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Abstract

This report describes a Device-Free Passive Localiza-
tion System (DfP). The system provides a software
solution over nominal WiFi equipment to detect the
presence and track intruders in an area of interest.
The system is based on measuring the changes in the
received RSSI at a fixed receiver form a fixed trans-
mitter. Using RSSI values for multiple transmitters
and monitoring points, we show a system is able to
detect intruders with a high probability and very low
false positive rate. Moreover, the system is able to
track the intruder with an accuracy of a few feet.

1 Background

In the recent years, 802.11[1] wireless LANs (WLAN)
installations have become increasing common, pro-
viding communication capabilities in the office, at
home, and public places. In an office environment
WLANs usually employ infrastructure mode in which
a number of Access Points (APs) are carefully po-
sitioned to provide access from any location in the
office. While the wireless communication is the pri-
mary reason for deploying WLANs, the deployed in-
frastructure can also be used for other purposes. For
example, the RF signals have been used for deter-
mining the location of a receiver [1-7, 9]. In one such
technology developed at the University of Maryland,
Horus, the position of a wireless card can be tracked
using the received signal strength in a pure software
solution, to an accuracy of a few feet. Based on the
user location, many context-aware applications can
be implemented in a WLAN environment such as
location-sensitive information retrieval and direction
finding inside a building. All extensions on the use
of WLANs require an active participation of a device
with a NIC (Network Interface Card) in it. In con-
trast, a DfP system operates without requiring any
active participation of the person being monitored or
tracked.

The DfP technology is based on both the knowl-
edge that RF signals are affected by the presence of
people in the environment and preliminary measure-
ments indicating the RF signal changes are signifi-

cant. The extent of the impact depends on the loca-
tion of the person relative to the NIC. The DfP sys-
tem infers the presence or movement of people from
changes in received signal strength. Using the signal
strength:

1. By monitoring the RSSI at one or more locations
in an area/building in which WiFi is deployed,
we can reliably detect the presence of people.

2. As we can detect the presence of people, we can
quantify such detection. For example, we can
determine the number of people and their loca-
tion. We need to determine the accuracies that
can be achieved in this process.

The DfP system primarily uses the standard access
point and wireless card components of any Wi-Fi in-
stallation.

2 System Architecture

The basic architecture of a DfP system is shown in
Figure 1. It consists of the Access Points (APs) and
Monitoring Points (MPs) along with a DfP server.
The APs of any WLAN deployment double as DfP
APs. MPs monitor the RSSI of AP beacons and re-
port thee values to the DfP Server. As we expect
the location of MPs to be fixed, any stationary desk-
top computers which are normally used by the users
can be used as MPs. The DfP server is a PC which
performs computations on the RSSI streams and ini-
tiates actions as necessary.

The DfP System is envisioned to support three
modes of operation:

Monitoring Mode In this mode, DfP System ex-
pects no movement of people anywhere in its
protected area and raises alarms on detecting
any movements. This mode may be appropri-
ate for providing night time protection. In this
mode MPs recognize the change of RSSI values
and inform the DfP Server accordingly. The NS
then takes the appropriate security steps reflect-
ing the specific configurations.
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Figure 1: DfP System Diagram

Tracking Mode The DfP System uses its tracking
capability to not only detect the presence of an
intruder, but also provides the location and the
path taken by the intruder in the protected area.
In the tracking mode, the DfP System tracks one
intruder at a time. This mode is suitable for sup-
porting the protection at night. An MP records
changes in the RSSI value and sends it to the
DfP Server. NS detects that multiple monitor-
ing points have recorded change in the RSSI val-
ues and uses this information to determine the
location. Over time the pattern of the intruder’s
movement is computed, analyzed and used for
taking the appropriate security actions by the
DfP Server.

DfP Mode DfP System tracks multiple people and
keeps track of each separately in this mode. This
is suitable for daytime monitoring and tracking
the movement of each person in the protected
area.

3 The DfP System

3.1 Mathematical Model

Consider a set of n access points and m MPs. Let
s denote the signal strength received at MPi from
APj as si,j . For a quiescent RF environment, the

signal strength received at MPi from APj is a con-
stant value. When a person enters the area of inter-
est, the value of si,j changes and the presence of the
intruder is detected. Since this change is a function
of the location (x, y) at which the person is standing,
the signal strength received at MPi from APj when
a person is at location (x, y), denoted by si,j(x, y),
can be inverted and the intruder can be tracked.

