
Differentiable Two-Way Eulerian Fluid-Solid Coupling

Shrey Patel 1 Samuel Audia 1 Rahul Narain 2 Ming Lin 1

Abstract
Gradients of physical quantities play an important
role in derivative-based optimization and learning.
Although much work has been done in differen-
tiable physics for calculating gradients numeri-
cally by leveraging physical models, relatively
little has been focused on two-way coupling of
fluids with rigid bodies. Given the multitude
of flow-based scenarios in the day-to-day tasks,
we present an end-to-end differentiable Eulerian
(grid-based) simulation with strong two-way cou-
pling with rigid bodies. For the forward simula-
tion, the solid-fluid boundary conditions are con-
verted to a monolithic linear pressure solve using
a variational method. For the backpropagation,
we introduce a novel method of calculating and
propagating gradients for the combined fluid-solid
state using the adjoint method, which runs as fast
as the forward solver. Our continuum-based for-
mulation makes it more suitable over Lagrangian
(particle-based) methods, for use cases where per-
formance is key for analyzing overall flow pat-
terns and learning fluid properties.

1. Introduction
Physical models, combined with accurate numerical meth-
ods, have been widely used to create predictive simulations
crucial for studying physical properties of dynamical sys-
tems. Interactions between multiple types of objects, such as
between fluids and solid bodies, further introduce computa-
tional complexity and interesting insights to their evolution
in time. Recently, machine learning methods have been used
for solving problems related to physics and other fundamen-
tal sciences. Such methods find applications in estimating
physical parameters, guiding physical systems in control
problems, or learning system dynamics for fast inference.
However, most interesting physical systems, notably fluids,
tend to be very high-dimensional in nature which, for most
general purpose ML models, results in long training and/or
inference times. Specialized models tailored for specific
use cases tend to do better on this front, but often suffer
from issues, like violation of physical constraints or limited
numerical accuracy.

Consequently, there has been a growing interest in differen-
tiable physics to derive gradients directly from a physically
based simulation and enable a guided backpropagation to
contract the massive search space typically encountered in
physics problems. These gradients, as a physical prior, can
then be combined with machine learning models to tackle
the aforementioned problems – and many more.

There have been many significant advances in developing
differentiable simulators for fluids, but they rarely account
for interaction of fluids with dynamic obstacles like rigid
bodies. In fact, because of moving boundary conditions,
even the forward simulation is challenging, making the prob-
lem of finding gradients even more intractable for coupling
scenarios. Additionally, the numerical methods employed
depend upon the discretization scheme in the domain, each
of which have their own pros and cons with respect to cal-
culating gradients. Lagrangian methods assume a unified
particle-based representation for fluids and solids, which
simplifies treatment of different entities, and thus in gra-
dient calculation. But particle-based methods often fail to
preserve necessary constraints like incompressibility and
rigid body shape, in addition to suffering from high compu-
tational cost of gradient computation, owing to large number
of degrees of freedom. This representation translates to sta-
bility issues in the gradient calculation, as investigated by Li
et al. (2023). Hybrid methods such as Material Point Meth-
ods (MPM) (Jiang et al., 2016), which combines Eulerian
and Lagrangian representations, greatly complicate gradient
computations, because information needs to be transferred
between these two representations.

In this paper, we focus on differentiating an Eulerian (grid-
based) method where the computational domain is a regular
grid onto which entities like rigid bodies and fluids are dis-
cretized. Although this method does not provide arbitrary
accuracy, the limited degrees of freedom ensure that the
incompressibility and rigid body constraints hold in the
continuum. Additionally, we show that the gradient com-
putation is as efficient as the forward solve, which makes
this approach highly scalable. Our main contributions are
summarized as:

1. We analytically derive the gradients of the entire differ-
entiable physics simulation pipeline, consisting primar-
ily of fluid velocity advection (Section 4.1), monolithic

1

Differentiable Two-Way Eulerian Fluid-Solid Coupling

pressure solve for solid-fluid boundary conditions (Sec-
tion 4.2) and velocity correction (Section 4.3). The
derivation uses the adjoint method(McNamara et al.,
2004).

2. We demonstrate the application of our computed gradi-
ents in an optimization process aimed at estimating an
initial state of the rigid body which results in a desired
final state both on a static surface and in a dynamic
dam break scenario.

3. Finally, we compare our results with a particle-based
differentiable simulator DiffFR(Li et al., 2023), show-
ing that our Eulerian approach uses 3 times less mem-
ory and runs 27.8 times faster in a rigid body drop
experiment.

2. Related Work
2.1. Differentiable Physics

Differentiable physics simulators have been proposed for
numerous dynamical systems, including rigid bodies (Qiao
et al., 2020; Freeman et al., 2021; de Avila Belbute-Peres
et al., 2018), articulated bodies (Qiao et al., 2021; Degrave
et al., 2016), soft bodies (Qiao et al., 2022; Du et al., 2021;
Hu et al., 2018), cloth (Liang et al., 2019; Li et al., 2022),
traffic (Son et al., 2022; Andelfinger, 2021), quantum com-
puting (Leng et al., 2022), and coupled multi-body systems
(Geilinger et al., 2020; Werling et al., 2021).

Differentiable physics offers many exciting new learning-
enabled applications like structure identification and discov-
ery (Jatavallabhula et al., 2021; Ingraham et al., 2019; Wang
et al., 2020; Song & Boularias, 2020), policy and planning
(Toussaint et al., 2018; Xu et al., 2022; Mora et al., 2021)
as well as design and fabrication (Xu et al., 2021; Ma et al.,
2021; Nava et al., 2022; Spielberg et al., 2019). (Huang
et al., 2021).

Indeed, this method has become so versatile that many gen-
eralized differentiable programming paradigms have been
proposed. Hu et al. (2019) introduced a new differen-
tiable programming environment DiffTaichi to compute the
gradients of physics simulations, and Heiden et al. (2021)
provide a templatized simulation framework leveraging ex-
isting auto-differentiation tools like CppAD (Bell et al.,
2018), Ceres (Agarwal et al., 2010), and PyTorch (Paszke
et al., 2019). Nvidia Warp (Macklin, 2022) is a more recent
differentiable framework with a focus on high-performance
graphics and simulation.

2.2. Numerical Methods for Solid-Fluid Coupling

Grid-based numerical techniques for physics-based fluid
simulation involve spatially discretizing the fluid dynam-
ics (Navier-Stokes equation) on a regular staggered grid

(Harlow & Welch, 1965), splitting the dynamics into indi-
vidual operators (one for each term) and integrating the fluid
variables like velocity through each operator while obeying
boundary conditions. (Foster & Metaxas, 1996) pioneered
this approach, using a finite difference based explicit solve.
(Stam, 1999) proposed an implicit method with uncondi-
tional stability to extend the use of fluid simulation to real-
time applications, where large timesteps are preferred. Due
to these and many other subsequent works, most grid-based
fluid simulators solve advection using higher order methods
like the Semi-Lagrangian scheme (Robert et al., 1985) and
projection using a pressure Poisson solve. For boundary
conditions, free surfaces are addressed using ghost-fluid
conditions (Gibou et al., 2002), while a non-coupled static
solid boundary is handled using level sets (Foster & Fedkiw,
2001).

