to those of security professionals?"
Similar to Ion et al [10].

7 Conclusion

We conducted seven semi-structured interviews with UMD
students who had experience writing code in industry through
internships and full time positions. We performed inductive
coding. We found that popularity, usage by personally known
people, and verifiability of source were major factors that the
participants looked for to determine the trustworthiness of
dependencies. We also found that industries tend to assign
dedicated groups to ensure security and that participants care
roughly the same about security when developing personal
projects versus projects for industry.

References

[1] Aadesh Bagmar, Josiah Wedgwood, Dave Levin, and
Jim Purtilo. I know what you imported last summer: A
study of security threats in thepython ecosystem. arXiv
preprint arXiv:2102.06301, 2021.

[2] Andy Greenberg Burgess and Matt. The mystery of “jia
tan,” the xz backdoor mastermind, Apr 2024.

(3]

[4

—_

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Ramaswamy Chandramouli, Frederick Kautz, and San-
tiago Torres-Arias. Strategies for the integration of soft-
ware supply chain security in devsecops ci/cd pipelines,
2024.

Keith Collins. How one programmer broke the internet
by deleting a tiny piece of code, Mar 2016.

Anastasia Danilova, Alena Naiakshina, Stefan
Horstmann, and Matthew Smith. Do you really code?
designing and evaluating screening questions for online
surveys with programmers. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering
(ICSE), pages 537-548. IEEE, 2021.

Fernando Lépez De La Mora and Sarah Nadi. Which
library should i use? a metric-based comparison of soft-
ware libraries. In Proceedings of the 40th International
Conference on Software Engineering: New Ideas and
Emerging Results, pages 37-40, 2018.

Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan
Elder, Brendan Saltaformaggio, and Wenke Lee. To-
wards measuring supply chain attacks on package
managers for interpreted languages. arXiv preprint
arXiv:2002.01139, 2020.

Marcel Fourné, Dominik Wermke, William Enck,
Sascha Fahl, and Yasemin Acar. It’s like flossing your
teeth: On the importance and challenges of reproducible
builds for software supply chain security. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 1527—
1544. 1EEE, 2023.

The White House. Executive order on improving the
nation’s cybersecurity, May 2021.

Tulia Ion, Rob Reeder, and Sunny Consolvo. {“... No}
one can hack my {Mind”}: Comparing expert and {Non-
Expert} security practices. In Eleventh Symposium On
Usable Privacy and Security (SOUPS 2015), pages 327—
346, 2015.

Piergiorgio Ladisa, Henrik Plate, Matias Martinez,
and Olivier Barais. Taxonomy of attacks on open-
source software supply chains. arXiv preprint
arXiv:2204.04008, 2022.

Enrique Larios Vargas, Mauricio Aniche, Christoph
Treude, Magiel Bruntink, and Georgios Gousios. Select-
ing third-party libraries: The practitioners’ perspective.
In Proceedings of the 28th ACM joint meeting on euro-
pean software engineering conference and symposium
on the foundations of software engineering, pages 245—
256, 2020.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael
Meier. Backstabber’s knife collection: A review of open
source software supply chain attacks. In Detection of
Intrusions and Malware, and Vulnerability Assessment:
17th International Conference, DIMVA 2020, Lisbon,
Portugal, June 24-26, 2020, Proceedings 17, pages 23—
43. Springer, 2020.

NTIA Multistakeholder Process on Software Compo-
nent Transparency. Sbom at a glance, April 2021.

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta.
Detection, assessment and mitigation of vulnerabilities
in open source dependencies. Empirical Software Engi-
neering, 25(5):3175-3215, 2020.

Tom Preston-Werner. Semantic versioning 2.0. 0. Web.
Available: http://semver. org, 2013.

Ken Thompson. Reflections on trusting trust. Commun.
ACM, 27(8):761-763, August 1984.

Dominik Wermke, Jan H Klemmer, Noah Wohler, Ju-
liane Schmiiser, Harshini Sri Ramulu, Yasemin Acar,
and Sascha Fahl. " always contribute back": A quali-
tative study on security challenges of the open source
supply chain. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 1545-1560. IEEE, 2023.