If people are standing at N locations in the area
of interest denoted by (x1, y1), . . . , (xN , yN ), the DfP
system uses the value of si,j(xk, yk) for all i, j, and k
to detect the number of persons in the area and track
them.

Since the locations of intruders is not known to the
monitoring system, we will denote the signal strength
measurements available to the system as a function of
time as si,j(t) = si,j

(

x(t), y(t)
)

. In our experiments
with known intruder movement, we can parameterize
the position x, y as functions of t.

3.2 Detection of an Intruder

We assume that the RSSI data series are streams.
Each monitoring point is observing RSSI in real-time,
and wishes to detect intrusions as soon as possible. A
detection occurs when a single monitoring point sus-
pects an intrusion based on RSSI from a single access
point. We combine alerts from different monitoring
points to give the overall system alert.

The overall system alert can be based on detections
for multiple distinct pairs of monitoring point and ac-
cess point pairs. These detections should be simul-
taneous or near simultaneous, within a time buffer
of b seconds. Simultaneous detections are required
when b = 0. For an alert at time t with N detections
required with time buffer b

1. At least one monitoring point i detects exactly
at time t for the signal si,j(t).

2. In the time interval [t − b, t] there are N − 1
detections by other distinct pairs of monitoring
points and access points.

The parameters N and b are variable to adjust system
sensitivity.

We used two separate statistical techniques to de-
tect intrusion events (a change in the environment).
Each technique uses statistics for short (≤ 30 sec)
time windows to determine detections. The first tech-
nique is based on moving averages and the second is
based on the variance. We start by detecting intrud-
ers based on the moving average.
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3.2.1 Moving Average Based Detection

In this technique, detections are determined by
comparing two moving averages of received signal
strength indicators with possibly different window
sizes. Let qi be a series of measurements over time
for a single monitor listening to a single access point.
The averages α1,k and α2,k are defined as follows for
time index k:

α1,k =
1

wl

·

k+wl−1
∑

i=k

qi (1)

α2,k =
1

ws

·

k+wl+ws−1
∑

i=k+wl

qi (2)

wl and ws are the window lengths for the two averages
α1,k and α2,k respectively.

When the relative difference between the two aver-
ages exceeds a parameter τ ,

∣

∣

∣

∣

α1,k − α2,k

α1,k

∣

∣

∣

∣

> τ (3)

we declare an event detection for the time correspond-
ing to t = k + ws. The AS recomputes α1,k and α1,k

periodically to check for event detection.
The intuition is that the wl window represents his-

tory of a static situation, and the ws window rep-
resents an estimate of the current state. When the
current state differs noticeably from the history, we
suspect an intrusion. The AS computes α1,k and α1,k

for each time index k in the time period of interest
to check for detections.

The system alerts when a tunable number of moni-
tor and access point pairs give near simultaneous de-
tections. Detections at times t1 and t2 are considered
near simultaneous if |t1 − t2| ≤ T , for the time buffer
parameter b. For simultaneous events, b = 0.

3.2.2 Moving Variance Based Detection

The second detection technique examines the vari-
ance in a moving window of the raw data and com-
pares it to the variance during a silence/static period.
Let w be the size of our window. We compute the
variance, vt, as:

q̄t =
1

w
·

k+w−1
∑

i=k

qi (4)

vt =
1

w − 1
·

k+w−1
∑

i=k

(qi − q̄t)
2 (5)

The detection criterion for any series qi is based on
the variance of a training period with no movement.

For a training period [tstart, tend], we compute the
average of the variances v̄t and the standard deviation
of the variance σv for the w-sized windows within it.

v̄t =
1

tend − tstart + 1
·

tend
∑

t=tstart

vt (6)

σv =

√

√

√

√

1

w
·

tend
∑

t=tstart

(vt − v̄t)2 (7)

The moving variance detection technique of the AS
detects an event at time t+w for a single raw stream
when vt > v̄t + r · σv for an appropriate value of
the parameter r. For a normally distributed variance
measurements vt, values above the threshold will be
r standard deviations above the mean. Each data
stream has its own σv value.

The moving variance detection system alerts when
a tunable number of monitor and access point pairs
give simultaneous or near simultaneous detections,
using the same criterion as the moving average tech-
nique. Detections at times t1 and t2 are considered
near simultaneous if |t1 − t2| ≤ b, for the time buffer
parameter b.