Moving boundaries, a central part of solid-fluid coupling,
are more challenging. The standard technique is to integrate
fluid pressure onto the solid as external force and provide
solid velocity as a boundary condition for the fluid. Parti-
tioned approaches (Carlson et al., 2004; Banks et al., 2018;
Akbay et al., 2018) have separate solvers for fluid and solid
dynamics with some degree of inter-communication, called
sequentially, solving for a constraint might violate a previ-
ously enforced one. Further, the use of iterative procedures
to achieve coupling leads to convergence and stability is-
sues. Many of these problems are alleviated by monolithic
approaches (Klingner et al., 2006; Robinson-Mosher et al.,
2011; Aanjaneya, 2018; Gibou & Min, 2012; Zarifi & Batty,
2017), which aim to combine the solid-fluid dynamics into a
single implicit system, though the methods to arrive at such
a coupled system differ dramatically.

Our work is inspired by (Batty et al., 2007), who used
the variational method to convert complex solid-fluid inter-
actions into a kinetic energy minimization problem. The
minimization can then be simplified into a symmetric posi-
tive semi-definite linear system on pressure. This method
has been quite successful and adapted by several, including
(Larionov et al., 2017; Takahashi & Lin, 2019; Takahashi
& Batty, 2020) for viscous fluids, (Takahashi & Batty,
2021) for granular flow, and (Takahashi & Batty, 2022) for
elastic-rigid coupling.

2.3. Differentiable Fluid Simulation

To control smoke through keyframe matching, (Treuille
et al., 2003) formulated a nonlinear optimization problem
which uses derivatives of the simulator. Later, (McNamara
et al., 2004) extended this approach to level-set based liquid
boundaries and adapted the adjoint method (Lions, 1971)
to accelerate gradient calculation. (Takahashi et al., 2021)
combined the adjoint method with the variational method of
solid-fluid coupling (Batty et al., 2007) to obtain a one-way

2

Differentiable Two-Way Eulerian Fluid-Solid Coupling

coupled differentiable simulator. (Li et al., 2024) extended
the differentiable pipeline with derivatives for the boundary
geometry, unlocking optimization based design applications.
Recently, (Li et al., 2023) managed to design a differen-
tiable simulator for two-way rigid-fluid coupling using a
unified particle representation of fluids and solids. They use
the implicit DFSPH method (Bender & Koschier, 2015) for
fluid simulation and the method of (Akinci et al., 2012) for
fluid-rigid coupling. Even though they propose a localized
gradient computation scheme to decrease the computational
cost typical of particle-based approaches, grid-based fluid
simulation methods employ far fewer degrees of freedom
and are therefore expected to have lower computational cost,
which is the impetus for our method.

There is a growing trend of using data-driven approaches for
super-resolution, inferencing frames, or imposing control in
fluid simulations, using established deep learning models
like feed forward neural networks (Prantl et al., 2019; Um
et al., 2018), convolutional neural networks (CNNs) (Tomp-
son et al., 2022), generative adversarial networks (GANs)
(Xie et al., 2018; Kim et al., 2019), and long short term
memory (LSTM) networks (Wiewel et al., 2019). Because
of the high dimensionality of physical systems, it is very
challenging to ensure that physical constraints hold in the
dynamics learned by these models. Often this limitation
leads to poor performance on novel samples. (Raissi et al.,
2019) introduced physics informed neural networks (PINNs)
by augmenting existing networks with physics-based loss
functions to ensure that physical constraints are respected.

Differentiable physics simulators go one step further by ex-
plicitly providing derivatives with respect to the state of the
physical system. These derivatives can then either be used
directly to demonstrate simple control experiments or fed to
a deep learning model for sophisticated learning-based ap-
plications. (Holl et al., 2020) train a hierarchical predictor-
corrector model that learns to understand and control com-
plex physical systems represented by PDEs, using gradi-
ents from their differentiable simulator PhiFlow, leveraging
low level auto-differentiation with adjoint method. (Ramos
et al., 2022) explore whether a neural network trained us-
ing PhiFlow, and augmented with specialized physical loss
functions, can act as a controller for a two-way coupled
fluid-rigid system. But, they use weak coupling, solving the
fluid and solid dynamics one after the other, instead of using
a monolithic solve, thereby leaving the method more likely
to be prone to numerical stability issues.

3. Problem Setup
We setup the relevant mathematical equation at a high level
and motivate the differentiable simulator.

3.1. Background

The fluid dynamics are governed by the inviscid Navier
Stokes equation, paired with the incompressibility con-
straint:

ωu

ωt
= →u ·↑u+

1

ε
f → 1

ε
↑p

↑ · u = 0,
(1)

where u: fluid velocity, ε: fluid density, p: fluid pressure
and f : external force (i.e. gravity, wind forces, etc.) per
unit volume. The numerical solution is computed using
operator splitting, where each term on the right-hand-side
is solved sequentially in writing order. We detail each of
these stages in Section 4, along with their derivatives. The
fluid domain is discretized as a regular MAC grid ((Harlow
& Welch, 1965)), with velocity at face centers and pressure
at cell centers. From here on, u, p represent the vectors of
fluid velocity and pressure samples respectively.

We address rigid body dynamics using semi-implicit time-
stepping:

vt+1 = vt +!t M→1
S F

xt+1 = xt +!t fx(xt,vt+1),
(2)

where v: solid velocity, x: solid position, F : external force,
and MS : mass matrix of solid. Each of these pertain to
the centre of mass and include both translation and rotation
components. fx is a per element function on vectors, such
that fx(x, v) = v, except for quaternions, in which case
fx(q,ϑ) = 0.5([0,ϑ]↓ q), ↓ being quaternion multiplica-
tion.

Pressure, serving as an external force for the rigid body,
and as a quantity enforcing incompressibility and rigid-fluid
boundary conditions on the fluid velocity field, acts as the
coupling mechanism between the two domains.

At any point in the simulation, say after t time steps, let
qt = (ut,vt,xt) represent the state of the combined rigid-
fluid system. Each of the stages in the numerical solution
acts as a function ϖ between states. Assuming there are k
such stages (k = 5 in our case), ϖk’s compose to form one
simulation step ” = ϖk ↔ . . .ϖ2 ↔ ϖ1, so that qt+1 = ”(qt).
We use fractional time steps e.g. qt+ 1

k
= ϖ1(qt), only to

denote each stage of the simulation, otherwise each of the
stages are applied for the full time-step. Refer to Figure 1
as an illustration.

3.2. Problem Specification

Our general objective is to find an initial state q̃0, which
through n simulation steps, results in a final desired state
q̃n. We pose this as an optimization problem. Suppose a
convex loss function L measures the distance between two
states and qn = ”n(q0), then q̃0 = argminq0

L(qn, q̃n).

3

Differentiable Two-Way Eulerian Fluid-Solid Coupling

Unlike neural networks, we do not need to specialize the
loss function or constrain the optimization to avoid violating
any boundary conditions, since the simulation based output
qn already enforces them.

Starting from an arbitrary initial state q0, the derivative
ωL
ωq0

points to a direction of decreasing value of L (Boyd &
Vandenberghe (2004)). Indeed, this is the central idea be-
hind gradient descent algorithms, employed in a majority of
learning based problems. Our contribution is the derivation
and calculation of ωL

ωq0
.