Dominik Wermke, Noah Waohler, Jan H Klemmer, Mar-
cel Fourné, Yasemin Acar, and Sascha Fahl. Committed
to trust: A qualitative study on security & trust in open
source software projects. In 2022 IEEE symposium
on Security and Privacy (SP), pages 1880-1896. IEEE,
2022.

A Appendix: Eligibility Survey

@/ UNIVERSITY OF
= MARYLAND
Block 2

Are you willing and available during the month of November to
participate in a 20-30 minute interview?

If Yes, we will contact selected participants by email with a
scheduling link.

O ves
O no

Please provide your email address.

What degree program are you in?

(@] Undergraduate
O eraduate
O other

What is your major?

(@] Computer Science
(@] Computer Engineering
O other

What is the highest level CS course you have completed?

O cmscixx
O cmscaxx
O cmseaxx
O cmscaxx
O cmscexx+

O N/a

Do you have experience writing code in industry? (Multi-select)

(] Yes, through intemsh\'p(s)
O ves, through full time job (s)

[ves, through part time job(s)
O no

Which operating system(s) did you use?
O windows
O tinux

O Mac
O other

Have you developed personal projects that involve
dependencies on third-party libraries or software packages?

O Yes
O No

Which operating system(s) did you use?

O windows
0O tinux
O mac
O other

Block 1

Which of these websites do you most frequently use as aid when
programming?

O Linkedin

O wikipedia

o] Memory Alpha

O stack overflow

O I'have not used any of the websites above for programming

Code snippet

main {
print (func (" hello world™))

String func(String in){

int x = len(in)
String out = 7
for(int i = x—1; i >= 0; i——){

out.append(in[i])

return out

What is the parameter of the function "func” above?

o] String out

o] String in

O inti=x-1i>=0;i-
o] Outputting a String

O intx= \en(in)

Which of these values would be the most fitting for a Boolean?

O small

O solid

O quadratic
O Red

O True

Consent Form

Please read the consent form and fill out the
acknowledgment at the bottom of the page.

CONSENT TO PARTICIPATE

Project Title

Developer Perceptions on Trusting Software

Purpose of the Study

This research is being conducted by Anders Spear, Tien Vu, Ryan
ElKochta, and Michael Suehle at the University of Maryland,
College Park. The purpose of this research project is to
understand student developer perceptions on the sourcing,
installation, and security of online software packages. We want to
gain insight into the level of awareness developers may have
about supply chain attack vectors.

Procedures

As a participant in this study, you will first be asked to fill out this
consent form. Following that, you will complete a short pre-
interview survey, which will take approximately 5 minutes. The
survey will ask for information about your background with
software development.

At the scheduled time, we will conduct a video call or in-person
interview which will focus on your experiences and processes
trusting and installing online software packages. The interview will
take approximately 20-30 minutes and will be audio-recorded
(sound only, no video). Audio recording is required to ensure
accurate transcription and analysis of your responses. If you do
not consent to being recorded, you are welcome to stop
participating in the study, as the recording is necessary for further
analysis.

During the interview, you will be asked about software projects
you have worked on in the past, from internships and personal
projects. The questions will focus on your use of third party
packages and your perspectives and processes you employ
during installation of these packages.

Potential Risks and

Discomforts
There are no known risks associated with participating in this

study. However, you may feel uncomfortable sharing certain
details about your work or personal experiences. You are not
obligated to answer any questions that make you uncomfortable,
and you are free to skip any questions or withdraw from the study
at any time without penalty.

Potential Benefits

While there may not be direct benefits to you personally for
participating in this study, your insights will contribute to a
broader understanding of the role of third party software during
development, benefiting the wider software development and
security communities. You may also gain some personal insight
into your software installation process through the reflective
nature of the interview process.

Confidentialit

We take your conﬁdenX}lity very seriously and will implement
several measures to protect your privacy. We will not publish or
share your name, organization, or any other identifying
information. All personal information and data collected during
the interview will be anonymized, and your identity will not be
linked to any specific responses.

The interview will be conducted via Zoom or in person at UMD,
and audio will only be recorded for transcription purposes—no
video will be recorded. Audio recordings will be stored locally in a
password-protected folder and will be deleted immediately after
they are transcribed. The audio recordings will be transcribed
using OpenAl Whisper. Transcriptions will be securely stored in
Google Drive, an account-protected cloud storage service.