4 Tracking of an Intruder

In order to perform tracking, we construct a radio
map of the area of interest either by collecting sam-
ples or using a propagation model. We use machine
learning techniques to compare the received signal
strength when a person is present to signal strengths
stored in the radio map for the different monitoring
points. We use Bayesian inference to detect the loca-
tion of an intruder.

More formally, given a signal strength vector (s)
for the signal strength readings at different MPs, we
want to find the location l in the radio map that
maximizes P (l/s). This can be written as:

arg maxlP (l/s) = arg maxlP (s/l) ·
P (l)

P (s)

= arg maxlP (s/l) · P (l) (8)

Assuming that all locations are uniform, the term
P (l) can be factored out form the maximization pro-
cess in Equation 8. This leads to

arg maxlP (l/s) = arg maxlP (s/l) (9)

where P (s/l) can be obtained from the constructed
radio map.
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Using the super position law, the same principle is
conjectured to be generalizable to cover the tracking
of multiple intruders.

5 Experimental Evaluation

This section presents the experiments performed to
evaluate the performance of the DfP system.

5.1 Evaluation Metrics

We use two metrics to quantify the performance of
the detection capability of the DfP system:

1. Probability of detection (PD): which is the prob-
ability that the system will correctly identify
events (changes in the environment).

2. False positives (FP): the number of times the
system incorrectly identifies a period with no
movement as an event. Since the number of pos-
sible false positives is undefined, we report this
as a raw, unscaled number.

5.2 Experimental Testbed

We performed four experiments to test the perfor-
mance of the DfP in a controlled environment chosen
to minimize outside interference. Each experiment
used a unique layout of two access points and two
monitoring points. Each monitoring point recorded
the received signal strength indicator from each ac-
cess point beacon, which broadcasted every 100 mil-
liseconds. Both access points ran on the same chan-
nel.

In each experiment the monitoring points recorded
for approximately 1800 sec. While the monitoring
stations were recording, a person walked through a
series of four positions, pausing for 60 seconds at each
position. Each position was three feet from the pre-
vious position. After pausing at the fourth position,
the person left the room. Movement through the four
positions was repeated a second time for each exper-
iment layout to test repeatability. The periods of ac-
tivity accounted for roughly 8 of 30 minutes in each
experiment.

The layouts for the four experiments are shown in
Figures 5.2 to 5.2. The four movement locations are
shown in the center. Times for movements in each
experimental layout are shown in table 1.

For each of the experiments described above, there
are four separate RSSI streams, one for each pair of
access point and monitoring point. Smoothed RSSI

Experiment Number
Position 1 2 3 4
1 480 360 560 430
2 540 420 610 490
3 600 480 670 550
4 660 540 730 610
Empty 720 600 790 670
1 1060 1120 1310 1190
2 1120 1180 1370 1250
3 1180 1240 1430 1310
4 1240 1300 1490 1370
Empty 1300 1360 1550 1430

Table 1: Experiment Movement Times (seconds)

Figure 2: Experiment 1 Layout

Figure 3: Experiment 2 Layout
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Figure 4: Experiment 3 Layout

Figure 5: Experiment 4 Layout

measurements for each experiment are shown in Fig-
ures 6 to 9. The times for event movements are shown
with vertical lines.

Figures 10 and 11 show variance for moving win-
dows of size w = 40, with the σv value derived from
the time interval [10, 340]. The y-axis values for these
plots are normalized to σv. There are two separate
plots to aid distinguishing the variance of each pair
of monitoring point and access point.

In the RSSI figures, clear discontinuities occur at
the times corresponding to the movement events. In
the variance plots, there are clear spikes in the vari-
ance for the movement events.