3.3. Adjoint Simulation

The quantity ωL
ωqn

can be computed directly from L. We
use reverse mode differentiation to obtain ωL

ωq0
from this

point. For state qt, consider its adjoint state Qt =
ωL
ωqt

=(
ωL
ωut

, ωL
ωvt

, ωL
ωxt

)
. Then, from chain rule, Qt = #(Qt+1),

where # = ω!
ωq . Additionally, the sequential structure of ”

allows the composition: # = ϱ1↔ϱ2 · · ·↔ϱk, ϱi =
ωεi

ωq . As

a result, we have that ωL
ωq0

= Q0 = #n(Qn) = #n
(

ωL
ωqn

)
.

Effectively, in the same way that the simulation ” trans-
forms an initial state q0 to qn, the adjoint simulation #
transforms the adjoint state Qn to Q0, closing one loop of
optimization. Again, refer to the flow diagram in Figure 1.

4. Differentiable 2-Way Solid-Fluid Coupling
In this section, we elaborate different stages of simulation
ϖi, and their corresponding adjoint ϱi. Not all stages require
and/or modify all the variables u, v, and x of combined
state q. For instance, in the forward direction, advection (ϖ1)
only requires and affects the fluid velocity field u, while the
pressure solve (ϖ3) requires the entire state q, but affects
only the velocities u, v. This saves significant derivative
computation, like in the case of advection (ϱ1), where we
do not need to compute ωε1

ωx or ωε1

ωv . Going forward, it
is implied that if a stage ϖi does not require a variable y,
yt1 = yt2 and if it also does not modify y, Yt1 = Yt2 ;
t1 = t + i→1

5 , t2 = t + i
5 , Y = ωL

ωy . Dependencies are
shown in Figure 1.

Constant external forces like gravity, control forces, etc.
only add an offset to the velocity, so there is no change in
the adjoint state. On applying force f = (fu,fv),

(
ut+ 2

5
,vt+ 2

5

)
= ϖ2

(
ut+ 1

5
,vt+ 1

5

)

=

(
ut+ 1

5
+

!t

ε
fu,vt+ 1

5
+!t M→1fv

)

↭ Qt+ 1
5
= ϱ2

(
Qt+ 2

5

)
= Qt+ 2

5
.

(3)

We treat other stages in their separate subsections.

4.1. Advection

In grid-based methods, it is crucial to account for the move-
ment of fluid while tracking changes in fluid velocity, which
remains stationary in space with the background grid, un-
like the fluid itself. The advection term u · ↑u in Equa-
tion 1 captures this behavior. To solve the term, we use
semi-Lagrangian discretization (Stam, 1999) in space for
its stability, and forward Euler discretization in time, for
its relatively simple derivative calculation. Bridson et al.
(2006) elucidates this concept.

If I(g,y) returns the multilinear interpolation of grid g
at location y in space and xg is a sample location, then
ut+ 1

5
(xg) = I(ut,xg → !tI(ut,xg)). Collecting them

into a vector:

ut+ 1
5
= ϖ1(ut)

= Wut

↭ ωL
ωut

= ϱ1

(
ωL

ωut+ 1
5

)

=

(
W +

ωW

ωu
ut

)T ωL
ωut+ 1

5

,

(4)

where W(ut) is the matrix of interpolation weights. A
row signifies weights corresponding to a backtracked loca-
tion xg →!tI(ut,xg) inside the grid ut, while a column
represents weights of a particular sample of ut.

4.2. Pressure Solve

Pressure is the coupling quantity between the solid and fluid
domains. It enforces incompressibility in the fluid interior
($F), solid-fluid impenetratibility constraint on the solid-
fluid boundary ($FS) and ghost-fluid boundary condition
(Gibou et al., 2002)) on the free surface ($FA). For a rigid
body ($S), it behaves as an external force. Essentially,
pressure p satisfies:

ut+ 3
5
(y) = ut+ 2

5
(y)→ !t

ε
↑p(y), y ↗ $F

↑ · ut+ 3
5
(y) = 0, y ↗ $F

p(y) = 0, y ↗ $FA

vt+ 3
5
= vt+ 2

5
+!tM→1

S Fp

(
xt+ 2

5
, p
)

(
ut+ 3

5
(y)→ vt+ 3

5
(y)
)
· n̂ = 0, y ↗ $FS ,

(5)

where qt+ 2
5
=
(
ut+ 2

5
,vt+ 2

5
,xt+ 2

5

)
: input state, qt+ 3

5
=

(
ut+ 3

5
,vt+ 3

5

)
: output state, Fp: external force on rigid

body, and yCM : centre of mass of rigid body. We use the
variational interpretation of pressure, inspired from Batty
et al. (2007), to convert the set of Equations 5 into a mono-
lithic linear system. We rewrite the pressure field as vector

4

Differentiable Two-Way Eulerian Fluid-Solid Coupling

q0

q1

q2

utvtxt

xt+1 vt+1 ut+1

Advection

External Force

Pressure Solve

Velocity
Correction

RBD
Update

ut+ 1
5

ut+ 2
5

vt+ 3
5

vt+ 1
5

vt+ 2
5

xt+ 4
5

ut+ 3
5

ut+ 4
5

ωL
ωq0

ωL
ωq1

ωL
ωq2

ωL
ωut

ωL
ωvt

ωL
ωxt

ωL
ωxt+1

ωL
ωvt+1

ωL
ωut+1

Advection

External Force

Pressure Solve

Velocity Correction

RBD Update

ωL
u
t+1

5

ωL
u
t+2

5

ωL
v
t+2

5

ωL
v
t+3

5

ωL
ωv

t+4
5

ωL
v
t+1

5

ωL
u
t+3

5

ωL
x
t+4

5

ωL
u
t+4

5

q̃t

Lqn ωL
ωqn

Figure 1: Algorithm Flow Diagram. We show the forward pass (left) and backward pass (right) of our differentiable fluid
simulator. Each time step acts on the combined solid-fluid state q or the combined adjoint state ωL

ωq . The zoomed in diagram
shows each of the sub-stages in one time step. The fractional subscripts indicate intermediate values. There is some degree
of sharing between the forward and backward pass for efficiency. This framework is general and can solve a variety of
optimization and learning problems with accurate fluid-solid coupling.

p and the gradient operator as matrix G. Pressure force
being linear in pressure, we write Fp as the vector Jp,
where matrix J depends on the location xt+ 2

5
of the rigid

body. Treating each velocity sample as a binary decision of
presence/absence of liquid in each cell causes artifacts on
non-grid aligned boundaries, as investigated previously by
Batty et al. (2007); Takahashi & Lin (2019); Larionov et al.
(2017). So, we use a fluid mass matrix MF to associate
a mass value with each fluid velocity sample, depending
on the amount of fluid in the corresponding grid cell. It
allows us to properly enforce mass conservation on the fluid.
Leaving out the full derivation, which can be found in Batty
et al. (2007), Bridson et al. (2006), the matrix version of
Equations 5 resolves to:

(
ut+ 3

5
,vt+ 3

5

)
= ϖ3

(
ut+ 2

5
,vt+ 2

5
,xt+ 2

5

)

=

(
ut+ 2

5
→ !t

ε
Gp, vt+ 2

5
+!tM→1

S Jp

) (6)

where pressure p is obtained from the linear system:

Ap =
1

ε
GTMFut+ 2

5
→ JTvt+ 2

5

where A =

[
!t

ε2
GTMFG+!tJTM→1

S J

]
.