Pseudonyms will be used in place of names and other direct
identifiers. A key linking pseudonym to contact information will be
stored separately from the anonymized data and will be
destroyed at the conclusion of the project. All recordings and

identifying data will be permanently deleted at the end of the
study. Only authorized members of the research team will have
access to the raw data during the study.

If we write a report or article about this research project, your
identity will be protected to the maximum extent possible. Your
information may be shared with representatives of the University
of Maryland, College Park, or governmental authorities if you or
someone else is in danger or if we are required to do so by law.

Compensation

You will receive $25 in cash from one of the Principal Investigators
following the interview. You will be responsible for any taxes
assessed on the compensation.

For remote participants, you will need to meet with one of the
investigators at the University of Maryland, College Park campus
to receive this compensation.

Right to Withdraw and Questions

Your participation in this research is completely voluntary. You
may choose not to take part at all. If you decide to participate in
this research, you may stop participating at any time. If you
decide not to participate in this study or if you stop participating
at any time, you will not be penalized or lose any benefits to
which you otherwise qualify.

If you decide to stop taking part in the study, if you have
questions, concerns, or complaints, or if you need to report an
injury related to the research, please contact the investigator:

Anders Spear
Iribe Center, 8125 Paint Branch Dr
College Park, MD 20742
aspr@umd.edu

Participant Rights
If you have questions about your rights as a research participant
or wish to report a research-related injury, please contact:

University of Maryland College Park
Institutional Review Board Office
1204 Marie Mount Halll
College Park, Maryland, 20742
E-mail: irb@umd.edu
Telephone: 301-405-0678

For more information regarding participant rights, please visit:
https:/ /research.umd.edu/research-resources /research-
. Jinstituti i -itb/ B
.
This research has been reviewed according to the University of

Maryland, College Park IRB procedures for research involving

human subjects.

Statement of Consent
By checking the boxes below, you indicate that you are:

¢ Atleast 18 years of age

* You have read this consent form or have had it read to you

¢ Your questions have been answered to your satisfaction and
you voluntarily agree to participate in this research study.

You may download the consent form for your records.

Consent form.docx

If you agree to participate, please check all of the
boxes below.

Oiamis years or older.
O I have read the above consent form.
(] voluntarily agree to participate in this study.

(] agree to the use of audio-recorded interview information

Powered by Qualtrics

B Appendix: Semi-structured Interview Outline

Note: The following questions and messages represent the general structure and content of the interview, but may not be asked
verbatim. The phrasing or order may be adjusted to fit the flow of the conversation or specific context.

* Thank you for taking the time to participate in our research project!
¢ Inform participant about study and get consent

— We are conducting interviews for Michelle Mazurek’s CMSC732 Human Factors in Security and Privacy Course and
are looking to investigate how software developers use open source software.

— Do you consent to your responses in this interview being recorded and used for this project? We will delete the
recordings after we transcribe them.

¢ In the eligibility survey, you noted that you developed code in industry.

— Can you talk me through what languages you used?

Did you use third party packages? Can you name a couple or state their purpose?

Did you install them? If so, how did you install them?

+ Was there a corporate procedure for adding third-party packages to projects? How does it work? Take care not to
divulge anything too specific, though we can always redact that information later if necessary.

Can you walk us through the process in detail? What do you think about when choosing which packages to download
and how to download them?

Did you take any steps to verify that the packages were safe to use? Safe to use being non-malicious or non-
compromised.

+ If so, what?

Did you have any challenges installing them?

Was development performed on a personal computer or a dedicated work computer?

— On said computer, what software or what types of software did you install? Disregard software already installed (e.g.
Teams, Outlook). This can include browsers, IDEs, or personal entertainment (i.e. Spotify).

— How did you install said software?

— Can you walk us through the process in a bit more detail? What do you think about when choosing what to download
and how to download them?

— Did you take any steps to verify that software was safe to download and use? Safe to use being non-malicious or
non-compromised.

* In the eligibility survey, you noted that you developed code for personal projects. For your most recent personal project:

Can you talk me through what languages you used for that?

Did you use any packages? Can you name a couple or state their purpose?

Did you install them? If so, how did you install them?