5.3 Analysis

Table 2 shows the parameter values used for anal-
ysis of the moving average techniques and Table 3
shows those for the moving variance technique. Each
column shows the values for one parameter. All com-
binations of parameter values were used for analysis.
There were a total of 4∗5∗4∗4∗3 = 960 combinations
of parameters for the moving average technique, and
3 ∗ 5 ∗ 4 ∗ 4 = 240 combinations of parameters for
the moving variance technique. Each combination of
parameters was used to analyze each of the four ex-
perimental layouts.

wl ws τ N b
20 3 0.02 1 0.0
50 5 0.03 2 0.5
100 10 0.04 3 1.0
200 15 0.05 4

20

Table 2: Moving Average Parameter Values

w r N b
20 2 1 0.0
40 3 2 0.2
80 4 3 0.5

5 4 1.0
6

Table 3: Moving Variance Parameter Values

We begin by evaluating our metrics while varying
a single parameter. The metrics are combined over
all other parameters and over the four experimental
layouts. For false positives (FP) we examine the sum
over all parameter combinations, and for probabil-
ity of detection (PD) we examine the average, which
preserves 0 ≤ PD ≤ 1.
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In the ideal case for determining optimal parameter
values, changing a parameter will both increase prob-
ability of detecting movement events and reduce the
false positive rate. Most parameters, however, affect
overall system sensitivity. To increase probablility of
detection, they also increase the false positive rate.
Finding parameters to maximize the probability of
detection and minimize false positives is an optimiza-
tion problem.

Requiring multiple pairs of access points and mon-
itoring point detections for alerts reduces the system
sensitivity, for both the moving average and moving
variance detection methods. For the moving average
technique (Figure 12(a)), FP is reduced from 29544
for single-detection alerts to 1252 for four-detection
alerts. The PD also reduces dramatically from 95.9%
to 21.1%. For the moving variance technique (Figure
13(a)), FP is reduced from 11244 for single-detection
alerts to 22 for four-detection alerts. The PD de-
creases from 99.8% to 51.2%.

The time buffer parameter has a lesser effect on
FP and PD. For the moving average technique (Fig-
ure 12(b)), increasing the time buffer from 0 seconds
to 1 second increases FP from 12803 to 17175, while
increasing the PD from 55.2% to 64.9%. For the mov-
ing variance technique (Figure 13(b)), increasing the
time buffer from 0 seconds to 1 second causes little
change. FP increases from 3464 to 3677 and PD from
82.5% to 84.2%.

The parameters τ and r impact system sensitivity
substantially (Figures 14 and 15). Increasing their
values decreases both PD and FP. The decrease in
average FP is substantial, from 31650 to 707 for the
moving average threshold τ range and from 6835 to
784 for the moving variance r range. The decreases in
PD for the same ranges are from 84.7% to 38.0% and
95.0% to 70.9% for the moving average and moving
variance techniques respectively.

For the moving average technique, choice of the ws

parameter (Figure 16) is more important than the wl

parameter (Figure 17) for the ranges examined. FP
drops from 26251 to 1514 for values of ws = 3 and
ws = 20 respectively. PD drops from 74.0% to 47.0%.
The wl parameter has less effect on FP and PD over
the range of wl = 20 to wl = 200. PD increased from
59.3% to 62.6%. FP varied between 10824 and 12329,
but not as a monotone function of wl.

For the moving variance window size parameter w
(Figure 18), PD peaks slightly when w = 40. FP
dropped from 5299 to 3997 from w = 20 to w = 80.
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Figure 12: Multiple Detection Parameters for Moving
Average, with metrics averaged over other parame-
ters
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Figure 13: Multiple Detection Parameters for Moving
Variance, with metrics averaged over other parame-
ters
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Figure 14: Moving Average: Threshold τ
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Figure 16: Moving Average: Short Window Size ws
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Figure 17: Moving Average: Long Window Size wl
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Figure 18: Moving Variance: Window Size w
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Figure 19: Averages of Moving Average Metrics by
Experiment

5.3.1 Performance by Experimental Layouts

The summary results averaged over the moving av-
erage and moving variance parameters are shown in
Figures 19 and 20. This analysis shows aggregate
results only; particular parameters paired with a ex-
perimental setup could outperform others. The ag-
gregate analysis is designed to indicate which experi-
ment setups are more robust with respect to changes
in the parameters.

In the aggregate analysis, the experiment 2 lay-
out was the most sensitive under the moving average
technique, having both the highest PD and FP. Un-
der the variance technique, layout 2 had the fewest
FP of any layout, and the 83.7% PD was slightly
lower than the maximum of 86.5% for layout 4. For
the other layouts, PD and FP increase or decrease
together when moving from one layout to another.
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Figure 20: Averages of Moving Variance Metrics by
Experiment

Layout Moving Average Moving Variance
1 3 0
2 44 37
3 32 5
4 63 20

Table 4: Number of Parameter Optimal Combina-
tions by Experimental Layout

5.3.2 Optimal Parameter Combinations

The aggregate analysis of parameters thus far pro-
vides only a general indication of how changing pa-
rameters will affect system performance. To find op-
timal parameters maximizing probability of detection
and minimizing false postives, it is necessary to ex-
amine particular parameter settings.