(7)

The full version of the gradients, derived in Appendix 1,
features a term ωJ

ωx , which is a non-zero tensor; however, we
assume that for a small enough time step, the matrix J does
not change much. The value of ωJ

ωx is then close to zero.
Consequently, the derivative ωL

ωx remains mostly unchanged.
The rest of the adjoint update is:

(
ωL

ωut+ 2
5

,
ωL

ωvt+ 2
5

)
= ϱ3

(
ωL

ωut+ 3
5

,
ωL

ωvt+ 3
5

)

=

(
ωL

ωut+ 3
5

+
1

ε
MFGs,

ωL
ωvt+ 3

5

→ Js

)
,

(8)

5

Differentiable Two-Way Eulerian Fluid-Solid Coupling

where adjoint pressure s is obtained from the linear system:

As =

[
!tJTM→1

S

(
ωL

ωvt+ 3
5

)
→ !t

ε
GT

(
ωL

ωut+ 3
5

)]
.

(9)

4.3. Fluid Velocity Correction

Because of the choice of discretization, the boundary condi-
tions from Equations 5 are only applied to velocity samples
adjacent to grid cells containing fluid. But, in every stage,
the fluid velocity is advected even where samples are not
affected by pressure. These invalid velocities must be cor-
rected to make sure that the advected velocity obeys the
boundary conditions.

The method of corrections depends on where the invalid
velocity sample lies. If it lies in the air domain ($A), it can
be extrapolated from adjacent valid velocity samples, using
Gauss-Seidel type iterations. A larger time step requires
larger number of iterations. In our experiments, 3 such
iterations work sufficiently well. If on the other hand, the
velocity sample lies in the interior of a rigid body ($S), it is
set to the appropriate component of the rigid body velocity at
the sample point. In both cases, the corrected velocity field
ut+ 4

5
is linear in the combined velocity

(
ut+ 3

5
,vt+ 3

5

)
:

ut+ 4
5
= C

[
ut+ 3

5

vt+ 3
5

]

[
ωL

ωu
t+3

5

ωL
ωv

t+3
5

]T
= CT ωL

ωut+ 4
5

,

(10)

where C
(
ut+ 3

5
,vt+ 3

5

)
is the correction matrix as a func-

tion of input combined velocity.

4.4. Rigid Body Time Integration

This step updates the position of a rigid body, xt+1,
using velocity vt+ 4

5
: xt+1 = ϖ5

(
xt+ 4

5
,vt+ 4

5

)
=

xt+ 4
5
+!t fx

(
xt+ 4

5
,vt+ 4

5

)
. For translational components

fx(x, v) = v and
(

ωL
ωx

t+4
5

, ωL
ωv

t+4
5

)
=
(

ωL
ωxt+1

,!t ωL
ωxt+1

)
.

For quaternions fx(q,ϑ) = 0.5([0,ϑ]↓ q) and,

ωL
ωqt+ 4

5

=



I4↑4 +
!t

2

ω
([

0,ϑt+ 4
5

]
↓ qt+ 4

5

)

ωqt+ 4
5



 ωL
ωqt+1

ωL
ωϑt+ 4

5

=



!t

2

ω
([

0,ϑt+ 4
5

]
↓ qt+ 4

5

)

ωϑt+ 4
5



 ωL
ωqt+1

.

(11)
Partial derivatives of

([
0,ϑt+ 4

5

]
↓ qt+ 4

5

)
can be computed

easily from the definition of quaternion multiplication ↓.

5. Implementation
We have implemented our differentiable simulator in C++.
OpenMP was used to parallelize all steps of the code in the
forward and backward pass. The Eigen (Guennebaud et al.,
2010) library was used to solve for the pressure using the
Simplicial LDLT Cholesky factorization. The forward sim-
ulation is adapted from the FluidRigidCoupling2D library
(Batty, 2016). We use a uniform MAC grid with an offset of
2 cells along each boundary to account for boundary condi-
tions against a solid walled tank. Marker particles are used
to track the free surface and for rendering. These particles
are updated using semi-Lagrangian advection in each time
step. For rendering, we first generate a reconstructed liq-
uid surface from marker particles using SplashSurf library
(Löschner et al., 2023), and then perform the final render-
ings in Blender (Community, 2018). Appendix B includes
pseudo code for the simulation.

6. Experiments
We evaluate our simulation on a variety of optimization
problems. We also include a comparison against DiffFR
(Li et al., 2023) to show the improved performance of our
grid based method over their particle based method. All
experiments are run on an AMD Ryzen 3700X with 16
threads at 4.1 GHz and 32 GB of system memory. For
optimization, we use Gradient Descent (Kiefer & Wolfowitz,
1952) with a learning rate of 1.0.

Figure 2: We plot the loss curves for our method and DiffFR
on the rigid body velocity initialization experiment. Both
methods quickly reach the target by the 20th epoch. Our
method provides a smoother, exponentially decreasing loss
curve. The SPH based method is not monotonically decreas-
ing, which may be due to the complex interactions between
particles.

Block Drop. As a first test for our simulator, we seek to
optimize the initial velocity of a block dropping into water,
such that it reaches the correct final position and orientation.
We ran a fluid domain 3.5 meters wide by 1.5 meters tall by
2 meters deep. The 0.2 meter square cube of density 2000

6

Differentiable Two-Way Eulerian Fluid-Solid Coupling

kg/m3 was dropped from 0.25 meters above the center of
the water surface. Before the first gradient descent step, the
cube had an initial velocity of [→1,→1, 1] along x, y, and
z. The body was given no initial angular velocity, but the
optimizer was allowed to update this value during training.
The grid spacing was 0.1 meters with a time step of 0.005
seconds. The simulation was stepped by 50 frames with 50
training epochs. Each forward pass was around 6 seconds,
while the backward pass was about 1.5 seconds. Figure
4 shows the results at the start and end of training. At the
beginning, the block is only partially submerged in the liquid
after 50 time steps. After 50 gradient updates, the block
quickly reaches its final position near the bottom corner of
the tank. We see that our simulator quickly finds the initial
velocities as shown by the loss curve in Figure 2.

Figure 3: We plot the loss curve the the dam break experi-
ment and find that the loss quickly reduces to a small value.
This shows that our method is able to quickly optimize pa-
rameters is highly dynamic environments.

Dam Break. We now demonstrate our simulator’s perfor-
mance on a more dynamic scenario. We double the number
of grid cells along the x direction to 40 and keep the same
grid spacing of 0.1 meters. The time stepping was increased
to 0.05 seconds per frame. These parameters results in
48000 grid cell values. We start with a block of fluid along
the right wall of the tank. This block is 0.4 meters wide, 0.7
meters tall, and 1 meter deep. A ball of radius 0.2 meters
is placed at [1.6, 1.4, 1.0] in x, y, and z. The ball has no
initial velocity and is allowed to free fall into the dam break
produced by the fluid. The goal of the optimizer is again
to update the initial velocity of the ball, such that it reaches
the target position of [2.0, 0.6, 0.6] after 50 time steps. We
found that setting the learning rate to 0.1 gave the best per-
formance in this experiment. We run the simulation for 20
epochs and plot results in Figure 5. Each forward pass took
around 3 minutes with the backward taking 2 seconds. This
discrepency is most likely due to an unoptimized collision
detection in the marker particle update. We see that our sim-
ulation is again able to recover the correct initial velocity to
match the target even though there are complex dynamics
in the scene. Figure 3 shows that the loss quickly converges

to bring the ball to the correct position. This experiment
demonstrates the robustness of our method to different fluid
environments.