Can you walk us through the process in detail? What do you think about when choosing which packages to download
and how to download them?

Did you take any steps to verify that the packages were safe to use? Safe to use being non-malicious or non-
compromised.

% If so, what?

Did you have any challenges installing them?
* For the following questions, answer them for your most recent personal project:

— Was development performed on a personal computer or a dedicated development computer? On either, was Docker
used?

10

— What software or what types of software did you install? This can include software used for other activities on the
device, such as school, work, or personal entertainment.

— How did you install said software?

— Did you take any steps to verify that software was safe to download and use? Safe to use being non-malicious or
non-compromised.

What makes a software package trustworthy?

Do you think that the security of one software can impact other software on the device? Why?

Do you think that the security of one software can impact software developed on the device? Why?
Thank you for your time!

Coordinate payment with them.

11

C Appendix: Codebook

Category

Secondary Category

Final Code

Primary Code

Files

References

Perceptions

Can security of software
impact security of other
software on the same
device

not thought about

| assume corporations have some
mechanism of preventing it.

2

Yes: provided an explaination of an attack that could happen

explaination: can cause data breaches

explaination: package compromizing system
and creating a back door

explaination: modify a tool in the chain of
development

varying difficulty

explaination provided: worried about files
being transferred to server

N |-

N w

Yes: provided specific example of an attack

explaination: example: CrowdStrike.

explaination: reading about virus

explaination: provided example of XZ

explaination: was a victim of a ransomware
attack

ke e

N[N |-

Potential attacks
mentioned

Impersonating legitimate package

What makes software
trustworthy

Reputable Source

affiliated with large institution (such as
university)

Comes from correct source

digital signature

find the official source

If the developers are trustworthy

Microsoft Certificate

name difference

Open source

Heuristic Checks

checked by antivirus

asks for permissions

download size

file extension

Approved by others

people participant knows deem it
trustworthy

NN NN NN

RIN[Rr|R[Rr|NR[RRr [N RN

audits from website

approved by package manager repo

check for negative reviews online

Popularity

mentioned in forums: Hacker news

mentioned in forums: Reddit

number of downloads

github stars

Well-Maintained

would check issues

Personal Projects

Issues when installing
packages

Issues when installing packages\Dependency version conflicts

NN

Plrlwlr[N|Rp NP w

Languages C++ 2 3
OCaml 1 1

Python 4 5

Rust 1 1

TypeScript 1 1

oS Linux arch 3 5
fedora 1 1

NixOS 1 1

Ubuntu 1 1

Mac 0S 2 2

Windows Windows 10+ 2 4

Windows XP 1 3

Package Related Package Managers BUN 1 1
Information cargo 1 1
Conan 1 2

Conda 2 3

Dune 1 1

NPM 1 1

pip 3 4

Package Sources conda-forge 2 2

GitHub 1 1

OCaml official repos 1 1

PyPi 3 3

1 1

user repository helper

Packages

arkworks

Beautiful Soup

crow

Flask

Flutter

Jinja

Mongo

Next.js

pytorch

react

Tailwind

Tailwind CSS

Webpack

Procedures for
installation

curl bash

look at GitHub source code and download

Not reading the PKDBUILDs

not using official OS app store

Official website

software facilitates installation

Installing games through Steam

repository helper

rlelwlr|lrlele|r|ee|r|r|r|e|ee|e|re]~

Rlr|slr(r|pr|r|r|r[r|pr[r|Rr|[r[N|R[R|R|R[~

Told how to do it

Told what to install (for e.g. class)

Google

uses a backup environment

look up in a binary cache

Software Installed Adobe Acrobat

alt tab

browser

Cisco VPN

For code development Android Studio
Eclipse
IntelliJ
Neo vim
VS
vs code
Zed
docker
cargo
run times
Shadcn
spl
Hyper-V
Homebrew

Entertainment

Cracked Video Games

Games (on a different PC)