Both the moving average and moving variance
techniques can recognize movement with high accu-
racy and few false positives for tuned performance pa-
rameters. Many different combinations of parameters
successfully alerted for all 10 movement events with
no false positives. The number of different combina-
tions for each experimental setup are listed in Table
4. Further experimental measurements are required
to further differentiate the performance of these pa-
rameter combinations.

The number of optimal combinations for each ex-
perimental layout suggest the ordering from best to
worst should be 2 or 4 followed by 3 and 1. This is
conjectured to be a result of the moving person im-
peding direct signal transmission from access point
to monitoring point. Signals along direct paths are
expected to have a greater contribution to signal
strength than reflected signals.

Tables 5 and 6 show examples of optimal param-
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Layout wl ws τ N b
1 50 5 0.05 1 0
2 20 10 0.05 1 0
2 20 20 0.03 2 0
2 20 20 0.03 2 0.5
3 100 5 0.05 1 0
3 50 3 0.03 2 0
3 200 5 0.05 1 0
4 20 20 0.04 1 0
4 50 10 0.02 2 0

Table 5: Sample Moving Average Optimal Parame-
ters

Layout w r N b
2 40 4 2 0
2 80 4 2 0
2 20 3 3 0
3 40 3 3 0
3 80 3 3 0
4 40 6 2 0
4 40 2 4 0

Table 6: Sample Moving Variance Optimal Parame-
ters

eters that successfully alerted for all ten movement
events while providing no false positives. These are
examples only; as shown in Table 4, there are many
more parameter combinations that are not listed.

Some parameter combinations performed well
across all experimental layouts. Tables 5.3.2 and 5.3.2
show high performing parameter combinations for the
moving average and variance techniques respectively.
This is evidence these parameters are more robust
than others because they were effective for multiple
configurations, but the evidence is not conclusive.

6 Future Measurements

Future experimentation should include different
movement patterns and more noisy experimental con-
ditions to verify and expand upon this report’s re-
sults. The experiments reported here used only short

Layout PD FP
1 0.8 0
2 1.0 1
3 0.8 0
4 1.0 0

Table 7: High performing average technique param-
eters: wl = 20, ws = 3, τ = 0.04, N = 2, b = 0

Layout PD FP
1 0.9 1
2 0.9 0
3 0.9 0
4 1.0 0

Table 8: High performing variance technique param-
eters: w = 40, r = 4, N = 3, b = 0.0

bursts of movement followed by static periods. The
techniques used in this report were designed to rec-
ognize this particular movement pattern, and should
be tested over a wider range. A less controlled envi-
ronment should be used to demonstrate the system
is feasible in relevant, possibly noisy environments.

The variance technique is expected to generalize
to other movement patterns with better performance
than the moving average technique. In the four ex-
periments performed, the moving person stopped in
each position, where a new static measurement could
be made. The moving average exploits this by es-
timating averages for two windows detecting when
the averages are significantly different. If the moving
person is in constant motion, the RSSI may fluctuate
but give similar average values for the two windows.
For the moving variance technique, any movement is
expected to cause substantial signal changes relative
to a static environment. As long as the variance in
any window is significant, the system should detect
motion.

7 Conclusions

In this report, we introduced the DfP system for in-
trusion detection and tracking in a WiFi network.
The system uses the changes in the received RSSI to
detect changes in the environment.

We described the DfP system’s architecture and
showed that the system works with the nominal WiFi
equipment. We presented two techniques for intru-
sion detection and a technique for tracking single
and multiple intruders. We also evaluated the per-
formance of the DfP system for simple experiments.

Our results show that the system can detect move-
ment with high probability and low false positive rate
in controlled environments. Moreover, the system can
track the intruder’s position to within a few feet.

The experimental results are inconclusive for de-
termining optimal DfP system configurations. Addi-
tional measurements are needed both for this purpose
in the long-term goal of preparing a commercially de-
ployable system. The results to date have established
the proof of concept of the DfP technology.
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