Method Memory (MB) Time (h:m)
FluidSim (ours) 180 0:6.18
Diff-FR (SPH) 510 2:51.83
Improvement 2.83x 27.80x

Table 1: This table shows memory and runtime comparisons
between our method and DiffFR on a rigid body drop over an
initially static surface. We find that our solver uses a fraction
of the memory, while reducing a 3 hour runtime to under
10 minutes. These differences come from our use of an
Eulerian grid greatly reducing the number of computations
necessary in the forward and backward differentiable fluid-
solid coupling simulations.

DiffFR Comparison. We compare the rigid body drop
experiement between our simulation and DiffFR (Li et al.,
2023). The problem setup is the same between the two
simulations. Using the default settings from DiffFR, they
use a total of 237699 particles, while our method requires
only 53352 grid cells on the same domain. The order of
magnitude difference is the key benefit of our method as it
greatly reduces the computational time needed to perform
both the forward and backward simulations. For these tests,
no rendering was performed in the loop, so we did not
advect marker particles in our simulation. This meant that
large changes in fluid surface would not be tracked, but
the movement of the block was not enough create a large
perturbation.

The runtimes of the two simulations are reported in Table 1.
Our simulation runs 27.80 times faster reducing a nearly 3
hour run to under 10 minutes. At the same time, our method
uses almost 3 times less memory due to the differences be-
tween the Eulerian and Lagrangian discretizations. Figure 2
shows the loss curves for the two simulations. Our simula-
tion exponentially decreases the loss and quickly converges
to the target. DiffFR does not monotonically decrease in
loss; however, both method reach reasonable answer within
20 iterations. Our method greatly reduces the computational
cost of differentiable solid-fluid coupling while achieving
similar accuracy as the state of the art.

Similar to DiffFR, we found that the gradients of the back-
ward pass explode due to instability. For shorter time scales
this does not affect the results, but for longer simulations,
this will need to be addressed. Naive clipping of the gradi-
ents does not immediately fix the issue. The local gradient
method used by DiffFR does not directly apply to our work;
however, we do seek to only optimize the initial body ve-
locity as the adjoint fluid velocities appeared to be the most
unstable. We hope to address these limitations in future
work.

7

Differentiable Two-Way Eulerian Fluid-Solid Coupling

Frame 0 Frame 16 Frame 33 Frame 50

Figure 4: Block Motion Control in Fluid Flows. We optimize the initial linear and angular velocity of the red block so that
it reaches the bottom left corner of the fluid tank. The top row shows the block trajectory over the simulation before training.
The bottom row shows the trajectory after training the 50th epoch. While the initial velocity barely submerges the block in
the liquid, the learned velocity quickly finds the target block position.

Frame 0 Frame 16 Frame 33 Frame 50

Figure 5: Dam Break Control. We again optimize the linear and angular velocity of the rigid body as it is dropped into a
fluid. We compute a loss based on the ball’s final position relative to a target location. Our method quickly optimizes the
velocities to meet this goal in dynamic environment with large fluid motions.

7. Summary and Conclusion
Physical simulation is important in engineering and model-
ing our world, whether it is for science or computer graphics.
The solutions to the equations that govern the simulations
are incredibly high dimensional and represent complex in-
teractions. Black box or hand-tuned optimization of pa-
rameters is inefficient and may not even converge to the
desired results. By incorporating gradient information and
backwards simulation, first-order optimization methods be-
come available, which greatly improves convergence. The
derivation of this backward pass is non-trivial, and just like
the forward simulation, there are many different techniques
for doing so. Our work provides an Eulerian approach to
differentiable two-way solid-fluid coupling, which is orders
of magnitude faster than the state-of-the-art (SOTA) method
based on a Lagrangian discretization. We show that our
method can handle both static and dynamic scenes by con-
sidering a rigid-body drop and the dam-break problem. In
the rigid-body experiment, we found that our simulation ran

28 times faster than the SOTA.

However, there is still room for further improvement. First,
robust numerical treatment is required to enable gradient
computation for a large number of time steps, in order to
handle longer and more meaningful simulation. Second,
modeling solids that are smaller than a grid cell is difficult
and can result in incorrect torques in the forward simulation.
We also do not consider viscosity in our work for simplicity.
Future work can seek to address these problems and further
improve the performance of this method. For example, fluid
simulations often use adaptive grids for their discretization
and multi-grid methods to speed up their pressure solver.
Graphics processing units can also greatly improve perfor-
mance by computing across all grid cells in parallel. Our
method greatly improves on the speed and memory footprint
of existing two-way coupling fluid-solid simulations and
opens up a broad research path for continually improving
differentiable fluid simulation.

8

Differentiable Two-Way Eulerian Fluid-Solid Coupling

Impact Statement
The main impact of our work is that it facilitates the broader
scientific community in adopting learning-based methods
for problem-solving in physics-based simulations. We do
not foresee any direct harmful impacts of our contribution
on any individual, society, or the environment.

References
Aanjaneya, M. An efficient solver for two-way coupling

rigid bodies with incompressible flow. Computer Graph-
ics Forum, 37(8):59–68, July 2018.

Agarwal, S., Mierle, K., et al. Ceres solver. http://
ceres-solver.org, 2010.

Akbay, M., Nobles, N., Zordan, V., and Shinar, T. An
extended partitioned method for conservative solid-fluid
coupling. ACM Trans. Graph., 37(4), July 2018.

Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and
Teschner, M. Versatile rigid-fluid coupling for incom-
pressible sph. ACM Trans. Graph., July 2012.

Andelfinger, P. Differentiable agent-based simulation for
gradient-guided simulation-based optimization, 2021.

Banks, J., Henshaw, W., Schwendeman, D., and Tang, Q.
A stable partitioned fsi algorithm for rigid bodies and
incompressible flow in three dimensions. Journal of Com-
putational Physics, 373:455–492, 2018.

Batty, C. Fluidrigidcoupling2d. https:
//github.com/christopherbatty/
FluidRigidCoupling2D, 2016.

Batty, C., Bertails, F., and Bridson, R. A fast variational
framework for accurate solid-fluid coupling. ACM Trans.
Graph., 26(3):100–es, jul 2007.

Bell, B. M. et al. CppAD: C++ algorithmic differ-
entiation. https://projects.coin-or.org/
CppAD, 2018.

Bender, J. and Koschier, D. Divergence-free smoothed par-
ticle hydrodynamics. In Proceedings of the 14th ACM
SIGGRAPH / Eurographics Symposium on Computer An-
imation, pp. 147–155, 2015.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Bridson, R., Fedkiw, R., and Müller-Fischer, M. Fluid sim-
ulation: Siggraph 2006 course notes (fedkiw and muller-
fischer presenation videos are available from the citation
page). In ACM SIGGRAPH 2006 Courses, pp. 1–87,
2006.