Spotify

Steam

Torrenting

Discord

Microsoft Office

Software Sources

Distribution Repository

Docker Hub

Official Website

Torrents

Verification that
software is safe

Source Verification

digital signature\check the hash

official website

scanning website

manually confirming the SSH

use official repositories

Software Verification

antivirus

Ensures the software doesnt ask for extra
permissions

NN NN AN N N N N N N N N N N N N N N N N N N s

plr(Nv[prlu|pr|lwr|r[r|N|N|R|Rw|Rr|Rr|R|R[Rr[R|IN|N|R[R[R|R|R|R[R[R|R[Rr| DR[N] P[RR

make sure the developer actively fixes issues 1
or bugs
Manually verify that the files look normal 1 1

(ex. not a rootkit)

tries in a dev or backup environment

recent

None

popularity

Stack Overflow

standard packages

used tutorials\early in google search list

used in other project

well-known packages

what they said they did NOT do

did not check new hashes for updates

didnt read PKGBLDs

Where development
was done

Dedicated Development computer

Personal Computer

VM on personal computer

Professional

Build Process

Docker

Manually from source

podman

Issues while installing
packages

Company infrequently updated dependencies

Compatibility between dependency versions

Toolchain version(s)

oS Linux Unspecified
Debian
Mac 0S
Windows
Package Related Package Managers Brazil

Information

built-in Go package manager

Cargo

Conan (C++)

Conda

NPM

PIP

Pypy

Redux

System package manager

Package Sources

internal artifactories

Third Party Packages

Catch2

Crow

doctest

Emphasis on internal dependencies

FastAPI

FFMPEG

Flask

Go-Chi,

Internal Packages

lib sodi

Librosa

Math

Mocking Libraries

OCR libraries

OpenCV

OpenSSL

Pandas

property based testing libraruies

PyTest

range v3

React

Redux (JS)

SaltStack,

Soundfile

spdlog

WebRTC

Procedure for
installation

White List

Allowlist

bootstrapper

coporate managed app store

They were already decided.

RN N N N N N N N N N N N N N N NN N N N NN NN N N N I N T R N I RN I N I N NN NI

olr|[N[r[r|Nr(NRrlw|r|N[RrIN[R[N R Rr|IN[RRr| PR R RN RN R R[dw|r|w|r[Nvo|lr|lw|Nsr|lu|r|r|r[o|NU]|w|r[r[s[N] R[N R|w[o]|k|k

Participant Installs themself 5 8
loose to no rules 4 5
official website 4 5
Bash Curl 1 2
downloads recorded 1 1
Online tutorial 1 3

corporate antivirus or precautions 1 1
discouraged to install on your own 1 1
must be open source 1 2
Some secure environments, some less 1 2
restrictive environments

Approval or Security Team 1 2
platform in the company for requesting 1 1
secondary repository that you would check 1 2
in your third party dependencies

Programming Languages |C 3

Cc# 2

C++ 6

Go 3

Java 2

JavaScript 2

MATLAB 2

Python 10

Rust

Scala

Spark

TypeScript

Software Installed

For development

APT GAD

clan

Docker

G++

GCC

Intellij

Neovim

Visual Studio Code

nvidia drivers

Pre-installed software by company

bootstrapper

browser

entertainment software

Spotify

Misc

Torrenting

Ink Space

VPNs

Wine

Word

No Personal Software Allowed

Software Sources

Distribution Repositories

RIs[sp[r|r|INv[(NRpRr[RN wkr|lo|rr|Rrkr[R|Rr[Rr|R[NO]R|[R]R

Where was
development done

rlrlr|n|rlolr|n|Nnr|rrepr|rpre|Nvv e e r e e rr|lw e rr|lolr| NN sk S

Github

Homebrew

Official Website

University

Dedicated work laptop Dedicated work laptop 10
Docker 1
SSH or Remote into other machine 3
WSL 1

Personal computer Personal Computer 2
Remote into server from personal computer 1

	Introduction
	Related Work
	Types of Supply Chain Attacks
	Reflections on Trusting Trust
	Prevention and Mitigation Techniques
	Supply Chain Interview Studies

	Methods
	Participant Selection
	Semi-structured Interview
	Ethical Considerations
	Coding and Analysis

	Results and Discussion
	Participant Demographics
	Selection of third-party dependencies
	Removing the Developer From the Loop
	Professional vs. Personal Development

	Challenges and Limitations
	Communication
	Validity

	Future Work
	Conclusion
	Appendix: Eligibility Survey
	Appendix: Semi-structured Interview Outline
	Appendix: Codebook