Carlson, M., Mucha, P. J., and Turk, G. Rigid fluid: animat-
ing the interplay between rigid bodies and fluid. ACM
Trans. Graph., 23(3):377–384, August 2004.

Community, B. O. Blender - a 3D modelling and ren-
dering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. URL http://www.
blender.org.

de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum,
J., and Kolter, J. Z. End-to-end differentiable physics for
learning and control. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Degrave, J., Hermans, M., Dambre, J., and Wyffels, F. A
differentiable physics engine for deep learning in robotics.
CoRR, abs/1611.01652, 2016.

Du, T., Wu, K., Ma, P., Wah, S., Spielberg, A., Rus, D., and
Matusik, W. Diffpd: Differentiable projective dynamics.
ACM Trans. Graph., 41(2), nov 2021.

Foster, N. and Fedkiw, R. Practical animation of liquids. In
Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 23–30, 2001.

Foster, N. and Metaxas, D. Realistic animation of liquids.
Graphical Models and Image Processing, 58(5):471–483,
1996.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch,
I., and Bachem, O. Brax – a differentiable physics engine
for large scale rigid body simulation, 2021.

Geilinger, M., Hahn, D., Zehnder, J., Bächer, M.,
Thomaszewski, B., and Coros, S. Add: Analytically
differentiable dynamics for multi-body systems with fric-
tional contact, 2020.

Gibou, F. and Min, C. Efficient symmetric positive definite
second-order accurate monolithic solver for fluid/solid
interactions. Journal of Computational Physics, 231(8):
3246–3263, 2012.

Gibou, F., Fedkiw, R. P., Cheng, L.-T., and Kang, M. A
second-order-accurate symmetric discretization of the
poisson equation on irregular domains. Journal of Com-
putational Physics, 176(1):205–227, 2002.

Guennebaud, G., Jacob, B., et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

Harlow, F. H. and Welch, J. E. Numerical Calculation of
Time-Dependent Viscous Incompressible Flow of Fluid
with Free Surface. The Physics of Fluids, 8(12):2182–
2189, 12 1965.

9

http://ceres-solver.org
http://ceres-solver.org
https://github.com/christopherbatty/FluidRigidCoupling2D
https://github.com/christopherbatty/FluidRigidCoupling2D
https://github.com/christopherbatty/FluidRigidCoupling2D
https://projects.coin-or.org/CppAD
https://projects.coin-or.org/CppAD
http://www.blender.org
http://www.blender.org

Differentiable Two-Way Eulerian Fluid-Solid Coupling

Heiden, E., Millard, D., Coumans, E., Sheng, Y.,
and Sukhatme, G. S. NeuralSim: Augmenting
differentiable simulators with neural networks. In
Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2021. URL
https://github.com/google-research/
tiny-differentiable-simulator.

Holl, P., Koltun, V., and Thuerey, N. Learning to control
pdes with differentiable physics, 2020.

Hu, Y., Liu, J., Spielberg, A., Tenenbaum, J. B., Free-
man, W. T., Wu, J., Rus, D., and Matusik, W. Chain-
queen: A real-time differentiable physical simulator for
soft robotics, 2018.

Hu, Y., Li, T.-M., Anderson, L., Ragan-Kelley, J., and Du-
rand, F. Taichi: a language for high-performance compu-
tation on spatially sparse data structures. ACM Transac-
tions on Graphics (TOG), 38(6):201, 2019.

Huang, Z., Hu, Y., Du, T., Zhou, S., Su, H., Tenenbaum,
J. B., and Gan, C. PlasticineLab: A soft-body manipu-
lation benchmark with differentiable physics. In ICLR,
2021.

Ingraham, J., Riesselman, A., Sander, C., and Marks, D.
Learning protein structure with a differentiable simulator.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=Byg3y3C9Km.

Jatavallabhula, K. M., Macklin, M., Golemo, F., Vo-
leti, V., Petrini, L., Weiss, M., Considine, B., Parent-
Levesque, J., Xie, K., Erleben, K., Paull, L., Shkurti, F.,
Nowrouzezahrai, D., and Fidler, S. gradsim: Differen-
tiable simulation for system identification and visuomotor
control, 2021.

Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., and
Selle, A. The material point method for simulating con-
tinuum materials. In ACM SIGGRAPH 2016 Courses,
SIGGRAPH ’16. Association for Computing Machinery,
2016.

Kiefer, J. and Wolfowitz, J. Stochastic Estimation of
the Maximum of a Regression Function. The An-
nals of Mathematical Statistics, 23(3):462–466, 3 1952.
ISSN 00034851. URL http://www.jstor.org/
stable/2236690.

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M.,
and Solenthaler, B. Deep fluids: A generative network
for parameterized fluid simulations. Computer Graphics
Forum, 38(2):59–70, May 2019.

Klingner, B. M., Feldman, B. E., Chentanez, N., and
O’Brien, J. F. Fluid animation with dynamic meshes.
ACM Trans. Graph., 25(3):820–825, July 2006.

Larionov, E., Batty, C., and Bridson, R. Variational stokes:
a unified pressure-viscosity solver for accurate viscous
liquids. ACM Trans. Graph., 36(4), jul 2017.

Leng, J., Peng, Y., Qiao, Y.-L., Lin, M. C., and Wu, X.
Differentiable analog quantum computing for optimiza-
tion and control. In Conference on Neural Information
Processing Systems (NeurIPS), 2022.

Li, Y., Du, T., Wu, K., Xu, J., and Matusik, W. Diffcloth:
Differentiable cloth simulation with dry frictional contact.
ACM Trans. Graph., 42(1), 2022.

Li, Y., Sun, Y., Ma, P., Sifakis, E., Du, T., Zhu, B., and
Matusik, W. Neuralfluid: Neural fluidic system design
and control with differentiable simulation, 2024. URL
https://arxiv.org/abs/2405.14903.

Li, Z., Xu, Q., Ye, X., Ren, B., and Liu, L. Difffr: Dif-
ferentiable sph-based fluid-rigid coupling for rigid body
control. ACM Trans. Graph., 42(6), dec 2023.

Liang, J., Lin, M., and Koltun, V. Differentiable cloth
simulation for inverse problems. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Lions, J. Optimal Control of Systems Governed by Par-
tial Differential Equations:. Springer Berlin, Heidelberg,
1971.

Löschner, F., Böttcher, T., Rhys Jeske, S., and Bender, J.
Weighted Laplacian Smoothing for Surface Reconstruc-
tion of Particle-based Fluids. In Vision, Modeling, and
Visualization. The Eurographics Association, 2023. doi:
10.2312/vmv.20231245.

Ma, P., Du, T., Zhang, J. Z., Wu, K., Spielberg, A.,
Katzschmann, R. K., and Matusik, W. Diffaqua: A dif-
ferentiable computational design pipeline for soft under-
water swimmers with shape interpolation. ACM Transac-
tions on Graphics (TOG), 40(4):132, 2021.

Macklin, M. Warp: A high-performance python framework
for gpu simulation and graphics. https://github.
com/nvidia/warp, March 2022. NVIDIA GPU
Technology Conference (GTC).

McNamara, A., Treuille, A., Popović, Z., and Stam, J. Fluid
control using the adjoint method. ACM Trans. Graph., 23
(3):449–456, aug 2004.

Mora, M. A. Z., Peychev, M., Ha, S., Vechev, M., and Coros,
S. Pods: Policy optimization via differentiable simula-
tion. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 7805–7817, 18–24 Jul
2021.

10

https://github.com/google-research/tiny-differentiable-simulator
https://github.com/google-research/tiny-differentiable-simulator
https://openreview.net/forum?id=Byg3y3C9Km
https://openreview.net/forum?id=Byg3y3C9Km
http://www.jstor.org/stable/2236690
http://www.jstor.org/stable/2236690
https://arxiv.org/abs/2405.14903
https://github.com/nvidia/warp
https://github.com/nvidia/warp

Differentiable Two-Way Eulerian Fluid-Solid Coupling

Nava, E., Zhang, J. Z., Michelis, M. Y., Du, T., Ma, P.,
Grewe, B. F., Matusik, W., and Katzschmann, R. K. Fast
aquatic swimmer optimization with differentiable projec-
tive dynamics and neural network hydrodynamic models,
2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. PyTorch: An imperative style, high-performance
deep learning library. In Neural Information Processing
Systems, 2019.

Prantl, L., Bonev, B., and Thuerey, N. Generating liquid sim-
ulations with deformation-aware neural networks, 2019.

Qiao, Y.-L., Liang, J., Koltun, V., and Lin, M. C. Scalable
differentiable physics for learning and control, 2020.

Qiao, Y.-L., Liang, J., Koltun, V., and Lin, M. C. Efficient
differentiable simulation of articulated bodies, 2021.

Qiao, Y.-L., Liang, J., Koltun, V., and Lin, M. C. Differen-
tiable simulation of soft multi-body systems, 2022.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Ramos, B., Trost, F., and Thuerey, N. Control of two-way
coupled fluid systems with differentiable solvers, 2022.

Robert, A., Yee, T. L., and Ritchie, H. A semi-lagrangian
and semi-implicit numerical integration scheme for multi-
level atmospheric models. Monthly Weather Review, 113
(3), 1985.

Robinson-Mosher, A., Schroeder, C., and Fedkiw, R. A
symmetric positive definite formulation for monolithic
fluid structure interaction. Journal of Computational
Physics, 230(4):1547–1566, 2011.

Son, S., Qiao, Y.-L., Sewall, J., and Lin, M. C. Differentiable
hybrid traffic simulation, 2022.

Song, C. and Boularias, A. Identifying mechanical models
of unknown objects with differentiable physics simula-
tions. In L4DC, 2020.

Spielberg, A., Zhao, A., Hu, Y., Du, T., Matusik, W., and
Rus, D. Learning-in-the-loop optimization: End-to-end
control and co-design of soft robots through learned deep
latent representations. In Neural Information Processing
Systems, 2019.

Stam, J. Stable fluids. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Tech-
niques, pp. 121–128, 1999.

Takahashi, T. and Batty, C. Monolith: a monolithic pressure-
viscosity-contact solver for strong two-way rigid-rigid
rigid-fluid coupling. ACM Trans. Graph., 39(6), nov
2020.

Takahashi, T. and Batty, C. Frictionalmonolith: a mono-
lithic optimization-based approach for granular flow with
contact-aware rigid-body coupling. ACM Trans. Graph.,
40(6), dec 2021.

Takahashi, T. and Batty, C. Elastomonolith: A monolithic
optimization-based liquid solver for contact-aware elastic-
solid coupling. ACM Trans. Graph., 41(6), nov 2022.

Takahashi, T. and Lin, M. C. A geometrically consistent
viscous fluid solver with two-way fluid-solid coupling.
Computer Graphics Forum, 38, 2019.

Takahashi, T., Liang, J., Qiao, Y.-L., and Lin, M. C. Dif-
ferentiable fluids with solid coupling for learning and
control. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 35(7):6138–6146, May 2021.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin, K.
Accelerating eulerian fluid simulation with convolutional
networks, 2022.

Toussaint, M., Allen, K., Smith, K., and Tenenbaum, J.
Differentiable physics and stable modes for tool-use and
manipulation planning. In Robotics: Science and Systems
(RSS), 2018.

Treuille, A., McNamara, A., Popović, Z., and Stam, J.
Keyframe control of smoke simulations. ACM Trans.
Graph., 22(3):716–723, July 2003.

Um, K., Hu, X., and Thuerey, N. Liquid splash modeling
with neural networks, 2018.

Wang, K., Aanjaneya, M., and Bekris, K. E. A first princi-
ples approach for data-efficient system identification of
spring-rod systems via differentiable physics engines. In
L4DC, 2020.

Werling, K., Omens, D., Lee, J., Exarchos, I., and Liu,
C. K. Fast and feature-complete differentiable physics
for articulated rigid bodies with contact, 2021.

Wiewel, S., Becher, M., and Thuerey, N. Latent-space
physics: Towards learning the temporal evolution of fluid
flow, 2019.

Xie, Y., Franz, E., Chu, M., and Thuerey, N. tempogan: a
temporally coherent, volumetric gan for super-resolution
fluid flow. ACM Trans. Graph., July 2018.

Xu, J., Chen, T., Zlokapa, L., Foshey, M., Matusik, W.,
Sueda, S., and Agrawal, P. An end-to-end differentiable
framework for contact-aware robot design. In Robotics:
Science and Systems XVII, RSS2021, July 2021.

11

Differentiable Two-Way Eulerian Fluid-Solid Coupling

Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik,
W., Garg, A., and Macklin, M. Accelerated policy learn-
ing with parallel differentiable simulation, 2022.

Zarifi, O. and Batty, C. A positive-definite cut-cell method
for strong two-way coupling between fluids and de-
formable bodies. In Proceedings of the ACM SIG-
GRAPH / Eurographics Symposium on Computer Ani-
mation, 2017.

12

Differentiable Two-Way Eulerian Fluid-Solid Coupling

A. Derivation: Gradients of Pressure Solve
The pressure solve or projection step transforms the combined input state (ut,vt,xt) into a combined output velocity
(ut+1,vt+1) that obeys the physical constraints highlighted in eqn. (2). Starting here, we wish to compute the downstream
gradients

(
ωL
ωut

, ωL
ωvt

, ωL
ωxt

)
, using the upstream gradients

(
ωL

ωut+1
, ωL
ωvt+1

, ωL
ωxt+1

)
. Let’s say we require ωL

ωq , where q =

ut,vt,xt. Then, on differentiating the linear system of eqn. (2),

A

(
ωp

ωq

)
+
ωA

ωq
p =

ωb

ωq

↭ A

(
ωp

ωq

)
=

1

ε
GTMF

(
ωut

ωq

)
→
(
ωJ

ωq

)T

vt → JT

(
ωvt

ωq

)
→ 2!t JTM→1

S

(
ωJ

ωq

)
p

↘ A

(
ωp

ωut

)
=

1

ε
GTMF

↘ A

(
ωp

ωvt

)
= →JT

↘ A

(
ωp

ωxt

)
= →

(
ωJ

ωxt

)T

vt → 2!t JTM→1
S

(
ωJ

ωxt

)
p

Now, differentiating the velocity updates of eqn. (2),

ωut+1

ωq
=
ωut

ωq
→ !t

ε
G

(
ωp

ωq

)
,
ωvt+1

ωq
=
ωvt

ωq
+!tM→1

S

(
ωJ

ωq

)
p+!tM→1

S J

(
ωp

ωq

)

Now, we find ωL
ωq in terms of

(
ωL

ωut+1
, ωL
ωvt+1

, ωL
ωxt+1

)
, using the principle of total derivative,

ωL
ωq

=

(
ωut+1

ωq

)T ωL
ωut+1

+

(
ωvt+1

ωq

)T ωL
ωvt+1

+

(
ωxt+1

ωq

)T ωL
ωxt+1

↘ ωL
ωut

=

(
ωut+1

ωut

)T ωL
ωut+1

+

(
ωvt+1

ωut

)T ωL
ωvt+1

+
!!!!!!"

0(
ωxt+1

ωut

)T ωL
ωxt+1

=

(
ωut

ωut
→ !t

ε
G

(
ωp

ωut

))T ωL
ωut+1

+




#
#
#$
0

ωvt

ωut
+!tM→1

S
%
%
%%&

0(
ωJ

ωut

)
p+!tM→1

S J

(
ωp

ωut

)




T

ωL
ωvt+1

=
ωL

ωut+1
→
(
ωp

ωut

)T [!t

ε
GT ωL

ωut+1
→!tJTM→1

S

ωL
ωvt+1

]

↘ ωL
ωvt

=

(
ωut+1

ωvt

)T ωL
ωut+1

+

(
ωvt+1

ωvt

)T ωL
ωvt+1

+
!!!!!!"

0(
ωxt+1

ωvt

)T ωL
ωxt+1

=




#
#
#$
0

ωut

ωvt
→ !t

ε
G

(
ωp

ωvt

)




T

ωL
ωut+1

+




ωvt

ωvt
+!tM→1

S
%

%
%%&

0(
ωJ

ωvt

)
p+!tM→1

S J

(
ωp

ωvt

)




T

ωL
ωvt+1

=
ωL

ωvt+1
→
(
ωp

ωvt

)T [!t

ε
GT ωL

ωut+1
→!tJTM→1

S

ωL
ωvt+1

]

13

Differentiable Two-Way Eulerian Fluid-Solid Coupling

↘ ωL
ωxt

=

(
ωut+1

ωxt

)T ωL
ωut+1

+

(
ωvt+1

ωxt

)T ωL
ωvt+1

+
!!!!!!"

I(
ωxt+1

ωxt

)T ωL
ωxt+1

=




#
#
#$
0

ωut

ωxt
→ !t

ε
G

(
ωp

ωxt

)




T

ωL
ωut+1

+
ωL

ωxt+1

+




#
#
#$
0

ωvt

ωxt
+!tM→1

S

(
ωJ

ωxt

)
p+!tM→1

S J

(
ωp

ωxt

)




T

ωL
ωvt+1

=
ωL

ωxt+1
+!t

[
M→1

S

(
ωJ

ωxt

)
p

]T ωL
ωvt+1

+

(
ωp

ωxt

)T [!t

ε
GT ωL

ωut+1
→!tJTM→1

S

ωL
ωvt+1

]

For any vector d, the quantity
(

ωp
ωq

)T
d given A

(
ωp
ωq

)
= B is equivalent to BT s given AT s = d. This is the adjoint

method, first introduced for differentiable fluid simulation by McNamara et al. (2004). Combined with the fact that A is
symmetric:

ωL
ωut

=
ωL

ωut+1
+

1

ε
MFGs

ωL
ωvt

=
ωL

ωvt+1
→ Js

ωL
ωxt

=
ωL

ωxt+1
+!t

[
M→1

S

(
ωJ

ωxt

)
p

]T ωL
ωvt+1

+ 2 !t

[
M→1

S

(
ωJ

ωxt

)
p

]T
Js+ vT

t

(
ωJ

ωxt

)
s

where As = !tJTM→1
S

ωL
ωvt+1

→ !t

ε
GT ωL

ωut+1

In our experiments, we set only rigid body velocity v as optimization parameter, for which only ωL
ωvt

is required at the end
of every (adjoint) frame. It receives the contribution !t ωL

ωxt
every frame, and so on ignoring the above expression, we

introduce an error which is O(!t2) in two terms and O(!t) in one term. So, using a sufficiently small time step should
keep the error small, and thus the performance same.

If instead, we were to include rigid body position xt as an optimization parameter, we would expect to see a significant
performance difference, because of the time step independent term vTt

(
ωJ
ωxt

)
.

14

Differentiable Two-Way Eulerian Fluid-Solid Coupling

B. Simulator Pseudo Code

Algorithm 1 Differentiable Simulation
Global:

1. Grid Dimensions, (Nx,Ny,Nz)

2. Grid Cell Width, !x

3. Boundary SDF, ωB

4. Rigid Body(ies) Geometry + Mass (MS)

5. Constant external forces i.e. gravity, control forces

Input: Initial state q0 = (u0,v0,x0), Initial particles pt0, Number of frames f , Time step size !t,
Loss function L

1: q,pt≃ q0,pt0
2: for t = 1 to f do
3: Forward Simulation: q,pt, q̃ ≃ ”(q,!t)
4: Store intermediate results: q̃
5: end for
6: Q≃ getLossDerivative(L, q)
7: for t = f to 1 do
8: Adjoint Simulation: Q≃ #(Q, qt, q̃t,!t)
9: end for

Output: Final adjoint state, Q = ωL
ωq0

Algorithm 2 Forward Simulation (”), One Time Step
Input: State qt, Marker Particles ptt

1: ptt+1 ≃ advectParticles(ptt, qt,!t)
2: qt+ 1

5
≃ advectVelocity(qt,!t)

3: qt+ 2
5
≃ externalForce(qt+ 1

5
,!t)

4: ωL ≃ computeLiquidSDF(ptt+1)
5: qt+ 3

5
≃ solvePressure(qt+ 2

5
,ωL,!t)

6: qt+ 4
5
≃ velocityCorrection(qt+ 3

5
,!t)

7: qt+1 ≃ updateRigidBody(qt+ 4
5
,!t)

Output: State qt+1, Particles ptt+1

Algorithm 3 Adjoint Simulation (#), One Time Step

Input: Adjoint state Qt+1, Intermediate state q̃t
1: Qt+ 4

5
≃ adjointUpdateRigidBody(Qt+1, q̃t,!t)

2: Qt+ 3
5
≃ adjointVelocityCorrection(Qt+ 4

5
, q̃t,!t)

3: Qt+ 2
5
≃ adjointSolvePressure(Qt+ 3

5
, q̃t,!t)

4: Qt ≃ adjointAdvectVelocity(Qt+ 2
5
, q̃t,!t)

Output: Adjoint state Qt

15

	Students Full Name Last First Middle: Patel Shrey Jayeshbhai
	Students UMD Email Address: Computer Science
	Month Year Started Entry Year: August 2023 (Fall 2023)
	Title of MS Scholarly Paper: Differentiable Two-Way Eulerian Solid-Fluid Coupling
	Date2_af_date: 17th April, 2025
	Advisor Name: Prof. Ming Lin
	Graduation Term: Spring 2025

